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In the modeling of spin-crossing reactions, it has become popular to directly explore the spin-adiabatic surfaces. Specif-
ically, through constructing spin-adiabatic states from a two-state Hamiltonian (with spin-orbit coupling matrix ele-
ments) at each geometry, one can readily employ advanced geometry optimization algorithms to acquire a “transition
state" structure, where the spin crossing occurs. In this work, we report the implementation of a fully-variational
spin-adiabatic approach based on Kohn-Sham density functional theory spin states (sharing the same set of molecular
orbitals) and the Breit-Pauli one-electron spin-orbit operator. For three model spin-crossing reactions [predissociation
of N2O, singlet-triplet conversion in CH2, and CO addition to Fe(CO)4], the spin-crossing points were obtained. Our
results also indicated the Breit-Pauli one-electron spin-orbit coupling can vary significantly along the reaction pathway
on the spin-adiabatic energy surface. On the other hand, due to the restriction that low-spin and high-spin states share
the same set of molecular orbitals, the acquired spin-adiabatic energy surface shows a cusp (i.e. a first-order discontinu-
ity) at the crossing point, which prevents the use of standard geometry optimization algorithms to pinpoint the crossing
point. An extension with this restriction removed is being developed to achieve the smoothness of spin-adiabatic sur-
faces.

I. INTRODUCTION

In most chemical reactions, the total electron spin is con-
served. However, if a reaction involves high-spin species,
such as oxygen (3P) and nitrogen (4N) atoms, molecular oxy-
gen (3O2), and transition metals,1–8 a change in the electron
spin might occur during the transition from the reactant to
the product. Such spin-crossing reactions are known to be
enabled by the spin-orbit coupling (SOC) between different
spin states.9,10 While usually slower than their spin-conserved
counterparts (especially in cases with a weak spin-orbit cou-
pling), spin-crossing reactions can play an important role in
biochemical processes, homogeneous/heterogeneous cataly-
sis, energy storage/conversion, etc.

In the study of spin-crossing reactions, one can explore ei-
ther the spin-diabatic or spin-adiabatic potential energy sur-
faces. In the spin-diabatic approach, the central task is to
reach the crossing seam of two spin-diabatic potential energy
surfaces, and then locate the minimum energy crossing point
(MECP) on the crossing seam.11–14 This is illustrated in Fig-
ure 1a for a triplet-to-singlet reaction. Once the MECP is
found, one can proceed to compute the spin-orbit coupling
between the two spin states. The rate of a spin-crossing re-
action is then assessed from the energy required to reach the
MECP (i.e. activation energy) as well as the spin-orbit cou-
pling value at the MECP (which controls the probability to
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cross onto another spin-diabatic state).4 Over the years, the
MECP approach has been successfully applied to numerous
spin-crossing reactions.1,3,4,7,15

The spin-adiabatic approach,3,17 on the other hand, has
gained a lot of momentum in last couple of years.16,18–22 As
illustrated in Figure 1b, within this approach, one computes
spin-orbit coupling at each geometry to construct the lowest-
energy spin-adiabatic state, and then search for a transition
state (TS) and the minimum energy pathway on the spin-
adiabatic surface. Such a so-called TS-SOC approach has
been applied to a number of systems: O2 addition to gold hy-
dride complexes and predissociation of N2O and N2Se,16,18,19

CO addition to Fe(CO)4 and hydrogen elimination from a
tungsten complex,20 FeO+ reacting with H2 or CH4 and Mn+

reacting with OCS,21 and several first-row transition metal
cations (Sc+ to Cu+) reacting with OCS molecule.22

For spin-crossing reactions with weak spin-orbit couplings
between two spin states, MECP and TS-SOC approaches
would yield very similar reaction mechanisms and rates, be-
cause the spin-orbit coupling causes only little structural dif-
ference between the MECP at the intersection of two spin-
diabatic surfaces and the TS on the spin-adiabatic surface.
However, the TS-SOC approach has a clear computational
advantage. Instead of exploring a high-dimensional cross-
ing seam between two potential energy surfaces using an
MECP algorithm, a TS-SOC calculation only requires the lo-
cation of a first-order saddle point on a single potential en-
ergy surface. Thus, once the corresponding analytical nu-
clear gradient is available, a TS-SOC calculation can be read-
ily handled using advanced TS search algorithms (such as
partitioned rotational-function optimization,23 quadratic syn-
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Figure 1. Schematic representation of three approaches for modeling
spin-crossing reactions. Two existing approaches:16(a) optimization
of MECP between spin-diabatic surfaces; (b) optimization of tran-
sition state (TS) on the spin-adiabatic surface. This work: (c) opti-
mization of spin-adiabatic cusp point (SACP) on the spin-adiabatic
surface.

chronous transition method,24 dimer method,25–27 growing
string method,28–30 and freezing string method31,32) that have
been implemented in various quantum chemistry software
packages.

In TS-SOC calculations, the spin-orbit coupling between
spin-diabatic states has so far been formulated within the zero-
order regular approximation (ZORA).33,34 In the first TS-SOC
implementation by Harvey and coworkers,16 ZORA coupling
was computed on the fly (i.e. for each geometry) during the
TS search. Later on, it was approximated to have a constant
value in the two-state spin-mixing model (TSSMM) from
Yang, Gagliardi, and Truhlar20 and adopted by Takayanagi
and Nakatomi.21 Such an approximation removes the orbital-
dependence of spin-orbit coupling values and thus greatly
simplifies the evaluation of analytical nuclear gradients and
Hessian matrices.

Inspired by the TS-SOC and TSSMM approaches, in this
work, we explored the construction of spin-adiabatic surfaces
using a different spin-orbit coupling Hamiltonian. Specif-
ically, we employed the Breit-Pauli one-electron spin-orbit
operator,9,35 which is also widely available for non-relativistic
quantum chemistry calculations.36–40 Recently, the Breit-
Pauli one-electron spin-orbit operator was also employed to
construct spin-adiabatic excited states within both config-
uration interaction singles (CIS)41 and the Tamm-Dancoff
approximation to time-dependent density functional theory
(TDDFT/TDA)42 frameworks. Similarly, we will adopt the
original Breit-Pauli one-electron spin-orbit operator, with the
expectation that the use of effective nuclear charges37 or a
mean-field approach43 would reduce the spin-orbital coupling
but retain a very similar picture for the reaction energetics.

In the construction of spin-adiabatic states, the component
spin diabatic states can share the same set of molecular or-
bitals or have separately-optimized (i.e. unshared) molecu-
lar orbitals. An unshared-orbitals implementation based on
Breit-Pauli spin-orbit coupling would require the solution of
z-vector equations in the analytical gradient evaluation. Such
an unshared-orbitals implementation will be reported in a sub-
sequent publication.

In this work, we will explore a spin-restricted and shared-
orbital implementation. Essentially, the same set of molecular
orbitals will be adopted for the alpha and beta electrons, and
for the two spin-diabatic states (i.e. restricted closed-shell sin-
glet and restricted open-shell triplet) and thus resultant spin-
adiabatic states. Upon self-consistent-field (SCF) conver-
gence, the energy of a shared-orbital spin-adiabatic ground-
state is fully variational with respect to orbital rotations, thus
allowing us to avoid the additional cost of solving z-vector
equations during the stage of analytical gradient evaluation.

This article is organized as follows. Our new restricted-and-
shared-orbital method for acquring spin-adiabatic states will
be introduced in Section II, with three model spin-crossing
reactions and other computational details described in Section
III. Computational results will be presented in Section IV. A
discussion will be provided in Section V, mostly concerning
an unintended consequence of orbital sharing between differ-
ent spin states — our spin-adiabatic potential surface displays
a cusp around the crossing point (as shown in Figure 1c). Be-
cause of this, an MECP-type algorithm was employed (instead
of TS search algorithms) to reach the crossing point in our cal-
culations. Finally, conclusions will be drawn in Section VI.

II. METHODOLOGY

A. Spin-Adiabtic States

In this work, we focus on molecular systems with an even
number of electrons. The spin-adiabatic state of such systems
will be described as a linear combination of two spin-diabatic
Kohn-Sham states,

Ψ
adia =CsingΨ

sing +CtripΨ
trip (1)

which are shown schematically in Figure 2. The restricted
closed-shell singlet (S=0) and restricted open-shell triplet
(S=1) states share the same core (doubly-occupied) orbitals
to be labelled as c, c′, and virtual orbitals labelled as v and v′.
The difference between two spin-diabatic states thus occurs
with open–shell orbitals labelled as a, b: the first orbital a is
doubly occupied within the closed-shell singlet state; in con-
trast, a and b orbitals are both occupied by an alpha electron
within the restricted open-shell triplet state.

The singlet and triplet states are coupled through SOC with
the Hamiltonian being

H =

(
Esing V SOC

V SOC E trip

)
(2)

where Esing and E trip are energies of two spin-diabatic states,
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Figure 2. Restricted closed-shell singlet and open-shell triplet con-
figurations for constructing spin-adiatic state.

and V SOC is the spin-orbit coupling between these two states
(to be defined below in Section II B). Solving this two-state
problem, one arrives at two spin-adiabatic states in Eq.1 (with
different mixing coefficients). The energy of the target (i.e.
lower-energy) spin-adiabatic state is

Eadia =
Esing +E trip

2
−
[

1
4
(
Esing−E trip)2

+
(
V SOC)2

] 1
2

(3)

To the extent that the spin-adiabatic state is a mixture of two
“wavefunctions" built from a single set of restricted molecu-
lar orbitals, our method closely resembles the restricted open-
shell Kohn-Sham (ROKS) approach from van Voorhis and
others for describing the lowest open-shell singlet state.44–46

As a result, our SCF procedure to converge molecular orbitals
in Section II C will also be similar to the one for converging
ROKS calculations.

B. Spin-Orbit Coupling

For molecules containing only main-group and first-row
transition metal elements, which are the focus of this work,
one can use the Breit-Pauli one-electron spin-orbit Hamilto-
nian

V̂ SO =−
α2

0
2 ∑

j,A

ZA∣∣~r jA
∣∣3 (~r jA× p̂ j

)
· ŝ j (4)

where α0 is the fine structure constant (∼ 1/137), ZA is the
nuclear charge of the A-th atom,~r jA is the vector from the A-
th atom to the j-th electron, p̂ j ( ŝ j ) is the momentum (spin)
operator for the j-th electron. The three components of the
Breit-Pauli operator

V̂ SO = {V̂ SO
x ,V̂ SO

y ,V̂ SO
z } (5)

can be represented in an atomic-orbital basis (φµ , φν )

V SO
m,µν =

〈
φµ

∣∣V̂ SO
m
∣∣φν

〉
, m = x, y, z (6)

Using these three matrices, one can compute the SOC be-
tween two open-shell orbitals (with orbital coefficients being
Cµa and Cνb)

V SO
m,ab = ∑

µν

CµaV SO
m,µνCνb, m= x,y,z (7)

and express the SOC element in Eq.2 as

V SOC =

(
∑

m=x,y,z

∣∣V SO
m,ab

∣∣2) 1
2

, (8)

which is the total spin-orbit coupling between the singlet and
all three triplet components (ms = 1, 0, -1).

C. Self Consistent Field Procedure

Since the two spin-diabatic states share the same set of
molecular orbitals, these orbitals can be variationally opti-
mized to minimize the spin-adiabtic state energy in Eq.3. Dur-
ing the SCF cycles, the orbitals will be updated using the fol-
lowing rotations

Θ =


0 −Θ†

ac −Θ
†
bc −Θ†

vc
Θac 0 −Θ

†
ba −Θ†

va
Θbc Θba 0 −Θ

†
vb

Θvc Θva Θvb 0

 (9)

The derivative of the energy in Eq.3 with respect to these or-
bital rotations yields the Fock matrix,

Fadia =

Fcc Fca Fcb Fcv
Fac Faa Fab Fav
Fbc Fba Fbb Fbv
Fvc Fva Fvb Fvv

 . (10)

It contains three terms

Fadia =
∂Eadia

∂Esing Fsing +
∂Eadia

∂E trip Ftrip +
∂Eadia

∂V SOC ∆FSOC (11)

The restricted closed-shell singlet Fock matrix is computed as
usual

Fsing =


Fsing

cc Fsing
ca Fsing

cb Fsing
cv

Fsing
ac Fsing

aa Fsing
ab Fsing

av

Fsing
bc Fsing

ba Fsing
bb Fsing

bv
Fsing

vc Fsing
va Fsing

vb Fsing
vv

 . (12)

The off-diagonal blocks (ca, cb, cv, av, bv) of the restricted
open-shell triplet effective Fock matrix (with two unpaired al-
pha electrons) can be written as energy derivatives with re-
spect to orbital rotations in Eq.9,

F =
∂E

∂Pα

∂Pα

∂Θ
+

∂E
∂Pβ

∂Pβ

∂Θ
= Fα ∂Pα

∂Θ
+Fβ ∂Pβ

∂Θ
(13)
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where the Pα and Pβ are alpha and beta density matrices. The
triplet effective Fock matrix can then be written as44

Ftrip =


Rcc Ftrip,β

ca Ftrip,β
cb Ftrip,α

cv +Ftrip,β
cv

Ftrip,β
ac Raa Rab Ftrip,α

av

Ftrip,β
bc Rba Rbb Ftrip,α

bv

Ftrip,α
vc +Ftrip,β

vc Ftrip,α
va Ftrip,α

vb Rvv


(14)

which reflects the fact that, in the Ms=1 triplet, cv rotations
affect both alpha and beta density/Fock matrices, but ca and
cb (av and bv) rotations only perturb beta (alpha) density ma-
trices. The diagonal blocks (R) are not uniquely defined,47,48

and in our implementation we shall adopt the Binkley-Pople-
Dobosh operators,49

Rcc =
1
2

(
Ftrip,α

cc +Ftrip,β
cc

)
(15)

Raa = Ftrip,α
aa (16)

Rab = Rba = Ftrip,α
ab (17)

Rbb = Ftrip,α
bb (18)

Rvv = Ftrip,β
vv (19)

The non-zero elements of ∆FSOC are

∆FSOC
ac = ∆FSOC

ca =− 2
V SOC

(
~V SO

cb ·~V SO
ab

)
(20)

∆FSOC
bc = ∆FSOC

cb =− 2
V SOC

(
~V SO

ac ·~V SO
ab

)
(21)

∆FSOC
va = ∆FSOC

av =
2

V SOC

(
~V SO

vb ·~V SO
ab

)
(22)

∆FSOC
vb = ∆FSOC

bv =
2

V SOC

(
~V SO

av ·~V SO
ab

)
(23)

Putting the singlet, triplet, and SOC components together
according to Eq.11, the total Fock matrix in Eq.10 is obtained.
To ensure its off-diagonal blocks (ca, cb, cv, av, bv, and ab)
vanish at SCF convergence, we defined a mixed density ma-
trix,

Pc−Pa +Pb =


2 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 0

 , (24)

where Pc refers to a diagonal matrix with a value of 2 for core
orbitals only, Pa (Pb) matrix with a non-zero value of 1 for
the (a,a)-th ((b,b)-th) element only. The SCF error vector (e)

and error (e) are then defined as

e =
[
Fadia,Pc−Pa +Pb

]

=


0 −3Fca −Fcb −2Fcv

3Fac 0 2Fab Fav

Fbc −2Fba 0 −Fbv

2Fvc −Fva Fvb 0

 (25)

e = ||e|| (26)

The minus sign in Pc−Pa +Pb was chosen so that the (a,b)-
th element in the error vector (e) does not vanish until SCF
convergence.

D. Analytical Nuclear Gradient

From Eq.3, we can derive its nuclear gradient,

Eadia,[x] =
∂Eadia

∂Esing Esing,[x]+
∂Eadia

∂E trip E trip,[x]+
∂Eadia

∂V SOC V SOC,[x]

(27)

where [x] stands for the first derivative with respect to x. Here,
the nuclear gradient of the spin-orbit coupling (Eq.8) is

V SOC,[x] =
1

V SOC ∑
m=x,y,z

V so
m,abV so,[x]

m,ab (28)

The derivative of the spin-orbit coupling between two singly-
occupied orbitals (a,b) is

V so,[x]
m,ab =−1

2
[(

CC†)V SO
m
(
CbC†

a
)
+
(
CbC†

a
)

V SO
m
(
CC†)] ·S[x]

+
(
CbC†

a
)
·VSO, [x]

m (29)

where S[x] and VSO, [x]
m are nuclear derivatives of the overlap

and spin-orbit coupling matrices in the atomic basis.

III. COMPUTATIONAL DETAILS

The approach of constructing spin-adiabatic state outlined
above was implemented in a development version of the Q-
CHEM 5.1 software package.50 For systems with unbonded
atoms [N2O at long N–O distances], a procedure combining
direct inversion in iterative subspace (DIIS)51 and geometric
direct mininzation (GDM)52 was used to achieve SCF conver-
gence.

In this work, we study three spin-crossing reaction
systems: N2O, CH2 and Fe(CO)5. They were mod-
eled with density functional theory (DFT) at the levels
of B3LYP/6-31+G(d),53–56 B3LYP/6-311G(d,p),57 and M06-
L/def2-TZVPP,58–60 respectively. The DFT calculations were
carried out on a pruned (75,302) integration grid.61 We note
that a highly accurate description for both N2O and CH2 sys-
tems would require CASSCF and other advanced electronic
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structure methods that properly account for the static corre-
lation effect. The purpose of performing DFT calculations
on these two systems in this work is mainly to explore the
feasibility of computing their spin-adibatic states within DFT
framework.

The study of N2O is rather straightforward, where one-
dimensional scan was performed while the molecule remains
linear. For the CH2 and Fe(CO)5 systems, the analytical gra-
dients formulated in Sec. II.D was used for optimizing the ge-
ometries. Specifically, a modified version of Harvey’s MECP
program14 called sobMECP by Lu (http://sobereva.com/286)
was employed to locate the spin-adiabatic cusp point (SACP)
on the spin-adiabatic potential energy surfaces. A detailed
explanation for why our calculations lead to a cusp will be
provided in Section V. At each geometry, the sobMECP pro-
gram utilizes the energy and gradient of two mixed-spin SCF
solutions, which were obtained using singlet and triplet SCF
guess, respectively, and were thus dominated by either the S0
or T1 state.

After SACP was located, the minimum energy path (MEP)
for the CH2 system was generated by integrating along the
nuclear gradients in Cartesian coordinates using an external
script. For the Fe(CO)5 system, the pathway connecting reac-
tant, SACP, and product was generated by a linear interpola-
tion of Z-matrix. For a comparison, spin-orbit coupling ma-
trix elements for the Fe(CO)5 system were also computed us-
ing the spin-orbit mean-field (SOMF) approach in the ORCA
4.1.1 package.62

IV. RESULTS

In this work, we have applied the restricted-and-shared-
orbital formulation to model the aforementioned three spin-
crossing reactions as test cases.

A. Predissociation of N2O

Nitrous oxide (N2O), also known as laughing gas has been
widely used as an anaesthetic in surgery since 1844.63 Its
mode-specific predissociation has been subjected to many the-
oretical studies,64–68 because it involves the crossing of two
diabatic potential energy surfaces with different spins.69

In the dissociation pathway of oxygen atom from the N2O
molecule, the entire reaction complex retains a linear geome-
try. Therefore, simultaneous linear interpolations were carried
out for the N-N and N-O distances. For simplicity, only the
N-O distance will be shown as the reaction coordinate con-
necting the reactant (singlet N2O molecule) and the product
(N2 + O complex, where oxygen atom adopts a triplet elec-
tronic configuration).

Figure 3 shows the spin-adiabatic potential energy surface
along the reaction path as well as the spin-orbit coupling
strength. Our restricted-and-shared-orbital calculations con-
verged correctly to the first triplet state (3Π) when the N-O
bond is elongated.67 The highest energy point is found when

the N-O distance is 1.7801 Å, which is in line with theoret-
ical study by Hwang and Mebel.68 However, our calculated
energy barrier of 70.6 kcal/mol, which is similar to previous
DFT results,68 is about 10 kcal/mol higher than experimen-
tal data70 and other theoretical investigations based on MRCI
calculations.67,68 This is largely caused by the fact that con-
ventional spin-restricted DFT calculation, which is based on
single Slater determinant wavefunction, fails to capture the
multi-reference character of this system upon the dissociation
of the oxygen atom.
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Figure 3. Energy profile and SOC strengths for N2O predissociation
calculated at B3LYP/6-31+G(d) level. Blue and green curves repre-
sent energies for diabatic singlet and triplet states, respectively. Red
curve stands for the spin-adiabatic state energy. Blue triangle dots
show the change in the S0-T1 spin-orbit coupling strength along the
reaction path.

At the SACP, the spin-orbit coupling strength is calculated
to be around 200 cm−1, which is larger than ~90 cm−1 cal-
culated with full Breit-Pauli operator (including both one-
electron spin-orbit and two-electron spin-other-orbit contri-
butions) and CASSCF.67,68 This happens because Eq.4 does
not include the two-electron term in the Breit-Pauli spin-orbit
Hamiltonian. Interestingly, the spin-orbit coupling strength,
which is relatively low at short N-O bond lengths, has a sud-
den increase to 150 cm−1 when the N-O bond length increases
to 1.5 Å. This change in the V SOC value was traced to a orbital
swapping at that bond length – the second open-shell orbital b
changes from a π orbital into a σ orbital. Meanwhile, the first
open-shell orbital a stays the same as a π orbital.

B. 1A1→3B1 Conversion in CH2

Carbene (CH2) is one of the most widely studied intermedi-
ates in organic synthesis with divergent reactivity arising from
its varioius electronic structure.71 In gas-phase, its most stable
state is a triplet (3B1). It can be excited into a singlet state
(1A1) with an adiabatic excitation energy of 9.0 kcal/mol.72

The process for the excited carbene to return to its ground
state is a simple spin-crossing reaction.
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Table I. Relative energies (kcal/mol), CH bond length (RCH , Å) and
HCH bond angle (αHCH , ◦) for three key geometries on the spin-
adiabatic potential energy surface calculated at B3LYP/6-311G(d,p)
level.

1A1 SACP 3B1

Energy 0.00 0.00 -11.40

RCH 1.1148 1.1146 1.0802

αHCH 101.08 101.23 133.52

Through computing two mixed-spin solutions (dominated
by 3B1 and 1A1 states, respectively) at each geometry, the local
minima and SACP on the crossing seam can be identified as
shown in Table I.

As shown in Figure 4, the 1A1 minimum is quite close to
SACP in terms of geometry as well as energy, the barrierless
activation towards SACP leads to an efficient transition into
the 3B1 state induced by spin-orbit coupling. Here a mini-
mum energy path has been mapped out starting from SACP,
the HCH angle increases gradually while the CH bond short-
ens drastically first followed by a slight elongation.

Our calculation shows the spin-orbit coupling along the re-
action path between 3B1 and 1A1 electronic states is in the
range of 43-59 cm−1, which is larger than the spin-orbit cou-
pling values (12-13 cm−1) calculated by using full Breit-Pauli
operator.73,74

C. CO addition to Fe(CO)4

The binding of carbon monoxide (CO) with iron tetracar-
bonyl (Fe(CO)4) in its triplet ground state could lead to
iron pentacarbonyl (Fe(CO)5) in a closed-shell singlet state.
This spin-crossing reaction, which was first discovered by
Seder, Ouderkirk and Weitz,75 has been employed as an
ideal but challenging test example for theoretical modeling by
Harvey76 and by Yang, Gagliardi and Truhlar,20 due to its rel-
atively small energy barrier above the triplet reactant.

As shown in Figure 5, our calculations provided a qual-
itatively reasonable energy barrier of 1.93 kcal/mol and the
SACP geometry is more similar to the transition state structure
identified in Yang/Gagliardi/Truhlar’s work than the MECP
structure with C2v symmetry obtained by Harvey,20,76,77 al-
though our calculated Fe-C distance is the shortest. As a re-
sult of spin-orbit coupling, the SACP is 0.03 kcal/mol lower
in energy than the crossing point of two diabatic states.

Along the reaction path, the spin-orbit coupling strength
is around 150–230 cm−1. However, near the product ge-
ometry, the spin-orbit coupling value increased to 285 cm−1,
which is due to a change in the molecular symmetry from C1
to D3h and a related character change in the second open-
shell orbital b. For a comparison, we calculated the spin-
orbit coupling strength between S0 and T1 states using spin-
orbit mean-field (SOMF) Hamiltonian, which should have a
higher accuracy.9,43 Smaller S0-T1 spin-orbit coupling around
90 cm−1 were produced in SOMF calculations, with the value
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Figure 4. Minimum energy path for the singlet-triplet conversion of
CH2 from the spin-adiabatic cusp point (SACP) towards the local
minimum of the 3B1-dominated portion of spin-adiabatic potential
energy surface. The underlying contour plot shows the energy land-
scape of the spin-adiabatic state with red color for higher energy and
blue for lower energy. The green line is the intersection curve of two
portions of the spin-adiabatic potential energy surface dominated by
1A1 and 3B1, respectively. The blue dot corresponds to the local min-
imum point on the 1A1-dominated portion of the spin-adiabatic PES.
The white dot lying on the green line is the SACP, and the white dot
at the rightmost is the local minimum point on the 3B1-dominated
portion of the spin-adiabatic surface. Lower panel shows the spin-
orbit coupling strength V SOC as a function of HCH angle. The red
and blue triangle dots stand for the SOC matrix elements for 1A1-
and 3B1-dominated spin-adiabatic states, respectively.

Table II. Geometric parameters (as defined in Figure 6) of the tran-
sition structure geometries for the Fe(CO)5 spin-crossing reaction
complex. Bond lengths and angles are in Angstrom and degree,
respectively. MECP: the MECP geometry reported in Harvey’s
work.76,77 TSSMM: the transition state geometry identified with
TSSMM method by Truhlar and co-workers.20 SACP: the SACP ge-
ometry shown in Figure 5.

α β γ r rax req

MECP 135 165.8 102.3 2.557 1.901 1.843

TSSMM 130.9 152.8 97.6 2.685 1.871 1.837

SACP 136.4 155.8 96.5 2.409 1.867 1.827

decreasing to nearly zero for the product geometry. The rea-
son why SOMF gives much smaller S0-T1 spin-orbit cou-
plings is in part because of the mean-field treatment and in part
because the SOMF Hamiltonian is based on the TDDFT/TDA
framework. In the Fe(CO)5 case, the T1 state clearly involves
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Figure 5. Energy profile and SOC strengths for the reaction pro-
cess of Fe(CO)4 + CO→ Fe(CO)5 calculated at M06-L/def2-TZVPP
level. Blue and green curves represent energies for diabatic sin-
glet and triplet states, respectively. Red curve stands for the spin-
adiabatic state energy. Blue triangle dots show the change in the S0-
T1 spin-orbit coupling strength along the reaction path. Blue round
dots correspond to the spin-orbit coupling calculated with spin-orbit
mean-field (SOMF) Hamiltonian from the ORCA package for a com-
parison.
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Figure 6. Schematic structure of the MECP/SACP geometry for the
Fe(CO)5 spin-crossing reaction. Detailed geometric parameters are
listed in Table II.

several other excitations beyond the HOMO→LUMO transi-
tion.

V. DISCUSSIONS

As shown above, the restricted-and-shared-orbital formal-
ism worked well to provide the spin-adiabatic states for three
model spin-crossing reactions. It has a moderate computa-
tional cost, which amounts to two separate energy+force cal-
culations (one singlet and one triplet). This method works the
best when the low-spin and high-spin states (if solved sepa-
rately) have very similar core and open-shell orbitals. Other-
wise, a cusp would be found along the reaction energy profile.

Why a cusp occurs on the reaction energy profile?

In our model, the same set of spin-restricted molecular or-
bitals are employed to construct the low-spin and high-spin
electronic states. It allows the energy of the spin-adiabatic
state to be fully variational to molecular orbital coefficients
and thus greatly simplifies the calculation of its analytical
gradient. However, this would lead to a cusp on the spin-
adiabatic reaction energy profile, meaning that the gradient
with respect to the reaction coordinate is discontinuous at the
crossing point. So why does this happen?

Figure 7. Schematic illustration of the spin-restricted closed-shell
singlet and open-shell triplet energy surfaces varying with molecular
orbitals at the spin-adiabatic cusp point.

In our spin-adiabatic state calculations, it is convenient to
use converged SCF orbitals, from a previous closed-shell sin-
glet calculation, { Ψi }sing, or restricted open-shell triplet
calculation, { Ψi }trip, as the initial guess for the computa-
tion of spin-adiabatic states. Let us think about how these
mixed-spin states get constructed with these initial orbitals at
the spin-adiabatic cusp point (SACP). As illustrated in Fig-
ure 7, the singlet orbitals, { Ψi }sing, are only optimal for the
singlet state, leaving the corresponding restricted open-shell
triplet state (which is non-variational) substantially higher in
energy. At this set of orbitals, the singlet-triplet energy gap
∆E1 (which is roughly the S0 −→ T1 excitation energy within
time-dependent density functional theory) ranges from 5.68
to 11.67 kcal/mol for three test systems (Table III). Mean-
while, the triplet orbitals, { Ψi }trip, lead to a gap of ∆E2
(which is roughly the energy change from the triplet refer-
ence to the closed-shell singlet in spin-flip density functional
theory calculations78–80) in the range of 6.0 to 11.93 kcal/mol
for our test systems.

From Table III, it is clear that for both N2O and CH2 sys-
tems, such singlet-triplet energy gaps (between one variational
state and another non-variational one) are 15–20 times larger
than the spin-orbit coupling. For the Fe(CO)5, the gap is
nearly 50 times larger than VSOC. At this limit, the energy
of the spin-adiabatic state in Eq.3 becomes

Eadia = min
(
Esing,E trip)− (V SOC

)2

2 (∆E)
(30)

The energy lowering from the spin-diabatic state to the spin-
adiabatic states is thus − 1

2

(
V SOC

)2
/(∆E), which is 30–100
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Table III. Singlet-triplet energy gap and Breit-Pauli one-electron
spin-orbit coupling (both in kcal/mol) with converged SCF orbitals
(illustrated in Figure 7) from closed-shell singlet and restricted open-
shell triplet calculations for three test systems. Spin-orbit coupling
values are also shown in cm−1 in round brackets.

Molecule Singlet Triplet

|∆E1| VSOC |∆E2| V SOC

N2O 8.84 0.55 ( 192.3 ) 7.93 0.61 ( 213.0 )

CH2 5.68 0.12 ( 43.5 ) 6.00 0.14 ( 47.9 )

Fe(CO)5 11.67 0.53 ( 185.9 ) 11.93 0.66 ( 230.1)

times smaller than V SOC for the three systems. With an al-
ready rather small value for the spin-orbit coupling in the
range of 0.12 to 0.66 kcal/mol for the three systems, this
causes the spin-adiabatic surfaces to deviate less than 0.03
kcal/mol from the spin-diabatic surfaces, which was clearly
shown in Figures 3, 4, and 5.

Figure 8. Schematic illustration of the spin-restricted closed-shell
singlet and open-shell triplet, and the corresponding SCF solutions
for the mixed-spin state at (or close to) the cusp. The spin-adiabatic
energy surface corresponds to the lower-energy mixed-spin solution
at each geometry.

With initial orbitals from either singlet or triplet calcu-
lations, the eigenvector of the 2-state SOC Hamiltonian in
Eq. 2 is dominated by the lower-energy spin-diabatic state,
with a mixing coefficient ratio of

[
1−
(
V SOC

)
/(2 ∆E)

]
:[(

V SOC
)
/(2 ∆E)

]
. Subsequent SCF optimizations (as de-

scribed in Section IIC and shown schematically in Figure 8)
only bring very small changes to the molecular orbitals. In the
end, at each geometry at or close to the crossing point, there
are two SCF solutions for the mixed-spin state: one close to
the singlet spin-diabat and the other close to the triplet one. At
the crossing point, the lower-energy spin-adiabatic state sud-
denly moves from one minimum to another. Therefore, a cusp
occurs.

How to obtain a more smooth reaction energy profile?

As long as the low-spin and high-spin electronic states are
required to share the same set of molecular orbitals, more so-
phisticated Breit-Pauli spin-orbitals models, like the SOMF
model, will still produce a cusp around the crossing point.
This is expected because, as shown in Figure 5, the SOMF
SOC model produces even smaller SOC values than the un-
scaled Breit-Pauli one-electron model.

However, it is highly desirable to have a smooth potential
surface, which allows us to use standard algorithms for lo-
cating the transition state and mapping the minimum energy
pathway (as illustrated schematically in Figure 1b). The key
to a smooth spin-adiabatic potential energy is to allow the two
electronic states adopting different sets of molecular orbitals.
Mathematically, this would allow diagonal elements in the 2-
state Hamiltonian (Eq. 2) to be equal at the crossing point,
whereby the two states can be mixed evenly.
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Figure 9. Energy profile and SOC strengths for N2O predissocia-
tion calculated at B3LYP/6-31+G(d) level. Red curve stands for the
energy of the spin-adiabatic state from mixing separately-optimized
spin-diabatic states.

When different sets of spin-restricted orbitals are used to
describe the singlet and triplet states of a molecule, one can
approximate the spin-orbit coupling as

V SOC
m =

[
Det(S(sc;t c))

]2 [〈sa
∣∣tb〉〈sā

∣∣V̂ so
m
∣∣ta〉

+
〈sa
∣∣ta〉〈sā

∣∣V̂ so
m
∣∣tb〉] (31)

where sa and sā correspond to a doubly-occupied orbital from
the singlet that becomes approximately singly occupied in the
triplet. In other words, it spatially overlaps the most with ta
and tb, two singly-occupied orbitals for the triplet.39 In the
above equation, sc and tc stand for other doubly-occupied
(core) orbitals for two spin states, Det(S(sc;t c)), measures the
overlap between the two core-orbital subspaces. Using such
SOC values, one can obtain a more smooth reaction energy
profile in Figure 9 for N2O predissociation. Figure S1 in the
supporting information shows a similarly smooth energy pro-
file for the Fe(CO)5 system. The analytical gradient of these
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models are being developed, and will be reported in a subse-
quent publication.

VI. CONCLUSIONS

In this work, a new method is explored for the construc-
tion of spin-adiabatic states in the modeling of spin-crossing
reactions. The main characteristics of this method are:

• the unscaled Breit-Pauli one-electron operator was used
to evaluate the spin-orbit coupling between two spin-
diabatic states;

• the low-spin (e.g. closed-shell singlet) and high-spin
(e.g. restricted open-shell triplet) states are defined us-
ing the same set of molecular orbitals;

• the energy of spin-adiabatic states within a resultant
2-state Hamiltonian is fully variational with respect to
molecular orbitals, which enabled a simpler evaluation
of the analytical energy gradient.

Using this method, the spin-adiabatic reaction pathway
was readily obtained for three model spin-crossing systems:
N2O, CH2 and Fe(CO)5, where the unscaled Breit-Pauli one-
electron SOC value was found to vary noticeably along the
pathway. Due to small Breit-Pauli coupling values, and more
importantly, the large difference between the diagonal ele-
ments in the 2-state Hamiltonian (arising from the use of a sin-
gle set of molecular orbitals in low-spin and high-spin diabatic
states), the mixing between two spin-diabats is very weak. In
all three systems, the spin-adiabatic state energy differs from
the corresponding spin-diabatic states by no more than 0.03
kcal/mol. This causes a cusp at the crossing point, which can
only be located using the MECP-type algorithm

In general, our work reinforces the attractiveness of build-
ing spin-adiabtic energy surfaces for studying spin-crossing
reactions16,18–22 as well as the feasibility of computing spin-
orbit coupling on the fly within the Breit-Pauli one-electron
operator framework.41,42 However, in order to build more
smooth spin-adiabtic potential energy surfaces using the
Breit-Pauli one-electron operator so that standard transition
state search and reaction pathway optimization algorithms
can be utilized, more general methods need to be developed.
Specifically, these methods would involve different molecular
orbitals for different spin-diabats and thus require the solution
of z−vector equations in the analytical gradient evauations.
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