
Pd-Catalyzed Dearomative Three-Component Reaction of Bro-
moarenes with Diazo Compounds and Allylborates 
Masaaki Komatsuda, Hiroki Kato, Kei Muto,* and Junichiro Yamaguchi* 

Department of Applied Chemistry, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo, 169-8555, Japan 
 

ABSTRACT: A catalytic dearomative three-component reac-
tion of bromoarenes with TMS-diazomethane and allyl borate 
was developed. The key of this assembling reaction is the use 
of a diazo compound to generate a Pd-π-benzyl intermediate 
through a Pd-carbenoid species. This method allowed for a 
dearomative functionalization using arenes as limiting rea-
gents. Heteroaryl bromides were also applicable to give 
dearomatized structures under the reaction conditions. 

Dearomatization is a powerful method to construct struc-
turally complex alicyclic scaffolds from simple and abundant 
aromatic molecules. Examples of Birch reduction and metal-
catalyzed hydrogenation of arenes have found wide use in or-
ganic synthesis.[1] Meanwhile,  dearomative functionalization, 
which combines the molecular assembling with dearomatiza-
tion, is recently attracting much attention.[2] Several dearoma-
tive functionalizations of arenes have been reported, mainly 
using electronically biased arenes such as phenols,[3] in-
doles,[4] and azines.[5] In contrast, more general but electroni-
cally unbiased arenes such as benzenes are still underdevel-
oped substrates.[6] Existing methods for benzenes often re-
quire the use of stoichiometric amounts of metal reagents as 
well as excess amounts of substrates. Recently, catalytic 
dearomative functionalizations using arenes as limiting agents 
have been emerging. For example, the reactions using nitro-
benzenes[7] as well as phenyl malonates [8] were achieved by 
Trost and You, respectively.  

As another catalytic method, the dearomative functionali-
zation of electronically non-biased arenes through a π-benzyl 
complex[9] generated by benzylic bond cleavages is known. In 
this context, Yamamoto and our group have developed 
dearomative allylation of benzyl chlorides and phosphates 
(Figure 1A). [10,11] These methods hold several benefits: 
arenes can be used as the limiting reagent, and the reactions 
can be conducted with catalytic amounts of palladium. The 
key for these reactions is the generation of a palladium π-ben-
zyl complex as a catalytic intermediate. With this intermediate, 
allyl nucleophiles undergo transmetalation, followed by re-
mote C–C bond forming reductive elimination to afford 

dearomatized products.[12,13] However, this dearomatization 
strategy has so far necessitated  benzylic bond cleavage, form-
ing an exocyclic olefin in the product. 

We targeted the use of haloarenes as the starting material for 
the dearomative reaction because they are abundant and also 
easy to prepare. In order to achieve dearomatization, we fo-
cused on the Pd-catalyzed reaction of haloarenes with diazo 
compounds developed by Van Vranken, Wang and Bar-
luenga.[14] These reactions are thought to proceed through a 
palladium carbenoid, which is known to allow for migratory 
insertion to generate a benzyl-palladium intermediate. We hy-
pothesized that if allyl nucleophiles react with the benzyl com-
plex, we could use haloarenes entry as ubiquitous starting ma-
terials for dearomative functionalization, initiated by aromatic 
C–halogen bond cleavage (Figure 1B). To achieve this reac-
tion, the control of the reaction sequence (of diazo compound 
addition and then allyl nucleophiles addition) is required. We 
herein report a Pd-catalyzed dearomative C–C bond for-
mation of bromoarenes.  

 

Figure 1. Dearomative functionalization initiated by a bond 
cleavage.  
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We initiated the study by screening conditions using bro-
monaphthalene 1A with TMS-diazomethane (2) and allyl bo-
rates 3 (Table 1). An initial attempt using PPh3 as a ligand de-
livered the desired product 4A in low yield along with Suzuki–
Miyaura coupling product 5A (Table 1, entry 1). Encouraged 
by this result, we modified the ligand. To our delight, the use 
of electron-donating triarylphosphines as well as a trial-
kylphosphine improved both the reaction yield and reaction 
selectivity (Table 1, entries 2–4). The sterically demanding 
monophosphines and bidentate phosphines dropped the 
yield of 4A but generated 5A as a major product (Table 1, en-
tries 5–7). Increasing the reaction temperature and using 1,4-
dioxane gave a better result (Table 1, entry 8). Pd2(dba)3 was 
a better catalyst precursor than Pd(OAc)2 (Table 1, entry 9). 
Because further improvement was difficult by changing pa-
rameters,[15] we then tested the effect of additives. Among sev-
eral inorganic and organic bases, we found that potassium flu-
oride had a positive effect, producing 4A in good yield (Table 
1, entry 10).[16] Although sodium fluoride was also effective, 
cesium fluoride resulted in a poor product yield (Table 1, en-
tries 11 and 12). Finally, we identified the optimized condi-
tions: Pd2(dba)3, L1, and KF in 1,4-dioxane at 70 °C for 12 h. 
It is noteworthy that the reaction conditions give the desired 
product using equimolar amounts of bromoarenes 1, TMS-
diazomethane (2), and allyl borate 3. 
Table 1. Conditions screening 

 
entry [Pd] ligand additive 4A/%a 5A/%a 

1 Pd(OAc)2 PPh3 – 18 16 

2 Pd(OAc)2 P(p-anis)3 – 30 2 

3 Pd(OAc)2 L1 – 35 0 

4 Pd(OAc)2 PnBu3 – 25 0 

5 Pd(OAc)2 Xphos – 2 17 

6 Pd(OAc)2 dppfb – 5 15 

7 Pd(OAc)2 DPEphosb – 2 21 

8c,d Pd(OAc)2 L1 – 46 0 

9c,d Pd2(dba)3 L1 – 48 0 

10c,d Pd2(dba)3 L1 KF 81 0 

11c,d Pd2(dba)3 L1 NaF 65 0 

12c,d Pd2(dba)3 L1 CsF 7 0 

Conditions; 1A (0.20 mmol), 2A (0.20 mmol), 3a (0.20 
mmol), [Pd] (5 mol %), ligand (20 mol %), additive (2.0 equiv), 

solvent (1 mL), 60 °C, 12 h. a NMR yield b 10 mol % of ligand c 
70 °C d 1,4-dioxane instead of toluene 

With the optimized conditions in hand, the substrate scope 
of the reaction was examined (Scheme 1). Owing to the insta-
bility of some of the products, 1H NMR yield are shown in 
Scheme 1.[15] Both quaternary and tertiary carbons could be 
constructed on naphthyl bromides (4A–4C). Several func-
tional groups such as ether (4D), acetate (4E), amines (4F) 
were tolerated in the reaction. An acenaphthene core was also 
smoothly dearomatized to afford the corresponding product 
4G in good yield. Because of the higher aromatic stability of 
benzenes compared with naphthalenes, benzenes have been 
recognized as challenging substrates for the dearomative func-
tionalizations. Previously, our dearomative reaction of benzyl 
phosphates was also suffered from this limitation.[11] However, 
pleasingly, the present methodology was exceptional, as a va-
riety of bromobenzenes were applicable. C4-alkylated bromo-
benzenes could be converted to the corresponding products 
in moderate to good yields (4H, 4I), however, bulky substitu-
ents at the C4 position resulted in low yields. We also ob-
served good functional group tolerance for bromobenzene, as 
nitrile (4J), ester (4K), indoles (4L) and acetal (4N) were 
compatible. Even a hydroxy group was tolerated to form 4O in 
40% yield. meta-Disubstituted molecules could also be trans-
formed to alicyclic compounds (4P, 4Q) in moderate to good 
yields.[17] The reaction of 2-fluoro bromotoluene generated 
dearomatized compound 4R in good yield in a 78:22 diaster-
eoisomeric ratio.  

Delightfully, it was found that this method was applicable to 
five-membered heteroaryl bromides as well. For thiophene 
bromides, the products were generated as a mixture of diaster-
eoisomers in an approximate 1:1 ratio (4S–4V). A pyridine-
bearing bromothiophene 1U could also be dearomatized 
smoothly. Moreover, furans were found to be amenable to the 
reaction conditions to form dihydrofuran cores in good yield 
with good diastereoselectivity (4W and 4X). It is noteworthy 
that these heterocyclic products were more stable compared 
to dearomatized compounds derived from benzenes.  

In order to showcase the utility of the Pd-catalyzed method, 
we conducted a one-pot reaction[18] starting from simple 
arenes (Scheme 2A). NBS bromination of thiophene 6 quan-
titatively proceeded to give 1S with exclusive regioselectivity. 
After removing the solvent, the dearomative reaction success-
fully provided heterocycle 4S in 55% yield in over two steps. 
Furthermore, we succeeded in demonstrating the viability of 
the method by functionalizing a drug-molecule (Scheme 2B). 
To this end, brominated ticlopidine[19] 7 was subjected to the 
present reaction to generate the corresponding dearomatized 
compound 8 in 49% isolated yield , albeit with low diastere-
oselectivity. This ticlopidine derivative 7 possesses highly re-
active functional groups such as a tertiary amine and aryl chlo-
ride, but they did not influence the reaction efficiency. With 
these results, we expect that the further applications of the 
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method to access otherwise novel chemical space would accel-
erate drug discovery.  
Scheme 1. Substrate scopea 

 

 Conditions; 1 (0.40 mmol), 2 (1.0 equiv), 3 (1.0 equiv), Pd2(dba)3·CHCl3 (2.5 mol %), L1 (20 mol %), KF (2.0 equiv), 1,4-dioxane 
(2 mL), 70 °C, 12 h. a 1H NMR yields are shown because of the instability of products during purification process. b 5 mol % of Pd(OAc)2 
was used instead of Pd2(dba)3·CHCl3. c 2 (1.3 equiv), 3 (1.3 equiv). 

Scheme 2. (A) A one-pot operation and (B) the reaction of a 
pharmaceutical substrate 

 
After this catalytic dearomatization method, we could per-

form further functionalizations of the cyclic core (Scheme 3). 
For example, a crude mixture of 4M was directly subjected to 
the diimide reduction conditions to give 1,4-cyclohexadiene 9 
in good yield in over two steps. In this reaction, the allyl moi-
ety was also reduced to propyl. The obtained compound 9 was 

further converted by mCPBA to furnish epoxide 10 in 28% 
yield, along with another diastereoisomer in 23% yield. Fur-
thermore, oxidation of sulfur containing heterocycle 4S gener-
ated the corresponding alkenyl sulfone 11 in 49% yield (2 
steps).  
Scheme 3. Derivatization of products 
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applied to a variety of aromatic systems ranging from simple 
benzenes to five-membered heteroarenes. Of note, the proto-
col is catalytic, and aromatic substrates can be used as a limit-
ing reagent. This allows the derivatization of drug molecules 
by late-stage structural modifications. Further studies to ex-
pand the generality of this dearomative functionalization uti-
lizing other diazo compounds as well as nucleophilic partici-
pants are ongoing in our laboratory. 
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