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Abstract

Metal-organic frameworks (MOFs) are
highly tunable, extended-network, crystalline,
nanoporous materials with applications in gas
storage, separations, and sensing. We review
how molecular models and simulations of gas
adsorption in MOFs have informed the dis-
covery of performant MOFs for methane, hy-
drogen, and oxygen storage, xenon, carbon
dioxide, and chemical warfare agent capture,
and xylene enrichment. Particularly, we high-
light how large, open databases of MOF crystal
structures, post-processed to enable molecular
simulations, are a platform for computational
materials discovery. We discuss how to orient
research efforts to routinize the computational
discovery of MOFs for adsorption-based engi-
neering applications.
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1 Introduction

I can’t see exactly what would
happen, but I can hardly doubt that
when we have some control of the
arrangement of things on a small
scale, we will get an enormously
greater range of possible properties
that substances can have and of
different things that we can do.

Richard Feynman, American Physical
Society Meeting, 1959

Metal-organic frameworks (MOFs)1 are solid-
state materials that commonly harbor nano-
sized pores and enormous internal surface ar-
eas (> 7 000 m2/g).2 Their consequent gas
adsorption properties lend them applications
in storing,3 separating,4 and sensing5 gases.
Since the first MOF was reported by Omar
Yaghi in 1999,6 a few MOF-based products
have appeared on the market,7 including for
safe sub-atmospheric storage of toxic gases (Nu-
Mat Technologies) and carbon dioxide capture
in submarines (Mosaic Materials).
MOFs, heralded as “designer materials”,8

are synthesized modularly by linking organic
molecules, serving as struts, to metals or
metal clusters, serving as nodes, to form pre-
determined, extended-network structures.1 See
Fig. 1. Owing to their synthetic adjustabil-
ity, over 80 000 MOFs displaying diverse pore
geometries and surface chemistries and thus,
adsorption properties, have been experimen-
tally reported.9,10 MOFs have garnered much
attention because of this ability to exert con-
trol over the self-assembly of linkers and metal
nodes/clusters at the nano-scale; judiciously
choosing the molecular building blocks and
(sometimes arduously11) finding the synthetic
conditions to yield a pre-determined, extended

network structure is coined as reticular chem-
istry .12,13

Figure 1: The chemistry of metal-organic
frameworks (MOFs) is modular and highly tun-
able, affording a vast chemical space of crystal
structures in which to search for materials ex-
hibiting an optimal adsorption property. (top)
MOFs are composed of metal nodes or clusters
coordinated to organic linker molecules to form
a crystalline, porous framework. By changing
the linkers and metal clusters, we can obtain
millions of possible materials. Inspired by Ref.
14. (middle) The crystal structures of Ni-MOF-
74,15 HKUST-1,16 IRMOF-112 are shown as
examples. (bottom) A sample of HKUST-116

from Ref. 17. is show to illustrate how a MOF
appears from the naked eye.

For adsorption-based engineering applica-
tions, a coveted aim beyond reticular chemistry
is to specify a desired (optimal) adsorption
property, then synthesize the MOF that ex-
hibits it. For example, consider the search for a
MOF to densify and store natural gas onboard
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a passenger vehicle and deliver it to the engine
for fuel.18 The driving distance of a vehicle
equipped with an adsorbed natural gas fuel
tank of a given volume is determined primarily
by the usable capacity of the material;19 oper-
ating at room temperature via a pressure swing
between 65 bar and 5 bar, the usable capacity is
the equilibrium methane adsorption after fill-
ing up at the fuel station (65 bar) minus that
retained when the tank sustains insufficient
pressure to drive flow to the engine (5 bar)∗.
For the near-term deployment of a MOF in an
adsorbed natural gas fuel tank, a lofty goal is
to reliably identify, among the 80 000 experi-
mentally synthesized, which MOF exhibits the
maximal methane usable capacity. Clearly, it
is impractically time- and resource-intensive
to synthesize, characterize, and measure the
high-pressure methane adsorption isotherm in
every MOF, despite underway efforts for high-
throughput robotic synthesis20–22 driven by
machine learning algorithms.23

The topic of this review is the role of molecu-
lar modeling and simulation in enabling, to an
increasing extent, the identification of an exist-
ing MOF† to exhibit a desired (optimal) adsorp-
tion property (e.g., maximal methane usable
capacity) through high-throughput computa-
tional screenings. The simple idea, encapsu-
lated in the Materials Project,24 is to computa-
tionally predict adsorption performance of each
existing MOF structure to shortlist materials
for experimental synthesis and testing. We take
a unique angle from previous reviews25–27 by
highlighting how large, open data sets of MOF
crystal structures provide a platform for the
computational identification of existing MOFs

∗In addition to thermal and chemical stability and
the cost of the MOF, several other material properties
influence the performance of a MOF in adsorbed natu-
ral gas storage, such as heat of adsorption, specific heat,
thermal conductivity, diffusion coefficients, and adsorp-
tion of impurities that can “poison” adsorption sites
(note we approximated natural gas as methane).

†We specify the MOF to be existing, as opposed
to hypothetical or conceived, according to whether syn-
thesis protocols have already been reported in the lit-
erature. Knowledge of these protocols, as well as acti-
vation procedures and information about stability, can
expedite deployment.

for gas storage, separation, and sensing.
We begin in Sec. 2 by briefly describing

methodologies to computationally screen MOF
structures for gas adsorption applications. We
then discuss in Sec. 3 how MOF crystal struc-
tures are determined experimentally from X-
ray diffraction (XRD) studies. In Sec. 4, we
describe how, owing to artifacts of XRD stud-
ies, many MOF structures deposited in the
Cambridge Structural Database (CSD) typi-
cally contain solvent and/or are chemically in-
valid, precluding their direct use for compu-
tational screenings. In Sec. 5, we sketch how
these structures are processed to curate an open
database of computation-ready, experimental
(CoRE) MOF crystal structures that resemble
the structure used in gas adsorption studies.
Following, in Sec. 6, we survey high-throughput
computational screenings of MOF crystal struc-
tures for gas adsorption and separation appli-
cations that have directly motivated the exper-
imental synthesis and characterization of a per-
formant MOF. In line with the theme of how the
open CoRE MOF database spurred the com-
putational identification of performant materi-
als, in Sec. 7 we review efforts by NIST to cu-
rate open databases of adsorption isotherms in
MOFs. Interspersed, we draw analogies with
the impacts of open data in molecular biology
and machine learning.

2 Molecular models and

methods

Accurately and efficiently predicting the ad-
sorption properties of a given MOF structure
via computation remains a formidable challenge
and is still an active, progressing area of re-
search.

2.1 Energetic modeling

As a mathematical description of the poten-
tial energy of the many-body system consist-
ing of the MOF structure and its adsorbed gas
molecules, ab initio quantum chemical calcula-
tions are accurate but require significant com-
putational resources. On the other hand, clas-
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sical force fields, whose interatomic potential
parameters are fit to experimental data or ab
initio calculations, are more computationally
efficient than ab initio calculations but often
less accurate when transferred to systems dif-
ferent to which they were fit. For the for-
mer reason, classical force fields such as the
Universal Force Field (UFF)28 and DREID-
ING29 are typically used to describe interac-
tions of gas molecules with the MOF in high-
throughput screenings. The interatomic poten-
tials in DREIDING, for example, were tuned
to reproduce crystal structures and sublima-
tion energies of a large set of compounds. For
gas-gas interactions, the Transferable Poten-
tials for Phase Equilibria (TraPPE)30 cover
many adsorbate molecules and were tuned to
reproduce vapor-liquid equilibria of the fluids.
Gas-MOF interactions are typically obtained
by mixing rules that determine interatomic po-
tential parameters for cross-species interactions
from pure-species parameters. Electrostatic in-
teractions are usually modeled (with Coulomb’s
law) by assigning point charges to the atoms
of the MOFs and, if appropriate, the adsor-
bate molecule (e.g., TraPPE assigns charges to
the atoms of CO2,

31 which has polar bonds,
but not to CH4, which lacks polar bonds30).
There exists a hierarchy of methods for assign-
ing point charges to MOFs to model their elec-
trostatic interaction with an adsorbate molecule
that possesses polar bonds32 (see Sec. 9.2.2),
and a database of experimental MOF crystal
structures with high-quality point charges as-
signed can be downloaded (see Sec. 5.1.1).
Notably, off-the-shelf force fields such as

UFF often inaccurately model the interaction
of electron-donating adsorbates with coordina-
tively unsaturated/open metal sites in MOFs;33

as they were designed/tuned to describe van der
Waals interactions, complicated electronic in-
teractions such as π-complexes are outside their
scope of applicability. An example interaction
between an adsorbate and unsaturated metal
site is ethylene forming a π-complex with un-
saturated Ag+ sites in MOFs.34,35 A typical ap-
proach to accurately model the electronic inter-
action between an adsorbate and unsaturated
metal site is to retrofit the forcefield with a

specially designed and tuned pair potential be-
tween, e.g., an unsaturated Cu in a Cu2 pad-
dlewheel and the center of the carbon-carbon
double bond of ethylene.36 The pair potential
is chosen and tuned using first principles cal-
culations of the potential energy of the adsor-
bate near the unsaturated metal atom (within
the MOF or within a representative cluster) as
training data. Such an approach (with vari-
ations) has been used to retrofit off-the-shelf
force fields such as UFF with a pair potential to
describe C2H4,

36,37 H2,
38 C2H2,

39,40 CO2,
39,41,42

CH4,
41,43 and CO44 interactions with unsatu-

rated Cu within Cu2 paddlewheels as well as
for CO2, CH4, and H2O interactions with un-
saturated metals in the MOF-74 series.41,45,46

Retrofitting an off-the-shelf force field to prop-
erly describe interactions of adsorbates with
unsaturated metals in MOFs involves signifi-
cant effort; Campbell et al. showed that such
a retrofitted force field can transfer to different
adsorbates (e.g., ethylene to propylene) and to
different MOFs (e.g., CuBTC to PCN-16).47

The many-body potential energy description
is then used as input to Monte Carlo (MC) or
molecular dynamics (MD) simulations48 to pre-
dict properties of the MOF crystal, such as ad-
sorption isotherms and diffusion coefficients, re-
spectively. See the recent review by Cho et al.
for more on force field development.49

2.2 Structural modeling

To simulate adsorption of gas in a given MOF,
its crystal structure must be known. Typically
in high-throughput computational screenings,
the MOF structure is, as an approximation of
varying severity (see Sec. 9.1), taken as rigid
for two reasons. First, the computational ex-
pense to sample and compute the intrahost en-
ergy of the possible configurations of the host in
addition to the gas (under the osmotic ensem-
ble50) is prohibitive for a large number of struc-
tures. Second, an (accurate) intrahost force
field to model the potential energy of different
MOF conformations may not be available for
certain coordination environments encountered
in MOFs. However, progress is underway in the
development of (i) transferable, accurate intra-
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host force fields for MOFs (e.g., UFF4MOF,51

MOF-FF,52 BTW-FF53) and tools to automat-
ically generate intrahost force field input files
for simulation software,54 (ii) automated proce-
dures to generate intrahost force fields from ab
initio calculations (QuickFF55,56), and (iii) effi-
cient algorithms to simulate their flexibility.57

Clearly, databases of crystal structures
of MOFs are a prerequisite for the high-
throughput computational screening of MOFs
for adsorption-based applications. The accu-
racy of the crystal structure is imperative, as
simulated gas adsorption can be sensitive to the
crystal structure assumed.58 Generally, the ex-
perimentally determined crystal structure of a
MOF is regarded as the gold standard, with the
following caveats. First, if the crystal structure
was experimentally determined directly after
synthesis, with solvent in its pores, it could
change upon the evacuation of solvent (activa-
tion).59 Second, there can be variation in the
experimentally determined lattice constants of
a given MOF among different research groups
(e.g., see Fig. S1 in Ref. 60 for the spread of
52 experimentally reported lattice parameters
of HKUST-1). In the absence of an experimen-
tally determined crystal structure, we note that
one could computationally place the appropri-
ate linker molecules and metal nodes into the
appropriate network topology to build a pre-
dicted MOF structural model,61 then refine this
crude geometrical approximation by minimiz-
ing the potential energy of the assembled struc-
ture over the atomic positions using a classical
force field or electronic structure calculations.

2.3 Molecular simulation of ad-
sorption in MOFs

For general background on molecular simula-
tion techniques, we suggest that readers consult
the seminal textbook by Frenkel and Smit.48

More recent reviews from the group of Coud-
ert50,62,63 outline the application of molecular
simulation techniques specifically to the predic-
tion of many properties of nanoporous materi-
als.

2.3.1 Monte Carlo

The Markov chain Monte Carlo (MC) technique
enables efficient sampling of a probability dis-
tribution defined on a high-dimensional sam-
ple space when a function proportional to the
probability density is known (e.g., without ex-
act knowledge of the normalization factor).64

As such, it is useful for sampling statistical me-
chanical ensembles65 that, at thermodynamic
equilibrium, govern the probability of each pos-
sible microstate of a molecular system com-
posed of a MOF and gas molecules and com-
puting ensemble averages of random variables
of interest.
In the most widely invoked grand-canonical

(µV T ) ensemble, a MOF crystal of fixed vol-
ume V is immersed in a bath of (mixed) gas at
temperature T and chemical potential µ. The
probability of a given microstate, denoted by ν,
under the grand-canonical ensemble is:

pν ∝ e−βEν+βµ·Nν , (1)

with β = 1/(kBT ), kB the Boltzmann constant,
Eν the energy of microstate ν, andNν the num-
ber of particles in microstate ν. The contri-
bution of the potential energy to Eν is com-
puted via a molecular model/force field. To ex-
plore microstates, Monte Carlo proposals typi-
cally include particle insertions, deletions, and
translations. Equipped with a force field and a
MOF crystal structure, therefore, we can con-
duct Markov Chain Monte Carlo simulations
of the (µV T ) ensemble to simulate equilibrium
gas adsorption in MOFs assumed to be rigid.
Properties such as the expected number of ad-
sorbed particles of each species 〈N〉 and spatial
probability density of gas molecules in the MOF
are computed from the simulation. The latter is
of interest to determine the most favorable ad-
sorption sites in the MOF. Lastly, the chemical
potential of the bulk gas µ is related to exper-
imentally relevant variables (e.g., pressure and
composition) through an empirical or theoreti-
cal equation of state or separate simulation(s)
of the bulk, unconfined gas.
The Gibbs ensemble66 was specifically de-

vised for molecular simulations of phase coexis-
tence of a fluid within a single simulation, with-
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out introducing spurious interfacial effects from
a finite-sized system. The Gibbs ensemble can
be applied to simulate coexistence of a bulk gas
with an adsorbed phase in a MOF.67 The Gibbs
ensemble imposes the Canonical (NV T ) ensem-
ble on a system comprised of two distinct sub-
systems: a volume containing the gas phase and
a volume containing the adsorbed phase with
the MOF. The two subsystems are in thermo-
dynamic equilibrium internally and with each
other, but periodic boundary conditions are ap-
plied to each subsystem separately to obtain
bulk properties and eliminate interfacial effects.
In a Monte Carlo simulation of the Gibbs en-
semble, Monte Carlo proposals include (i) par-
ticle displacements within each subsystem that
ensure internal equilibrium within each subsys-
tem and (ii) particle transfers between the two
subsystems to ensure the equality of chemical
potential µ between the two subsystems. To
treat a flexible MOF, we include a Monte Carlo
proposal to (iii) equally and oppositely change
the volume of the two subsystems.68 The simu-
lator sets the total system composition N, tem-
perature T , and volumes of the two subsystems;
the pressure P and composition of the gas phase
can be computed in the equilibrated system to
link back to the experimental conditions. The
Gibbs ensemble reduces to the grand-canonical
ensemble in the limit of infinite bulk gas vol-
ume.67 The main advantage of the Gibbs en-
semble over the grand-canonical ensemble is
that we do not need to specify µ of the bulk
phase in advance since the bulk phase is ex-
plicitly simulated.67,69 The main disadvantage
of the Gibbs ensemble over the grand-canonical
ensemble is that we can only directly specify
the total system composition, not the bulk gas
composition, which is the more commonly en-
countered situation in experiments/industrial
settings.
When the unit cell of the MOF is flexible,

the appropriate ensemble for Monte Carlo sim-
ulation is the osmotic ensemble,70 in which the
system volume (commensurate with the MOF
crystal) is allowed to fluctuate against fixed me-
chanical stress, but is otherwise similar to a
grand-canonical ensemble. (Hence, the osmotic
ensemble is sometimes called the isothermal-

isobaric-semigrand ensemble.) An important
consequence of the set of constraints in the os-
motic ensemble is that the chemical potential
of the gas is decoupled from the mechanical
stress imposed on the crystal. Simulations of
the osmotic ensemble come at a large compu-
tational cost because, compared to the grand-
canonical ensemble, (i) the number of accessible
microstates to sample increases dramatically
and (ii) during Monte Carlo moves that involve
changes in the MOF structure, one must ad-
ditionally calculate the intrahost potential en-
ergy (so, an intrahost force field for the MOF
is required). Interestingly, the osmotic ensem-
ble allows us to predict gas adsorption when
the MOF is under mechanical stress in addition
to the pressure of the gas, such the mechanical
stress experiments on flexible MOF Co(bdp) by
Mason et al.71

Notably, the Henry coefficient of an adsorbate
in a MOF, pertinent to dilute conditions, can be
calculated from an ordinary Monte Carlo inte-
gration.48 Such a calculation is accomplished by
a series of single-particle “ghost” insertions;72

thus, estimation of a Henry coefficient is less
computationally demanding than full grand-
canonical Monte Carlo simulations.
Readers can additionally consult Ref. 69 for

more details on Monte Carlo algorithms in the
context of simulations of adsorption in MOFs.

2.3.2 Molecular dynamics

The other molecular simulation technique in
widespread use is molecular dynamics (MD)
simulation, which simulates a system comprised
of atoms and/or molecules by propagating New-
ton’s equations of motion forward in time. As
for MC simulation, a user may obtain time av-
erages of random variables (which, according to
the ergodic hypothesis, are equivalent to ensem-
ble averages given the same constraints) and,
hence, thermophysical properties of the model
system. Unlike MC, however, MD also enables
the measurement of transport properties, such
as the diffusivity of gas inside a MOF,73 as it
samples a sequence of transient microstates in
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a time series‡.
As is done in MC, classical MD simulations of

a gas in a MOF utilize a force field and a MOF
crystal structure, which provide the quantities
necessary to define the system’s Hamiltonian
and, therefrom, its governing equations of mo-
tions. In the simplest applications, the com-
bined gas-MOF system is constrained to fixed
total energy (the sum of all kinetic and poten-
tial energies), fixed volume (and system shape),
and fixed number of atoms/molecules, i.e., a mi-
crocanonical ensemble. Other ensembles, such
as the canonical ensemble (fixed temperature)
or the isothermal-isobaric ensemble (fixed tem-
perature and stress [e.g., thermodynamic pres-
sure and/or external mechanical stress]), are
simulated by extending the system Hamilto-
nian48 to impose the desired constraints on
the system and then propagating the resultant
equations of motion for that constrained ensem-
ble.
Among the challenges encountered in using

MD simulations to model gas in a MOF is the
issue of how to set or determine the gas pres-
sure when the MOF structure is rigid; since
the simulation cell cannot change shape, the
isothermal-isobaric ensemble is not applicable.
This challenge led to the development of various
“grand canonical” molecular dynamics simula-
tion techniques, in which a portion of the sim-
ulation cell acts a reservoir of guest molecules
at fixed chemical potential. Gas molecules are
added to and removed from the reservoir in
events that resemble GCMC insertion and dele-
tion moves, which fixes the chemical potential
(and, hence, the pressure) of the remainder of
the simulation cell once the system has ade-
quately equilibrated. Readers can consult work
by the group of Parrinello75–77 for details of the
general approach or others78–80 for specific ap-
plications to adsorption of gases in porous ma-
terials.
Additional challenges arise in the implemen-

tation of MD for flexible MOFs. In principle,
one can directly simulate adsorption-induced
deformation of a MOF using isothermal-

‡That said, under application of transition state
theory, kinetic MC algorithms can simulate the diffu-
sion of gases in MOFs.74

isobaric ensemble MD, provided a model for
the intrahost potential energy. However, we
reiterate that intrahost force fields have not
been extensively developed and the use of stock
force fields for deformable materials is ques-
tionable.54,81 An approach that has been used
to address these challenges is that of hybrid
MD-MC, in which the total simulation cycles
between periods of isothermal-isobaric ensem-
ble MD (fixed-N , but changing volume) and
GCMC (fixed volume, but fluctuating N). The
MD portions relax the MOF structure while al-
lowing the thermodynamic pressure to change
whereas the MC portions restore the chemical
potential to the desired value while the MOF is
rigid. Readers can consult Refs. 82–84 for more
details and particular implementations of this
type of approach.

2.4 High-throughput computa-
tional screening

Equipped with a force field, a set of MOF
crystal structures, and software to conduct
e.g. a grand-canonical Monte Carlo (GCMC)
simulation,68,69,85 the brute-force computational
screening strategy is to loop over all material
candidates and simulate gas adsorption in each
material:

for material in materials

simulate_adsorption(material)

end

After all simulations have finished, we sort the
materials by the desired property obtained by
the simulation and, voilá, shortlist the top few
for experimental testing§. This is the obvious
value of high-throughput computational screen-
ings, and it is predicated on sufficiently accu-
rate molecular models and simulations (i.e., suf-
ficient sampling86,87) to rank the materials by
their desired adsorption property with high sta-
tistical confidence.
A less obvious value of high-throughput com-

putational screenings, which negates their triv-

§Typically, as illustrated in our survey in Sec. 6,
some human judgment on e.g., ease of synthesis is also
exercised in further shortlisting materials.
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ialization as a for loop, is to extract relation-
ships between the structure of the MOF and the
(simulated) adsorption property to reveal in-
sights for rational design. For example, Wilmer
et al.88 found that MOFs exhibiting the high-
est CO2/N2 selectivities for flue gas separations
harbor pore sizes no larger than ≈ 5 Å to 6 Å.
Often, experimental data is too sparse to rec-
ognize such structure-property relationships.
Finally, another value of simulating adsorp-

tion in thousands of MOFs is to set expecta-
tions of performance limitations. For example,
by simulating methane adsorption in 650 000
nanoporous materials, some of us suggested
that the usable capacity targets set for vehicu-
lar methane storage and delivery were likely too
high because all materials fell short of the tar-
get.89 Again, validity of conclusions of this na-
ture are predicated on the accuracy of the force
field and assumptions built into the molecular
models. For example, that work89 held MOFs
rigid during the simulation, neglecting the effect
of structural flexibility on the usable capacity.
Currently, MOF Co(bdp) boasts the highest
methane usable capacity;71 Co(bdp) possesses
a flexible backbone that collapses and expels
residual gas at the discharge pressure to obtain
a large usable capacity.
A brute-force screening strategy (the for loop

above) for thousands of structures may en-
tail an infeasible computational expense, es-
pecially for complicated adsorbates (e.g., in-
serting chain molecules such as hexane dur-
ing a MC simulation via a configurational bias
algorithm,90 modeling polarizability of carbon
dioxide by open-metal sites in MOFs,91 model-
ing water adsorption in MOFs, which requires
many MC samples92), high pressures (where
many molecules are typically present in the sys-
tem), and treatment of structural flexibility.70

Two methods have emerged to circumvent con-
ducting simulations in all material candidates
in a brute-force screening, thereby saving com-
putational expense: statistical machine learn-
ing and genetic algorithms.

Statistical machine learning. A statistical
machine learning93 (regression or classification)
model can be trained to predict adsorption

properties using geometric/structural94 and/or
chemical95 descriptors representing the MOF as
input. The key idea is that the dependent vari-
able in the model (the adsorption property) is
expensive to compute, whereas the independent
variables (the MOF descriptors) are cheap to
compute. So, a trained statistical model can
be used to cheaply predict adsorption proper-
ties on the basis of MOF descriptors. In a
machine learning-accelerated high-throughput
computational screening, simulated properties
in only a (diverse) subset of material candidates
are used to train the model (i.e., to identify
the parameters of the statistical model). For
the remaining materials where simulations were
forgone, the trained statistical model is then
used to predict their adsorption properties on
the basis of their (cheaply computed) descrip-
tors. For example, chemical, geometrical (sur-
face area, void fraction, largest cavity diameter,
etc.), and/or potential energy-based descriptors
were used to train statistical models to screen
MOFs for CO2 adsorption,96 Xe/Kr separa-
tions,97 hydrogen adsorption,98,99 and methane
adsorption,100 conducting simulations on only a
subset of training MOFs. See Ref. 101 for a re-
view on Quantitative Structure Property Rela-
tionship (QSPR) modeling in materials science
in general.
Fernandez et al.102 trained a variety of ma-

chine learning models to predict simulated
methane adsorption in MOFs from geometric
features such as void fraction, pore size, sur-
face area, and density; perhaps most interest-
ingly, the decision trees learned and, owing to
their interpretability, informed useful MOF de-
sign rules for methane storage. Fernandez et
al.103 later invented a more information-rich de-
scriptor of MOF structures based on the radial
distribution function, weighted by atomic prop-
erties. Principal component analysis of the new
(multi-dimensional) descriptor revealed its cor-
relation with pore size, surface area, and sim-
ulated CH4 and CO2 uptakes. Motivated by
the latter correlation, they trained support vec-
tor machines and multilinear regression mod-
els to predict simulated CH4, CO2, and N2 ad-
sorption in hypothetical MOFs from the atomic
property-weighted radial distribution function.
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Fernandez et al.96 later used the atomic prop-
erty weighted radial distribution descriptor to
train a support vector machine to discriminate
between MOFs with high and low simulated
CO2 adsorption, viewing computational screen-
ing as a classification problem. Next, Fernan-
dez et al.104 similarly binarized simulated low-
pressure CO2 and N2 adsorption in hypotheti-
cal MOFs as high or low, then trained a variety
of machine learning classifiers to discriminate
between MOFs with high/low CO2 and N2 ad-
sorption on the basis of geometric descriptors.
Simon et al.97 trained a random forest to pre-

dict simulated Xe/Kr selectivity in nanoporous
materials using cheaply computed structural
and energetic descriptors as input. While a
structurally diverse set of 15 000 materials was
used for training (where GCMC simulations of
Xe/Kr adsorption were required to label each
structure for the random forest), the trained
random forest was used to discard materials
unlikely to exhibit a high Xe/Kr selectivity
from a pool of 655 000 materials without con-
ducting GCMC simulations of Xe/Kr adsorp-
tion. This allowed more computationally ex-
pensive GCMC simulations to be focused on the
most promising materials as determined by the
random forest, which predicts Xe/Kr selectiv-
ity from the material descriptors very quickly.
Feature importance methods showed that the
energy-based descriptor was the most predic-
tive feature for the random forest.
Thornton et al.99 trained a neural network

to predict simulated hydrogen adsorption in
MOFs using structural descriptors (void frac-
tion, pore size, surface area) and simulated ad-
sorption energy as input, then used it acceler-
ate a high-throughput computational screening
of hundreds of thousands of materials.
Pardakhti et al.100 combined the commonly

used structural descriptors with chemical de-
scriptors (such as the number of H, C, O, etc.
atoms in a unit cell) to describe a MOF, then
trained a variety of machine learning models
to predict methane adsorption in hypothetical
MOFs. They found a random forest to be most
predictive, using the combination of structural
and chemical features as input.
Borboudakis et al.105 gathered H2 and CO2

adsorption measurements (target variables) in
100 MOFs from the literature. The authors
then encoded the identity of the linker, metal
center, and functional groups comprising each
MOF (independent variables) into a data ma-
trix. They then used a black box machine learn-
ing pipeline, Just Add Data, for training and
testing, which led to a modest predictive ca-
pacity (Pearson correlation of 0.68 and 0.61 be-
tween predicted and true CO2 and H2 adsorp-
tion, respectively).
Anderson et al.106 constructed over 400 hypo-

thetical MOFs, then used simulated adsorption
data and a variety of structural and chemical
descriptors to train an (interpretable) decision
tree to predict if the CO2/N2 selectivity of a
given parent MOF will increase (or not) when
functionalized. The authors also trained several
machine learning regressors (decision tree, ran-
dom forest, support vector machine, neural net-
work, gradient boosted machine) to predict the
simulated CO2/N2 selectivity of a given MOF;
the gradient boosted machine ranked the mate-
rials according to CO2/N2 selectivity most ac-
curately.
Motivated by the promise of metalated cat-

echols for hydrogen storage,107 Anderson et
al.108 constructed 105 MOF crystals with “al-
chemical” metalated catechols on their linkers.
The sites are “alchemical” because the inter-
action of H2 with the metalated catechol was
allowed to artificially vary to account for vari-
ations in chemistry without explicit specifica-
tion of it. The authors trained a neural net-
work to predict simulated hydrogen adsorption
of a given MOF from structural descriptors, the
density of catechol sites, and the strength of the
alchemical H2 interaction with the catechol site.
A single neural network was trained to predict
hydrogen adsorption at different temperatures
and pressures by including them as inputs. The
authors then used the neural network to predict
the maximum attainable H2 deliverable capac-
ity at different storage/discharge conditions.
Wu et al.109 trained a random forest and

a gradient boosting regression tree to predict
simulated methane adsorption in hypothetical
MOFs using structural descriptors and the sim-
ulated methane Henry coefficient (cheaper to
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compute than adsorption from a GCMC simu-
lation) as inputs.
Bucior et al.98 engineered an energy-based

feature vector for H2 adsorption in a MOF by
computing the potential energy of a H2 adsor-
bate at each point on a grid overlaying the unit
cell of the MOF, binning the energies into a
histogram, and stacking the bin heights into
a vector. They then trained an L1-regularized
multilinear regression model to predict the H2

usable capacity at 77K from the descriptor,
using molecular simulations of H2 adsorption
in a training set of 1 000 hypothetical MOFs.
Inspection of the coefficients in the regression
model revealed the energetics of the adsorption
sites that tend to equip a MOF with a high/low
H2 usable capacity. Given the predictiveness
of the model, the authors proceeded to screen
54 776 MOF structures for H2 storage and de-
livery with the trained model, eventually pin-
pointing MFU-4l as a promising candidate (see
Sec. 6.1.2).
We anticipate machine learning to (i) more

commonly play a role in high-throughput com-
putational screenings and (ii) to be further
transferred to and developed for the domain of
MOFs, particular deep learning.110,111

Genetic algorithms. The second method to
avert a brute-force screening is to employ a ge-
netic algorithm to search for and sample regions
of chemical space where the most performant
MOFs lie. A genetic algorithm112 begins with
an initial population of MOFs, then iteratively
evolves the population of MOFs towards MOFs
displaying higher fitness, defined to be e.g., the
CO2 uptake, which we can compute with a sim-
ulation.113 The population of MOFs present at
iteration i is generation i. The fitness and char-
acteristics of MOFs in generation i are used to
stochastically evolve generation i, thereby de-
termining generation i + 1 of MOFs, with the
aim of selecting/generating MOFs that exhibit
maximal fitness. First, in elitism, a fraction
of the MOFs with the highest fitness simply
proceed to the next generation (without mod-
ification).113,114 Second, in selection, a subset
of the population is stochastically selected to
be parents that produce children, which inherit

features from their two parents, that belong to
the next generation. MOFs displaying higher
fitness are more likely to be selected to be par-
ents. MOFs with the lowest fitness are unlikely
to (i) proceed to the next generation or (ii) pass
off their genes (features) to the next genera-
tion. Each possible MOF must have an [ideally,
unique] genetic representation, usually a cate-
gorical array; one entry of this array, a gene,
might represent, e.g., the type of functional
group that decorates the linker.114 Crossover
and mutation determine the child of two se-
lected parents from the genetic representations
of the two parents. In the simplest variant, uni-
form crossover, each gene for the child is chosen
from a randomly chosen parent. Mutations are
random changes in randomly selected genes to
maintain a diverse population and prevent find-
ing a local as opposed to global maximum of
fitness. The idea is to generate children for the
next generation by mixing the features (genes)
of the MOFs exhibiting the highest fitness, but
also by exploring small genetic variations. A
genetic algorithm terminates after a specified
number of generations or when a satisfactory
fitness is reached.
Bao et al.115 used a genetic algorithm to mu-

tate the chemistry of MOF linkers to arrive
at MOFs with high methane usable capacity.
Chung et al.114 used a genetic algorithm to
search for MOFs for CO2 capture. Collins et
al.113 began with 141 experimentally reported
MOF structures as “parents”, to focus on a
more synthetically viable subspace of MOFs,
and used a genetic algorithm to optimize the
functionalization of their linkers for postcom-
bustion CO2 capture.

A lesson from molecular biology

CRISPR-Cas9 technology116 is revolu-
tionizing molecular biology by enabling the
facile, precise, and cost-effective editing
of genomes.116 Impacts include accelerat-
ing and enabling more systematic exper-
iments to probe gene function and regu-
lation and, potentially, genetic-engineering
disease- and stress-resistant crops and cor-
recting genetic and epigenetic human dis-
ease, such as cancer.117 The CRISPR-Cas9
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technology originates from an adaptive im-
mune system discovered in bacteria.118 The
fascinating story by which CRISPR was rec-
ognized as a bacterial immune system, out-
lined by Lander,119 bestows useful lessons on
materials science, including the importance
of “hypothesis-free science”.

By 2000, Mojica et al.120 cataloged the
presence of peculiar sequence patterns in
the genomes of 20 different microbes using
a computer program to analyze published
genomes. Particularly, they found clusters
of multiple copies of roughly palindromic se-
quence base pairs (bp), ≈ 24 bp to 40 bp
in length, flanking both sides of a unique
spacer sequence of roughly consistent length
(20 bp to 58 bp). These were descriptively
coined clustered regularly interspaced short
palindromic repeats (CRISPR).121 Mysteri-
ously, the biological role (or lack thereof) of
evolutionarily conserved (within species121)
CRISPRs was unknown.

Five years later, Mojica et al.122 pub-
lished evidence that CRISPR is related to
a microbial immune system, conferring re-
sistance to e.g., bacteriophages. The link
was made by searching databases of DNA
molecules for matches of ≈ 4 500 known
spacer sequences between CRISPRs; 47 of
the spacer sequences matched bacteriophage
DNA sequences. As further evidence, a mi-
crobe strain carrying the CRISPR spacer se-
quence of a particular virus was found to be
immune to infection by that virus, whereas
other strains lacking that spacer sequence
were susceptible.

Lander119 credits the role of “hypothesis-
free” research in the discovery of CRISPR:
“The discovery of the CRISPR loci and their
biological function ... all emerged not from
wet-bench experiments but from open-ended
bioinformatic exploration of large-scale, of-
ten public, genomic datasets.” Similarly, we
claim here that hypothesis-free science, i.e.,
the curation of databases of computation-
ready nanoporous crystal structures and ad-
sorption data, can accelerate the pace of
nanoporous materials discovery and deploy-
ment in un-conceived ways. Of course,
mindlessly gathering data is unlikely to be
the best allocation of resources;123 there

must be an implicit hypothesis that the data
will enable further developments, albeit in
an ill-defined or un-conceived context. Our
survey of computation-inspired MOF dis-
coveries in Sec. 6 will demonstrate the im-
pact of open, computation-ready databases
of MOF structures on the discovery of per-
formant MOFs for adsorption-based engi-
neering applications.

3 Determining crystal struc-

tures of MOFs

Single crystal X-ray diffraction (SC-XRD) is
the most utilized and powerful technique to
quantitatively determine the detailed crystal
structure of a MOF, although sometimes neu-
tron diffraction is used.124 Structural informa-
tion can be extracted from the XRD pattern by
careful analysis. Take a one-dimensional XRD
pattern (e.g., X-ray intensity vs. the diffraction
angle) as an example. The position of the peak,
according to Braggs law, is related to the d-
spacing of the unit cell of the material, which is
defined by the lattice parameters and symme-
try. The area of the peak, i.e., the integral of
the intensity, is a result of the types and rela-
tive positions of atoms in the unit cell; the peak
width and shape are affected by defects and the
size of the the crystallite.125,126

The crystal structure of a MOF can be deter-
mined from XRD data through a process called
Rietveld refinement.127 First, we start by build-
ing a crystal unit cell structure model (or use
an existing one) as an initial guess. Then, we
refine the unit cell structural model, i.e., ad-
just the atomic positions, unit cell parameters,
and atomic occupancy (but not symmetry), to
minimize the difference between the experimen-
tal and the simulated (in the structural model)
SC-XRD pattern.126 Clearly, building a crystal
unit cell requires prior information (i.e, atom
types, possible chemical formula, crystal sym-
metry) about the MOF. The crystallographic
R-factor describes the difference between the
refined crystallographic structure model and
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the experimental X-ray diffraction pattern:

R :=

∑
|Iexp − Isim|∑

|Iexp|
, (2)

where Iexp is the experimentally measured X-
ray intensity and Isim is the simulated intensity;
the sum is over all diffraction angles in the data.
A trustable structure is achieved when the crys-
tallographic R-factor is less than 10%;128 a high
quality structure usually has R < 5%.
Several difficulties are encountered in SC-

XRD analysis that complicate or prevent defini-
tive structural solutions. (1) As X-rays interact
with electrons of matter, light elements such
as carbon, oxygen, and hydrogen weakly scat-
ter X-rays compared to heavy metals. Conse-
quently, the refinement of such light elements
is extremely difficult or sometimes impossible,
resulting in e.g., commonly missing hydrogen
atoms in Rietveld-refined crystal structure files.
(2) As extended-network structures, MOFs can
be deconstructed into their underlying topolog-
ical nets by treating the points of extension on
the secondary building units and linkers, re-
spectively, as nodes and edges of a network.129

During MOF synthesis, high temperature and
pressure could introduce network disorder such
as twinning130 and pseudo-symmetry.131 Relat-
edly, interpenetration of nets in MOFs132 in-
troduce complexity in the XRD pattern. (3)
If the building blocks do not assemble into the
anticipated net, Rietveld refinement will be un-
successful, and the crystallographer must brain-
storm other possible nets with which to com-
pare with the XRD pattern; a degree of ex-
perience, intuition, and prior knowledge is re-
quired; (4) Since most MOFs are synthesized
using solvent-based methods, solvent molecules
are present in the pores. Strongly coordinat-
ing solvents (e.g., water, nitrobenzene) may as-
sume a structure or pseudo structure and in-
troduce foreign diffraction peaks that compli-
cate XRD analysis.133 Even if the solvent can
be evacuated, the MOF may still adsorb mois-
ture rapidly from the air; keeping the MOF in
an inert (dry) atmosphere during experiments
may be beneficial. Solvent masking (typically
by software such as SQUEEZE134) is an effec-

tive way to remove the contribution by the sol-
vent from the XRD pattern. (5) Because XRD
is an ensemble measurement, the specific tilt of
certain ligands in the MOF structure could be
averaged out and thus undetermined by refine-
ment.135,136

In addition to SC-XRD, powder X-ray diffrac-
tion (PXRD) is used to obtain MOF structural
information. This is because it is sometimes
difficult to synthesize large single crystals ca.
100 nm, as required for SC-XRD. The relation-
ship between the crystal structure and XRD
peak positions and intensities is the same as
in SC-XRD, however, unlike SC-XRD, PXRD
is the average of the diffraction of all small
MOF crystals in different orientations. Thus,
unlike SC-XRD, PXRD is often used to check
the phase, crystallinity, and purity of the sam-
ple instead of determining the detailed atomic
positions. However, it has become possible to
obtain crystal structures from powder diffrac-
tion data using various refinement and simula-
tion methods.125,137,138 See Fig. 2b for an exam-
ple experimental PXRD pattern, of IRMOF-74-
VII, whose crystal structure is in Fig. 2a.
In some cases, computational methods can

assist the experimental determination of MOF
crystal structures. Poor crystallinity, large unit
cells, high void fraction, and low symmetry
sometimes impede MOF structure determina-
tion from XRD data with conventional meth-
ods such as Rietveld refinement.139,140 On the
computer, we can explore the possible ways
in which the (known) building blocks can be
arranged under constraints (unit cell dimen-
sions, maybe space group) imposed by the ex-
perimental XRD pattern. After building a set
of candidate structural models, we can simu-
late the XRD pattern in the candidates and
compare to the experimental pattern to iden-
tify the most likely structure.139,141 For exam-
ple, Li et al.140 computationally constructed
a model of the suspected, complex structure
of NU-1301, whose 173.3 Å cubic unit cell is
comprised of 816 organic linkers and 816 ura-
nium nodes; the correspondence of the simu-
lated PXRD pattern of the crystal model with
the experimental PXRD pattern was evidence
that the crystal model was an accurate rep-
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(a) (b)

(c)

Figure 2: The crystal structure of IRMOF-74-VII was determined by PXRD assisted by computa-
tional modeling. (a) The suspected and confirmed crystal structure of IRMOF-74-VII. Isoreticular
to Mg-MOF-74, organic linkers with seven phenylene rings are connected to magnesium oxide clus-
ters, forming one-dimensional hexagonal channels (blue: Mg, red: O, gray: C). (b) Experimental
PXRD pattern (red) and simulated PXRD pattern (black) of a computationally-assembled struc-
ture of IRMOF-74-VII. The difference between the experimental and simulated pattern is shown
in green. (c) High-resolution transmission electron microscopy images of IRMOF-74-VII show the
ordered hexagonal pores as in (a). A fast Fourier transform analysis (inset in upper left; scale
bar 2 nm−1) was conducted on the area in the dashed square. The d-spacing from the Fourier
transformation, measured from the six reflection spots corresponding to the 110 reflections resolved
from the FFT patterns, agreed with those from the PXRD patterns. From Science 2012, 336, 6084,
1018–1023. Reprinted with permission from AAAS.

resentation of NU-1301. Deria et al.142 used
computer-generated structural models to assist
elucidation of the closed pore and open pore
structures of breathing MOF NU-1105. Deng
et al.143 synthesized a series of MOFs expected
to possess the same topology as Mg-MOF-74,
but with longer linkers, up to 50 Å long. They

verified the newly synthesized MOFs share the
topology of Mg-MOF-74 by constructing struc-
tural models, simulating their PXRD patterns,
and comparing to the corresponding experimen-
tal PXRD patterns (see Fig. 2).
Finally, in situ XRD has become popular

during the synthesis process144,145 to study the
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growth kinetics and mechanism146–148 and dur-
ing gas adsorption experiments to determine
which adsorption sites are populated at differ-
ent pressures149,150 and investigate gas-induced
structural changes.151,152

4 The Cambridge Struc-

tural Database

The Cambridge Structural Database (CSD)153

is a widely-used repository of crystal structures
of organic, metal-organic, and organometallic
compounds that are mostly determined by X-
ray diffraction. Anyone can initiate the deposi-
tion of a structure in the Cambridge Crystallo-
graphic Data Center (CCDC), a nonprofit or-
ganization. Before entering the database, these
structures are processed both computationally
and by expert structural chemistry editors.154

Each crystal structure in the database is as-
signed a unique six-letter identifier (a “refcode”,
sometimes also including two digits appended
at the end corresponding to different structure
determinations). Anyone can access and down-
load CSD data freely via the online search en-
gine of the CSD, the ConQuest program,155 and
a Python API.154 For each crystal structure en-
try, the CCDC website has a chemical diagram,
3D viewer, and link to the associated publica-
tion. The data from CCDC, downloadable as
a .cif file, contains basic structure parameters
(e.g., space group, lattice constants, unit cell
angles, fractional coordinates of atoms, etc.).
More than 50 000 new structures are entered
and updated each year,156 and 900 000 entries
were recorded in 2018, according to the CSD
website (https://www.ccdc.cam.ac.uk/). The
number of MOFs estimated to be in the CSD
is ca. 70 000.10

There are a few issues with MOF structures
deposited in the CSD that preclude computa-
tional scientists from directly using them to
conduct molecular simulations of gas adsorp-
tion. The summation of these issues, described
in the following subsections, means that most
MOF structures deposited in the CSD are not
computation-ready.

4.1 Problem 0: Identifying
which crystal structures
within the CSD are MOFs

Because each CSD entry is not labeled accord-
ing to the class of material (e.g., MOF ver-
sus covalent organic framework), goal zero is
to compile a list of entries in the CSD that can
be classified as MOFs via an automatic rou-
tine. The IUPAC provisional recommendation
for the definition of a MOF is “... is a Coordi-
nation Polymer (or alternatively Coordination
Network) with an open framework containing
potential voids.”,157 but this definition is not
universally accepted.157,158 The most common
method to search for MOFs in the CSD is to use
a chemical bond criteria;10,159,160 MOFs usually
have a metal atom connected to specific atoms
and/or ligands, which can be searched for in
the database. For example, carboxylate-based
linkers coordinated to metals can be found us-
ing the CSD Python API or ConQuest.155 Be-
ginning 2016, the Cambridge Crystallographic
Data Centre (CCDC) maintains a subset of all
structures in their database that they classify as
a MOF10 using seven different chemical bond
criteria (see Fig. 4), narrowing 850 000 struc-
tures in the CSD down to 69 699 MOFs;10 1D,
2D, and 3D network structures were included.
On the other hand, the CoREMOF dataset (see
Sec. 5.1) contains only structures with 3-D con-
nected frameworks.9 The CSD subset reports
8 388 non-disordered structures with a pore lim-
iting diameter greater than 3.7 Å.

4.2 Problem 1: solvent in the
pores

The first problem with MOF structures in the
CSD is that solvent molecules are often in-
cluded in their pores. This is an artifact of XRD
studies conducted after solvent-based synthe-
sis.11 However, before MOFs are deployed for
use as adsorbents, heat and/or vacuum is ap-
plied to drive off residual solvent in the pores,
a process known as activation,161 thereby allo-
cating space for gas molecules to adsorb. Thus,
the solvent molecules must be computation-
ally removed from each structure, mimicking
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the experimental activation process, before sim-
ulating gas adsorption in it. An underlying
assumption here is that removing the solvent
does not change the MOF structure or cause it
to collapse, which sometimes occurs;59,162 also,
the structure of the MOF could differ depend-
ing on the solvent in its pores.163 Almost 90%
of MOFs in the CSD contain solvent in their
pores; water is most common.10

4.3 Problem 2: structural dis-
order and missing hydrogen
atoms

The second problem with many MOF struc-
tures in the CSD is an artifact of XRD; many
structures are incomplete (e.g., missing hydro-
gen atoms) and chemically invalid (e.g., exhibit
disorder). As Sec. 3 describes, (1) it is diffi-
cult to refine from XRD patterns the atoms,
such as hydrogen, that only weakly scatter X-
rays. Therefore, often, hydrogen atoms are
omitted entirely from the .cif file. (2) Be-
cause XRD is an ensemble measurement, lig-
ands that adopt multiple e.g., rotational con-
formations will appear disordered, resulting in a
chemically invalid crystal structure. See Fig. 3
for examples. The disorder must be repaired
and missing atoms must be added in appro-
priate orientations to render a MOF structure
computation-ready.

5 Computation-ready crys-

tal structures

We now review efforts to compile a database of
computation-ready MOF structures, i.e., by ad-
dressing the problems noted above, to facilitate
virtual screenings. We declare a crystal struc-
ture model (unit cell information, list of atoms
and their coordinates) to be computation-ready
if and only if the crystal comprises chemically
valid building blocks and resembles the exper-
imentally activated crystal structure used for
gas adsorption measurements. For example,
a MOF is not computation-ready if hydrogen
atoms are missing from its linker, residual sol-

vent (which ideally is removed during activa-
tion) remains in its pores, or linkers appear
in multiple rotational conformations owing to
disorder. To address the problems discussed
in Sec. 4, the curation of a computation-ready
database of experimental MOFs requires (a)
sifting through the CSD to pick out the MOFs,
(b) removing solvent molecules to mimic the
experimental activation procedure, and (c) cor-
recting artifacts of XRD that result in chemi-
cally invalid structures, by, e.g., adding missing
hydrogen atoms and choosing one conformation
of a disordered ligand.
Manually inspecting each structure in the

CSD, removing solvent, adding missing hydro-
gen atoms, and repairing disorder, i.e., ren-
dering it computation-ready, would be ex-
tremely time-consuming. Therefore, several
authors have developed automatic routines
using computer programs to curate sets of
computation-ready MOF structures. However,
early databases prior to Chung et al.9 remained
private and thus could not serve as a platform
for materials discovery for the community as a
whole. We briefly review them here regardless.
In 2005, Ockwig et al.159 identified a set of

1 127 MOFs from the CSD using structural
queries that searched for crystals with metals
coordinated to organic linkers to form 3D struc-
tures. The motivation of Ockwig et al. to com-
pile these MOFs was to analyze and rationalize
the distribution of net topologies among MOFs
synthesized to date and shed light on how to
design structures and predict the topology in
which building blocks will assemble. While
these MOFs were not rendered computation-
ready, the authors made available as supple-
mentary material a list of the CSD refcodes of
these 3D MOFs along with their net. Haldoupis
et al.164 leveraged this early list of experimen-
tally synthesized MOFs in the CSD to demon-
strate a high-throughput screening of MOFs
for kinetic-based separations (estimating per-
meability) of small, approximately spherical ad-
sorbates. The authors manually repaired disor-
der in several of the structures listed by Ock-
wig et al. to render them computation-ready. In
2012, Van Heest et al.165 extended the database
of Haldoupis et al.164 to 3 432 MOFs and com-
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putationally screened them for kinetic-based
noble gas separations. The authors mentioned
that they excluded materials with a “significant
degree of disorder” and removed solvent from
the pores, but did not provide details or pub-
licly release the database of MOFs.
In 2013, Goldsmith et al.160 compiled a

database of 22 700 computation-ready MOFs
using an automated routine and divulged de-
tails of their procedure. First, they specified
criteria to classify a structure as a MOF (“struc-
tures that contain carbon, a metal, a ligand,
and a metal-ligand bond; and structures labeled
as an extended structure”160) and scanned the
CSD for MOFs. They then detected symmetry-
related disorder, ionic species, and missing hy-
drogen atoms in these structures and excluded
them. Finally, they developed an algorithm
to remove residual, free-floating (as opposed to
bound) solvents from the pores to mimic the
experimental activation process. The authors
removed solvent by first constructing a periodic
graph model of a MOF, where the nodes rep-
resent atoms and edges represent bonds. The
atoms that were not a member of the largest
connected graph that included the metal were
assumed solvent and removed. Goldsmith et al.
used the Chahine rule for carbonaceous materi-
als,166 a linear relationship between the gravi-
metric surface area and excess hydrogen up-
take¶, to estimate the hydrogen uptake capac-
ity in these MOFs. In addition to shortlisting
top candidates for experimental testing, the au-
thors revealed a trade-off between gravimetric
and volumetric capacity and indicated that tar-
geting MOFs with the highest surface areas is
not coincident with targeting MOFs with the
highest hydrogen capacity.
The curation of these early databases

¶Consider a MOF immersed in a bath of gas at
chemical potential µ and temperature T . Absolute ad-
sorption is the number of adsorbate molecules in the
MOF. Excess adsorption is the absolute adsorption mi-
nus the number of adsorbate molecules present in a vol-
ume Vp of the bulk gas phase at chemical potential µ
and temperature T , where Vp is the accessible pore vol-
ume offered by the MOF. While absolute adsorption
is directly obtained in molecular simulation, excess ad-
sorption is more directly obtained in experimental gas
adsorption measurements.167,168

of computation-ready MOFs enabled high-
throughput computation screenings of experi-
mental MOFs for adsorption-based engineering
applications and the generation of consider-
able insights.160,164,165,169 However, the fruits of
these private computation-ready crystal struc-
tures were available only to the authors that
were in possession of them. We now highlight
the development of open computation-ready,
experimental MOF databases9,10 and review
their lucid impact on the computation-informed
discovery of MOFs for adsorption-based engi-
neering applications.

5.1 The (open) CoRE MOF
database

In 2014, Chung et al. released a free and open,
computation-ready, experimental (CoRE)
MOF database9‖. The workflow to construct
the CoRE MOF database is shown in Fig. 3a.
The authors first searched the CSD for poten-
tial MOF crystal structures using the CCDC
Conquest program; the search was for struc-
tures with more than one bond between met-
als and the elements O, N, B, P, S, and C.
Additionally, the structures were required to
form any kind of bond from these six elements
to C, N, P, or S atoms. Then, the frame-
work structures were analyzed using the rou-
tine implemented in Zeo++170,171 to identify
3-dimensional MOFs. The procedure led to
20 000 3D MOF structures.
Several automated in-house scripts were de-

veloped to further modify the framework struc-
tures to make them computation-ready crys-
tals. This includes the removal of solvents (see
Fig. 3b), of which, by the definition provided
by Chung et al., there are two types: free
and bound. Free solvents (i.e., unbound sol-
vents) are molecules that are not part of the
framework, and bound solvents (i.e., coordi-
nated solvents) are molecules that are part of
the framework atoms as determined by the van
der Waals radii of atoms plus a skin distance

‖The term “CoREMOF” was coined by Prof. David
Sholl, who wrote a number of different combinations of
words on a napkin during the Nanoporous Materials
Genome Center Meeting (2013, Berkeley, CA).
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of 0.4 Å. Bound solvents are usually coordi-
nated to the open metal sites in MOFs, such
as the copper site in HKUST-1. Fig. 3b illus-
trates the removal of free and bound solvents
from a MOF. To remove solvents bound to the
open metal sites, the algorithm first constructed
an adjacency matrix of an input structure. The
adjacency matrix represents the bonding net-
work of atoms in the structure as an undi-
rected graph (nodes: atoms, edges: bonds).
Entry (i, j) of the adjacency matrix is one if
atom i and j are bonded and zero otherwise.
Second, for each lone oxygen atom connected
to a metal atom in the structure, the oxygen-
metal bond was temporarily removed from the
adjacency matrix by modifying the two corre-
sponding elements to be zero. Following the
modification, the adjacency matrix was passed
to the SciPy connected components module to
check if removal of the bond changed the num-
ber of edge-disjoint graph clusters comprising
the MOF. If the number of edge-disjoint clus-
ters changed (indicating a solvent-MOF bond
was eliminated), then the matrix element was
left modified and the subgraph with the low-
est molecular weight (the solvent) was deleted.
If the number of clusters did not change, then
the matrix component was changed back to one
(i.e., the bond is reintroduced). This process
was repeated for all oxygen atoms connected
to a metal atom in the structure. Also, the
symmetry-related copies of atoms arising from
disorder (see Fig. 3c) were deleted by remov-
ing the lines from the .cif files that contained
coordinates with asterisks or question marks.
Lastly, the charge-balancing ions in the struc-
tures were kept on the basis of the chemical for-
mula provided by the CSD and the adjacency
matrix. For instance, if the chemical formula of
an ion, which can be distinguished on the ba-
sis of a (+) or (-) mark, provided by the CSD,
matches the chemical formula derived using the
connected component algorithm applied to the
adjacency matrix, the ion is kept as part of
the framework. Some chemically invalid struc-
tures were manually edited using Materials Stu-
dio to add missing hydrogen atoms (that were
not resolved from XRD), repair other related
disorders, such as overlapping atoms, and re-

move solvent molecules (which are often crit-
ical in maintaining the structural integrity of
the MOF) to mimic experimental activation. A
set of 4 764 computation-ready structures were
made available to the public via Github.172

As evidence that the CoRE MOF database
has had a significant impact on high-
throughput computational MOF screening and
discovery, it has collected over 220 citations
on Google Scholar (as of July 12, 2019) since
its publication in 2014 and has enabled several
computation-inspired MOF discoveries, as out-
lined in our survey in Sec. 6. Its impact was
predicated on making the structures freely and
easily accessible via Github.

5.1.1 CoRE MOF charge assignment

Electrostatic forces are an important compo-
nent of the interaction between a MOF and
an adsorbate possessing polar bonds, such as
carbon dioxide.173,174 The electrostatic poten-
tial inside the MOF is typically modeled by
assigning a point charge to each MOF atom;
point charges are assigned on the molecular
model for the adsorbate as well (as is the case
for CO2

31), thereby completing the descrip-
tion of the electrostatic interaction of the ad-
sorbate with the MOF. Quick/cheap charge
equilibration [Qeq175] methods and its vari-
ants [EEM,176 , PQeq,177 SQE,178 SCQeq,179

EQeq,180 MEPO-Qeq,181 FC-Qeq,182 I-Qeq,182

, EQeq+C,183 and SQE-MEPO184] are com-
monly used to assign point charges to atoms of a
MOF. However, point charges derived from the
electronic density obtained from a first princi-
ples calculation on the particular MOF are gen-
erally considered more reliable.32 The Repeat-
ing Electrostatic Potential Extracted ATomic
(REPEAT) method185 assigns charges to MOF
atoms by fitting to the electrostatic potential
(outside the van der Waals radii of the MOF
atoms) obtained from a periodic, first prin-
ciples calculation. The density derived elec-
trostatic and chemical (DDEC) method186 as-
signs charges to MOF atoms by both fitting
to the electrostatic potential (outside the van
der Waals radii of the MOF atoms) and par-
titioning the electron density obtained from
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Figure 3: Curating the computation-ready, experimental (CoRE) database of MOFs. (a) The
workflow of the development of CoRE MOF Database 2014. (b) Automatically removing solvent
from MOFs deposited in the CSD. Left to right, as-is structure, free solvent removed, free and bound
solvent removed (CSD refcode: VICDOC). (c) Before and after disorder removed (CSD refcode:
PIDNEX). Reprinted with permission from Chem. Mater. 2014, 26, 21, 6185–6192. Copyright
2019 American Chemical Society.

a periodic, first principles calculation. Both
REPEAT and DDEC methods address issues
caused by buried atoms and result in chem-
ically meaningful charges. Nazarian et al.
computed DDEC charges for more than 2 900
CoRE MOFs from the electronic density cal-

culated with the PBE Density Functional The-
ory (DFT) functional and made these charges
openly available.187 DDEC charges were not as-
signed to a fraction of the CoRE MOF struc-
tures owing to failures in the electronic den-
sity calculations arising from computer mem-
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ory limitations (affecting MOFs whose primi-
tive unit cells have many atoms) and unresolved
errors in VASP.187 As the electrostatic poten-
tial inside a MOF is assumed to be indepen-
dent of the adsorbate studied, with the view
of the MOF as ‘hosting’ an electrostatic po-
tential field in which the ‘guest’ adsorbate sits,
these adsorbate-agnostic DDEC charges will fa-
cilitate high-throughput computational screen-
ings of the CoRE MOFs when electrostatic in-
teractions are involved.

5.1.2 DFT-energy-minimized CoRE
MOFs

The crystal structure of a newly synthesized
MOF is often determined from XRD preced-
ing activation, therefore with its pores still
filled with solvent molecules.60 Upon activa-
tion (evacuation of solvent) for gas adsorption,
the structure of the MOF could change sig-
nificantly.59 Some MOFs may be destabilized
by removing solvent, causing the framework
to collapse.188 Therefore, simply deleting sol-
vent molecules from crystal structure files ob-
tained via XRD studies, as in the generation
of the CoRE MOF database, may not repre-
sent the structure upon activation. In addition,
as Nazarian et al.60 demonstrate for HKUST-1,
MOF structures determined by XRD are sub-
ject to variation among research groups.
To address these issues, Nazarian et al.60

used DFT to minimize the potential energy
(by changing the atomic coordinates) of the
structures of 879 CoRE MOF structures. In-
deed, several DFT-optimized CoRE MOFs
showed significant changes in the structure and
simulated adsorption compared to their cog-
nate unoptimized structures.60 These DFT-
optimized structures are likely more reliable
then the vanilla CoRE MOF structures9 be-
cause (a) they maintained their structural in-
tegrity (i.e., still have a void) after DFT-
optimization, (b) the DFT-optimization ac-
counted for any change in structure that would
result from the solvent removal, and (c) the
DFT-optimized structures serve as a standard
for a given MOF as opposed to (perhaps) arbi-
trarily choosing from the multiple structures of

the same MOF deposited into the CSD by dif-
ferent research groups. Notably, the DFT cal-
culations of only 879 of the 2 612 optimization-
attempted, lanthanide- and actinide-free CoRE
MOF structures converged within the 30 000
CPU hours ceiling dedicated to each struc-
ture;60 reasons for lack of convergence in the
allotted time include a large number of atoms
and a poor initial geometry.

5.2 CSD-maintained structures

In 2017, Moghadam et al.10 reported a CCDC-
maintained MOF subset of the CSD integrated
into the CSD to allow for substructure searches
using CSD tools and automatically update ev-
ery quarter to account for newly deposited
MOFs. They used seven chemical bonding cri-
teria (see Fig. 4) to sift through the CSD and
identify which structures are MOFs, resulting
in 69 666 MOF structures. Then, to mimic the
experimental activation process, the authors
wrote and released a Python script to remove
bound and unbound solvent from the structures
by searching the structure for 74 common sol-
vent molecules in the MOF (or for lone oxy-
gen atoms representing a partially resolved wa-
ter molecule); 88% of the MOFs were found to
have solvent (water most common), of which
52% is unbound and 48% bound. A filter-
ing process then flagged structures with disor-
der present, resulting in a non-disordered sub-
set, within the MOF subset, containing 54 808
structures. According to computed geometric
properties of the non-disordered subset, such
as surface area and pore size, a large portion
of the structures in the non-disordered subset
(85%) exhibit negligible internal surface areas,
while the remaining 8 388 structures had no-
table pores, with a pore limiting diameter of at
least 3.7 Å and a gravimetric surface area be-
tween 500m2/g and 2000m2/g.
The CSD-maintained MOF database by

Moghadam et al.10 offers several advantages
over the CoRE MOF database: it is more com-
prehensive (including 1D, 2D, and 3D struc-
tures), automatically updates quarterly to ac-
count for newly deposited structures, allows for
bond-type or cluster-type searches using the
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Figure 4: The seven chemical bond criteria used by Moghadam and co-workers10 to search for
MOFs in the CSD. Here QA = O, N, P, C, B, S, QB = N, P, B, S, C, ME = methyl group. The
superscripts c and a denote cyclic and acyclic, respectively. Reprinted with permission from Chem.
Mater. 2017, 29, 7, 2618–2625. Copyright 2019 American Chemical Society.

CSD tools, makes the Python scripts used for
solvent removal open, and grants the user more
granularity during solvent removal by allowing
the removal of bound and unbound solvent sep-
arately. Two major shortcomings of the CSD
MOF subset10 compared to the CoRE MOF
database,9 however, are (a) many structures
are still invalid and not computation-ready
because crystallographic disorder was not re-
paired and missing hydrogen atoms were not
added and (b) DFT-optimized structures and
DFT-assigned point charges are not available
for the CSD MOF subset (unlike for the CoRE
MOF database60,187).

5.3 Shortcomings of automati-
cally curated MOF databases

There are several criticisms/shortcomings of
the computation-ready, experimental MOF
databases. (1) The method used for the re-
moval of solvent could be too aggressive, in that
the structural integrity of the framework with-
out solvent may become questionable for some
structures.188 The newly updated CoRE MOF
database will contain structures with and with-

out bound solvents, and the CSD-maintained
subset10 grants the user granularity in removing
free or bound solvents via the Python scripts.
(2) The MOF structure could change upon
activation, relaxing to a different state when
solvent is removed;10,50 this is particularly a
concern for soft porous crystals.189 (3) Re-
dundant (duplicate) structures are present.190

(4) As the solvent-removal is automatic and
disorder-flagging are imperfect, several struc-
tures in both databases are not chemically ac-
curate.191–193 A recommended way to report
such structures for the CoRE MOF database is
to report an issue via Github.∗∗ (5) When re-
pairing disorder, one must choose a certain
conformation of the ligand. The choice of
ligand conformation could significantly influ-
ence the adsorption properties. This has been
demonstrated in the case of Xe adsorption in
SIFSIX-3-Ni structure, where the tilts of the
pyrazine ligands are disordered in the XRD-
determined structure.136 (6) Several MOFs are
missing from the CoRE MOF database, and
it is not automatically updated when a new

∗∗http://dx.doi.org/10.11578/1118280
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MOF is deposited in the CSD;10 this issue is
addressed with the CSD-maintained subset10

which is updated every quarter.
Altintas et al.191 comprehensively com-

pared the CoRE9 and CSD-maintained, non-
disordered10 MOF databases and found several
discrepancies and shortcomings in both. The
authors assembled 3 490 MOFs (characterized
by CSD codes) in the intersection of the two
databases and found that simulated gas adsorp-
tion (for both methane and hydrogen) differed
significantly depending on from which database
it was pulled for 387 MOFs. The differences em-
anated from the different and often erroneous
methods among the two database curators to
remove solvent, repair disorder, and address
charge balancing ions. For example, errors in
the automatic solvent removal routine some-
times erroneously removed a metal, ligand,
or functional group that is part of the MOF
structure. Several MOFs (total of 54) lacked a
structure in either database that properly rep-
resents the experimentally reported structure.
Altintas et al.191 remark “it is not completely
possible to fully automate establishment of a
MOF [database] because treatment of some
MOFs requires personal, hands-on manipula-
tion and detailed chemistry knowledge”. They
released a spreadsheet with a list of problematic
MOFs and manually corrected set of 54 MOFs
with improper structures in both databases.

5.4 Computation-ready crystal
structures for other classes
of materials

Despite our focus on MOFs, open databases
of computation-ready covalent organic frame-
works (COFs)194 and porous organic cage
molecules195 have emerged as well. Tong et
al.196,197 prepared a database of 280 disorder-
and solvent-free, experimentally synthesized
COF structures (both 2D and 3D) ready for
molecular simulations. Miklitz et al.198 com-
piled a database of 41 intrinsically porous cage
molecules from the CSD. Recent, exploratory
work on applying an unsupervised machine
learning algorithm to encode the shapes of cav-

ities of porous cage molecules into latent vec-
tor representations199 was enabled by the open
porous cage database of Miklitz et al.198 We
also duly mention the open International Zeo-
lite Association (IZA) database of zeolite struc-
tures,200 which is widely used for computational
studies of gas adsorption in zeolites.

6 Survey of high-throughput

computational screen-

ings with experimental

confirmation

We now survey high-throughput computational
screenings of MOFs for gas storage and separa-
tion that directly motivated the synthesis and
testing of a MOF in the bona fide (as opposed
to in silico) laboratory. These computation-
driven MOF discoveries demonstrate the prac-
tical impact of computational materials sci-
ence. However, we do not discount the
many high-throughput computational screen-
ings lacking an experimental component, as (i)
these computational predictions could be fol-
lowed up in the future and (ii) insights into
structure-property relationships from computa-
tional studies can (albeit perhaps indirectly)
prompt the experimental discovery of new, per-
formant MOFs.

6.1 Gas storage and delivery

For applications of MOFs in storing gases, we
exploit the interactions [van der Waals, elec-
trostatic, transition metal complexation (π-
backbonding with olefins,201 complexes of H2

with metalated catechol107,202,203), etc.] of a
gas molecule with the surface of the MOF to
achieve a greater density of adsorbed gas than
in the corresponding bulk gas phase at the same
temperature and pressure. In practice, deploy-
ing a MOF for gas storage entails packing a
pressure vessel with a MOF adsorbent.
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6.1.1 Natural gas storage and delivery

Natural gas, composed of mostly methane, is
regarded as a transition fuel from petroleum-
based to renewable and clean fuels (i.e., re-
newably produced hydrogen).18 First, natural
gas is abundant and cheap. Second, com-
pared to e.g., gasoline, natural gas emits 25%
less carbon dioxide per energy harvested from
its combustion,204 as well as less volatile or-
ganic compounds, carbon monoxide, particu-
late matter, and sulfur oxides (but more ni-
trogen oxides).205 However, the greenhouse ef-
fects of fugitive emissions (methane is a po-
tent greenhouse gas itself)206 and groundwa-
ter contamination by hydraulic fracturing207

may diminish these environmental benefits if
not controlled. Third, in the United States,
the pipeline infrastructure for natural gas de-
livery is already in place. The transporta-
tion sector accounts for 28% of energy con-
sumption in the United States, and petroleum-
based fuels comprise 93% of transportation fu-
els.208 The widespread adoption of natural gas
as a transportation fuel could therefore reduce
transportation costs and emissions.
A technical barrier to the widespread adop-

tion of natural gas as a fuel for passenger ve-
hicles is that, as a gas, compared to (liquid)
gasoline, its volumetric energy density is low.
Therefore, to obtain a reasonable driving range
under the constraint of limited space for an
onboard fuel tank, natural gas must be densi-
fied.19 Two incumbent methods to densify nat-
ural gas are liquefaction at low temperature
(111.7K, 1 atm) and compression to high pres-
sures (≈ 200 bar, 298K). These methods re-
quire bulky, heavy, expensive fuel tanks and ex-
pensive infrastructure at refueling stations; fur-
ther, boil-off losses from liquefied natural gas
are an environmental concern.209 Alternatively,
MOFs have demonstrated the ability to den-
sify natural gas for onboard vehicular storage
at room temperature and significantly lower
pressures (35 bar to 65 bar) than compressed
natural gas.18,19,210 So far, no MOF has met
the most recent usable capacity target of 12.5
MJ methane/L MOF set by ARPA-E to com-
pete with compressed natural gas,211 using a

pressure swing between 65 bar (storage pres-
sure) and 5.8 bar (minimum engine inlet pres-
sure needed).89

Note that in the high-throughput screenings
below, natural gas is approximated as methane.
As a caveat, a computational study by Zhang et
al. found that, when considering the influence
of larger hydrocarbons contained in natural gas,
the ranking of MOFs for natural gas storage
could differ from when approximating natural
gas as pure methane.212

NOTT-107 and NU-125 Wilmer et al.213

developed a computational approach to gener-
ate MOF structural models from a chemical li-
brary of building blocks, then screened them to
identify candidate materials for methane stor-
age at 35 bar and 298K. This study considered
only the absolute volumetric methane loading
at 35 bar as opposed to other studies, which
consider a usable capacity, defined as the dif-
ference in absolute volumetric methane load-
ings at 35 bar and 5 bar. To generate hypo-
thetical MOFs, Wilmer et al. curated a library
of 102 building blocks. The building blocks
varied substantially in their geometry, number
of connection sites, and chemical composition.
These building blocks could be divided into
three categories: inorganic, organic, and func-
tional groups. The algorithm constructed crys-
tals with at most one kind of inorganic build-
ing block, two kinds of organic building blocks,
and one functional group (see Fig. 5). Build-
ing blocks could combine if the geometry and
chemical composition at the point of connection
was the same as in the synthesizable structure.
Connections between building blocks were de-
termined solely based on geometric rules; that
is, the structures were not energy-minimized.
“The approach is very much like snapping Tin-
kertoys or Lego bricks together,” said Wilmer et
al.213 The combinations of building blocks were
exhaustively explored, resulting in 137 953 hy-
pothetical MOF structures.
The generated structures were validated by

comparing a subset of them to their energeti-
cally relaxed counterparts. Choosing the appro-
priate building blocks, structures were gener-
ated resembling HKUST-1,16 IRMOF-1,6 PCN-
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Figure 5: The algorithm used by Wilmer et
al.213 to construct hypothetical MOF structures
first extracts building blocks from previously-
known MOF structures. These building blocks
are then combined according to their geometry
to create hypothetical MOF structures.

14,214 and MIL-47.215 Allowing each “pseudo-
MOF” to relax energetically using the UFF,28

Wilmer et al. found that every atom within
the pseudo-MOF structures was typically <
0.8 Å distance from the crystallographically
measured position. Further, simulated methane
adsorption isotherms at 298K in the pseudo-
MOFs agreed with both simulated adsorption
in the crystallographic structure as well as with
experimental adsorption data.
After validation of the structure genera-

tion algorithm, each hypothetical MOF was
screened for methane storage at 35 bar and
298K. The screening of the 137 953 structures
was conducted in three successive stages of
increasing Monte Carlo cycles in GCMC simu-
lations. Of these top performers, a structural
analogue to PCN-14 [PCN-14 had a predicted
methane storage capacity of 197 L(STP)/L] was
predicted to have a record-breaking methane
storage capacity of 213 L(STP)/L.213 This
structure, unbeknownst at the time of syn-
thesis as having been the previously-reported
MOF NOTT-107,216 was synthesized and found
to have an experimentally measured methane
capacity ≈ 8% lower than the prediction.213

In addition to identifying promising candidate
structures for synthesis, this library of hypo-
thetical structures provided insights into rela-

tionships between the structure of the MOF
and high-pressure methane storage. For each
hypothetical MOF, geometric properties such
as surface area, void fraction, and pore size dis-
tribution were computed and correlated with
the simulated methane adsorption. Though
maximizing gravimetric surface area had been
a common strategy for designing methane ad-
sorbents, exceeding an optimal surface area
(≈ 2 500 m2/g to 3 000 m2/g) was found to di-
minish the methane storage capacity. The void
fractions of the best adsorbents were found to
fall within a narrow range around ≈ 0.8, and
the majority of these contained methyl, ethyl,
or propyl functional groups, with pore sizes be-
tween 4 Å and 8 Å. These insights led to the dis-
covery of MOF NU-125,217 which was designed
to have a void fraction of 0.8 and demonstrated
promise as an adsorbent with an exceptionally
high methane uptake (see Fig. 6) and a usable
capacity (58 bar to 5.8 bar) that is 67% that of
the typical compressed natural gas tanks used
in American transportation vehicles, which are
pressurized to 3600 psi (248 bar).

NU-800 Gomez-Gualdron et al.218 con-
structed a set of 204 zirconium-based, hypo-
thetical MOF structures to search for optimal
and stable MOFs for storage and delivery of
methane. The authors constructed the MOF
structural models by computationally arrang-
ing a highly stable inorganic secondary building
unit, (Zr6O4)(OH)4(CO2)n, with various build-
ing blocks (see Figs. 7a and 7b) to form MOFs
in four network topologies, fcu, ftw, scu and
csq. The structures were energy-minimized
by using the UFF28 to describe the intrahost
energetics.
In each hypothetical MOF, the authors con-

ducted GCMC simulations of methane adsorp-
tion at 65 bar and 5.8 bar to compute the us-
able capacity. Of the 204 Zr-based hypotheti-
cal MOFs, the one based on the ditopic build-
ing unit TPT in Fig. 7a was predicted to
exhibit the highest methane usable capacity
(197 L(STP)/L) and was coined NU-800. See
Fig. 7c. As a consequence, NU-800 was synthe-
sized, and its methane (also nitrogen, carbon
dioxide and hydrogen) adsorption isotherms
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Figure 6: The MOFs NOTT-107 and NU-125 were both identified via high throughput computa-
tional screening studies213,217 as potentially promising materials for methane storage. NU-125, in
particular, was pinpointed based on its void fraction of 0.8, which was found as optimal for methane
storage from prior large-scale screening studies.213 Crystal structures of NOTT-107 and NU-125
(left) with methane adsorption isotherms (right) demonstrating comparable performance between
the two sorbents.

were measured and compared to the simulation
(see Fig. 7d) with overall good agreement. The
measured experimental methane usable capac-
ity of NU-800 is 167 L(STP)/L (10% lower than
the simulated value), which is the best among
Zr-based MOFs and better than many previ-
ously reported MOFs for methane storage, such
as Ni-MOF-74 [121 L(STP)/L]219 and PCN-14
[149 L(STP)/L],214 yet 15% lower than MOF-
519 [203 L(STP)/L],220 the record-holder at the
time of publication. Repeated adsorption and
desorption cycles indicated that NU-800 was
highly stable.

6.1.2 Hydrogen storage and delivery

Hydrogen (H2) is an ideally clean transporta-
tion fuel since it emits only water and heat
when it combines with oxygen in a fuel cell.
If hydrogen is produced renewably, such as via
electrolysis of water with electricity generated
from wind turbines221 as opposed to via the
(currently widely-used) steam reforming of nat-
ural gas, its adoption as a fuel could signifi-
cantly reduce the rate of greenhouse gas emis-
sions associated with the transportation sec-
tor. Moreover, hydrogen is abundant (though
bonded with oxygen in water or with carbon
in hydrocarbons). Hydrogen possesses a larger
gravimetric energy density than any fossil fuel;

however, as a gas at ambient conditions, hydro-
gen suffers from a very low volumetric energy
density compared to (liquid) gasoline. There-
fore, for a passenger vehicle to drive an ac-
ceptable distance on a single, reasonably sized
tank of hydrogen fuel, the hydrogen must be
densified. Incumbent densification schemes in-
clude room-temperature storage by compres-
sion up to 700 bar and cryogenic storage (liq-
uefaction at 20.4K at 1 bar). Both require
significant energy input, heavy and bulky fuel
tanks, and costly infrastructure at refilling sta-
tions. Safety is a concern particularly for hy-
drogen compressed to 700 bar. Another well-
researched densification strategy is to react hy-
drogen with metals to form metal hydrides,222

but these metal hydrides often require high
temperatures to release the hydrogen and are
very heavy.223 For an ultimate hydrogen stor-
age goal, the United States Department of En-
ergy (DOE) set 50 g/L and 6.5 weight percent
storage targets for an onboard vehicular hy-
drogen storage system operating at tempera-
tures ranging from -40 ◦C to 60 ◦C224 and pres-
sures below 100 bar.225 To meet this target and
densify hydrogen at 100 bar for onboard vehi-
cle storage (significantly lower than compressed
hydrogen storage at 350 bar to 700 bar), much
current research is focused on exploiting physi-
cal adsorption in MOFs.225 Thus far, no MOF
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(a) (b)

(c) (d)

Figure 7: Gomez-Gualdron et al.218 constructed a set of 204 zirconium-based hypothetical MOFs
and screened them for storing and delivering methane, leading to the synthesis of NU-800. (a) The
basic building blocks used to construct the hypothetical MOFs (connection points highlighted). The
ditopic linkers and Zr-SBU are combined in an fcu net. The central and peripheral building blocks
are combined to form planar, tetratopic building units (e.g., see (b)), which are then assembled
with the Zr-SBU in the ftw, csq, and scu nets. (b) Examples of planar, tetratopic building units
obtained by combining one central and four peripheral building blocks (see (a)). (c) The crystal
structure of NU-800 has fcu topology and is constructed from the ditopic TPT linker in (a) (cyan:
Zr, red: O, grey: C, white: H). (d) Comparison of experimental (points, solid lines) and simulated
(dashed lines) isotherms for methane adsorption in NU-800 at various temperatures. Reprinted
with permission from Chem. Mater. 2014, 26, 19, 5632–5639. Copyright 2019 American Chemical
Society.

has met the DOE storage target in the specified
temperature range because the van der Waals
interactions of hydrogen with a MOF are too
weak.18,223,225

she-MOF-1 Gómez-Gualdrón and co-
workers226 constructed a set of 13 000 hypo-
thetical MOF structures falling in 41 different

topologies and screened them for cryogenic hy-
drogen storage. The hydrogen usable capacities
in each hypothetical MOF were predicted from
the difference in simulated hydrogen adsorp-
tion at 77K and 100 bar and at 160K and
5 bar (using a combination of a pressure- and
temperature-swing for hydrogen storage and
delivery). To generate the hypothetical struc-
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tures, the authors took a “top-down” approach
by, first, specifying the topology of the ex-
tended network based on the points of con-
nection emanating from the building blocks,
then, placing building blocks in the topologi-
cal net, spatially scaled to accommodate them.
The building blocks were selected from those
seen in existing MOFs. The authors then syn-
thesized, activated, and measured hydrogen
adsorption isotherms in a hypothetical MOF
in the rare she topology, she-MOF-1. While
she-MOF-1 showed moderate thermal stabil-
ity up to 548K, its pore volume reduced by 30%
(according to nitrogen adsorption isotherms)
during shipping for hydrogen adsorption mea-
surements, indicating a lack of long-term stabil-
ity after activation. To confirm the adsorption
prediction, though, simulated and experimental
hydrogen adsorption isotherms match very well
at 160K after scaling the experimental data
by 1.3 to account for the loss in pore volume
after shipment. This study demonstrates the
need for the ability to predict the stability of
hypothetical MOFs (see Sec. 9.4).

IRMOF-20 Ahmed and co-workers227

sought to find MOFs with both high gravimet-
ric and volumetric usable hydrogen capacity.
To do so, they simulated hydrogen adsorp-
tion at 77K in a pressure range from 1bar
to 100 bar in each MOF in the CoRE MOF
database9 and the (privatized) database from
Goldsmith et al.160 On the basis of the simu-
lated usable capacity of hydrogen at 77K using
a pressure swing between 100 bar and 5 bar, the
authors targeted the synthesis of a MOF ex-
hibiting gravimetric and volumetric usable ca-
pacities that surpass those measured in MOF-5
(4.5 weight percent and 31.1 g/L), considered
a benchmark material for hydrogen storage.228

Among the 90 MOFs predicted to surpass the
performance of MOF-5, they targeted IRMOF-
20,229 with a 6.1 weight percent and 35.5 gH2/L
predicted usable capacity, for synthesis and
measured its hydrogen adsorption isotherm at
77K and up to 100 bar. The simulated and
experimental gravimetric and volumetric hy-
drogen adsorption isotherms agreed very well.
Notably, the authors quantified the degree to

which the Chahine rule,166 an empirical corre-
lation that relates gravimetric excess hydrogen
uptake to the surface area of a material, can
predict simulated hydrogen adsorption at 77K
and 35 bar using two different molecular mod-
els for hydrogen; the correlation is reasonable
in both cases. IRMOF-20 has a greater sur-
face area than MOF-5 (measured BET areas
of 4 073 m2/g vs. 3 512 m2/g), rationalizing its
greater gravimetric usable capacity of hydrogen
under the Chahine rule.

MFU-4l Bucior et al.98 screened the CSD
MOF subset10 of ca. 55 000 MOFs for hydrogen
storage at 77K and 100 bar using a combina-
tion of machine learning and molecular simula-
tions. First, they trained an L1-regularized lin-
ear regression model to predict simulated usable
capacity of hydrogen at 77K using a pressure
swing between 100 bar and 2 bar. Engineering
a feature vector to represent each MOF, they
binned into a histogram the computed van der
Waals potential energy of interaction between
hydrogen and the MOF at a grid of points over-
laid the unit cell. To serve as training data
for the regression model, they simulated hydro-
gen adsorption in a diverse set of hypothetical
MOFs.141,213,226 After ensuring their trained re-
gression model was sufficiently accurate on test
data, Bucior et al. then, on the basis of com-
puted potential energy histograms, applied the
model to predict the hydrogen usable capacity
of the 55 776 MOFs in the CCDC subset.10 To
refine the usable capacity predictions by the re-
gression model, they conducted GCMC simula-
tions in the 1 000 MOFs predicted by the regres-
sion model to have the highest usable capac-
ity. MFU-4l230 (CSD refcode: UPOZAB) was
among the top 25 3D MOF candidates accord-
ing to these targeted GCMC simulations; its
hydrogen adsorption isotherms were measured
before but only up to 20 bar.230 Bucior et al.
then experimentally synthesized MFU-4l and
measured its high-pressure hydrogen adsorption
isotherms at 77K, 160K, and 296K, with which
the simulated adsorption isotherms agreed very
(160K and 296K) or reasonably (77K) well.
See Fig. 8. MFU-4l exhibited a usable capac-
ity of 29 g/L (77K, between 100 bar and 5 bar),
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which ranks it among the top reported MOFs
for hydrogen storage at these conditions.231

(a)

Figure 8: A machine-learning accelerated high-
throughput screening98 led to the identification
of MFU-4l for hydrogen storage. (a) Crystal
structure of MFU-4l. (b) Simulated and exper-
imental H2 adsorption isotherms of MFU-4l at
different temperatures. Reproduced from Mol.
Syst. Des. Eng. 2019, 4, 1, 162–174, with per-
mission from The Royal Society of Chemistry.

SNU-70, UMCM-9, and PCN-610/NU-
100 Ahmed et al.232 used the Chahine rule
to down-select ca. 44 000 MOFs from a set of
ca. 500 000 experimentally reported and hypo-
thetical MOFs for focused GCMC simulations
of hydrogen adsorption at 77K and 100 bar and
5 bar. They targeted the experimental syn-
thesis of materials with predicted volumetric
and gravimetric usable hydrogen usable capac-
ities larger than benchmark materials MOF-
5 and IRMOF-20, also considering “perceived
stability and synthetic accessibility”: PCN-
610/NU-100, an experimentally reported MOF
(CSD refcodes HABQUY/GAGZEV); a hypo-
thetical MOF233 that was a variant of exper-

imentally reported MOF, SNU-70 (CSD ref-
code GEBPEK);234 and MOF with CSD ref-
code ZELROZ.235 The latter could not be fully
activated, which motivated the authors to con-
struct a model of and synthesize (motivated
by high predicted H2 capacity) a mixed-linker,
non-interpenetrated, MOF, UMCM-9,236 iso-
reticular to ZELROZ. Experimentally mea-
sured H2 adsorption isotherms at 77K up to
100 bar demonstrated each UMCM-9, SNU-
70, and PCN-610/NU-100 to have higher H2

volumetric and gravimetric usable capacities
than both benchmark materials MOF-5 and
IRMOF-20.

6.1.3 Oxygen storage and delivery

Oxygen (O2) gas is used in healthcare to
treat a variety of respiratory illnesses including
chronic obstructive pulmonary disease and pul-
monary fibrosis.237,238 Pure O2 is also necessary
for industrial processes such as Linz-Donawitz-
steelmaking, which uses O2 to reduce the car-
bon content of molten carbon-rich pig-iron to
create steel; this process comprises 60% of all
steel production.239,240 Another use of pure oxy-
gen is to increase the efficiency of the regen-
eration of catalyst in fluid catalytic cracking,
which is an essential process in petroleum re-
finement.241 To store oxygen gas, it is typically
densified via compression to high-pressures of
around 200 bar and stored at room tempera-
ture. Liquid oxygen is also used, though this
storage method requires temperatures be main-
tained below 90K in insulated vessels. MOFs
are a novel alternative for O2 storage,242 en-
abling, compared to standard compressed oxy-
gen storage, (a) an increased oxygen storage
density at comparable pressures and/or (b) a
comparable stored oxygen density but at a
reduced storage pressure, thereby alleviating
safety concerns and the need for heavy storage
tanks.

UMCM-152 Moghadam et al.243 conducted
a high-throughput computational screening of
2 392 previously synthesized MOFs from a sub-
set of the CoRE database chosen because of
the high-quality partial charges assigned to
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the MOF atoms.9,187 The authors performed
GCMC simulations of oxygen adsorption at
298K and at pressures between 1 bar and
200 bar in each MOF. The volumetric oxygen
usable capacity, using a pressure swing between
140 bar and 5 bar, was then computed. High
volumetric oxygen usable capacities were corre-
lated with largest cavity diameters above 8 Å,
void fractions larger than 0.7, and geometric
surface areas larger than 2 600m2/g. See Fig
9a. The most promising MOF for oxygen deliv-
ery was UMCM-152 (CSD refcode: ANUGIA;
see Fig. 9b), with a predicted usable capacity of
249 L(STP)/L. Thus, UMCM-152 was targeted
for synthesis and oxygen adsorption isotherm
measurement. UMCM-152 displayed the high-
est volumetric O2 delivery of any material re-
ported, 249 L(STP)/L, 22.5% higher than the
previously best reported material, NU-125.242

At room temperature, the density of oxygen in
a UMCM-152-packed tank at 140 bar is 96%
higher than in a traditional O2 gas tank storage
at the same pressure; to achieve the same den-
sity in a UMCM-152-packed tank at 140 bar, a
compressed cylinder would exhibit up to 300 bar
of pressure. Notably, the simulated and exper-
imental oxygen adsorption isotherms at 298K
agreed very well. In summary, computational
screening was used to identify UMCM-152 as
exhibiting a large volumetric oxygen usable ca-
pacity to enable safer (low-pressure) and more
compact adsorption-based oxygen storage.

6.2 Gas separations

For applications of MOFs in gas separations, we
exploit differences among gas species in their
(i) affinity for the surface, an energetic effect,
(ii) packing into the pores, an entropic effect,244

and/or (iii) rate of transport through the ma-
terial. Chemical separations account for 10%
to 15% of the world’s energy consumption.245

Therefore, improving the efficiency of incum-
bent separation processes, e.g., distillation in
the petroleum industry, could reduce pollution
and make goods cheaper to produce. More-
over, the highly tunable pore shapes and sur-
face chemistries of MOFs could enable molecu-
lar separations that were once infeasible.246 In

(a)

(b)

Figure 9: Computational identification of
UMCM-125 (CSD refcode: ANUGIA) for oxy-
gen storage and delivery.243 (a) Computational
screening data; each point represents a MOF.
The volumetric oxygen deliverable (usable) ca-
pacity is largest for MOFs with a void fraction
(Vf ) above 0.7 and a largest cavity diameter
above 7.5 Å to 8 Å. Common MOFs are high-
lighted, including the MOF predicted to have
the largest O2 usable capacity, UMCM-152. (b)
The crystal structure of UMCM-125, with the
purple sphere highlighting the main pore. Fig-
ure from Nat. Commun., 2018, 9, 1, 1378, un-
der Creative Commons Attribution 4.0 Inter-
national License https://creativecommons.

org/licenses/by/4.0/
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practice, deploying a MOF for gas separations
entails (a) packing a column with a MOF adsor-
bent, then passing the gaseous mixture through
the column or (b) embedding the MOF ad-
sorbent within a membrane, both of which al-
low the MOF to selectively capture certain gas
species.

6.2.1 Xenon/krypton separations

Life-cycle analysis indicates that generating
electricity by nuclear fission emits less green-
house gases than by fossil fuels, with emis-
sions on par with solar photovoltaics.247 Repro-
cessing used nuclear fuel recovers unused ura-
nium for further electricity generation, thereby
maximally utilizing our uranium reserves, and
reduces the volume of nuclear waste to se-
quester.248 During the aqueous reprocessing of
used nuclear fuel, volatile, radioactive nuclides
of xenon and krypton evolve into the off-gases
in parts-per-million concentrations.249 MOFs
could potentially be used in an adsorption-
based process at ambient conditions to capture
the xenon and krypton from the off-gases to
prevent their emission into the environment.250

Using two adsorption processes in series, one to
remove xenon, and the next to remove krypton,
is one strategy, where a material with a high
Xe/Kr selectivity is desired for the first pro-
cess.251 The radioactive krypton (85Kr, half-life
ca. 10.7 years) recovered from the second pro-
cess can be sequestered, while the xenon, which
has a much shorter half-life (longest-lived 127Xe,
half-life 36.4 days251), recovered from the first
process could be sold in the market for use in
medicine, ion propulsion, lighting, and insula-
tion.252

SBMOF-1 Searching for a MOF harboring a
high Xe/Kr selectivity, Banerjee et al.253 calcu-
lated the Henry coefficients of xenon and kryp-
ton at 298K in the set of CoRE and hypo-
thetical MOFs, relevant to the dilute condi-
tions encountered in the off-gases of used nu-
clear fuel reprocessing. The MOF that exhib-
ited the highest Xe/Kr selectivity, SBMOF-1,
was a member of the CoRE MOF database
and thus has already been synthesized,254 but

not characterized for Xe/Kr separations. Moti-
vated by the computational prediction, Baner-
jee et al.253 synthesized SBMOF-1, measured
its pure-component adsorption isotherms, and
conducted column breakthrough experiments
using a surrogate gas mixture that mimics the
off-gas of used nuclear fuel reprocessing facili-
ties. SBMOF-1 was found to exhibit the high-
est experimentally reported equilibrium Xe/Kr
selectivity at dilute conditions (on the basis of
experimental Henry coefficients) and to show
good breakthrough performance, even in the
presence of humidity. See Fig. 10. We duly note
that several computational screenings of MOFs
for xenon/krypton separations have been car-
ried out at different conditions prior to release
of the CoRE MOF database.97,255,256

6.2.2 Chemical warfare agent capture

Nerve agents, such as sarin and soman, are
among the most lethal chemical warfare agents
due to their high levels of neurotoxicity. These
synthetically produced toxins are readily ab-
sorbed through dermal contact, inhalation, and
ingestion.257 The primary mechanism of nerve
agent function is by disrupting nerve signals to
the organs in the body, resulting in symptoms
such as seizures, cardiac arrest, and potentially
death by asphyxiation.258,259 Acute exposure to
nerve agents can lead to long-term cognitive
and behavioral deficits.260 The adsorption ca-
pabilities of MOFs can potentially be exploited
to capture chemical warfare agents from the
air,261 e.g., as a filter in a gas mask.262 Using
molecular simulations to rank MOFs according
to their ability to capture CWAs underlines a
classic role of computer simulations: reducing
the need to conduct dangerous experiments.
Due to the lethality of chemical warfare

agents, surrogate molecules that share key char-
acteristics are used in research to avoid expo-
sure. For example, a commonly used surro-
gate for mustard gas is diethyl sulfide (DES).
See Fig. 11b. Sholl et al.259 simulated adsorp-
tion of nerve agents [soman, sarin] at dilute
conditions in the CoRE MOFs and compared
their heats of adsorption to that of four com-
mon surrogates [dimethyl methylphosphonate
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(a) (b)

(c) (d)

Figure 10: SBMOF-1 for Xe/Kr separations.253 (a) Simulated Xe/Kr selectivity against pore size;
each point represents a CoRE MOF; SBMOF-1 is marked. (b) The crystal structure of SBMOF-
1 (CSD refcode: KAXQIL) exhibits 1D channels that form well-defined pockets in which xenon
can adsorb commensurately with the structure. (green: Ca, yellow: S, red: O, gray: C, white:
H) (c) Experimentally measured pure-component Xe and Kr adsorption isotherms in SBMOF-
1 at 298K. Horizontal, dashed line shows one adsorbate per unit cell, indicating commensurate
xenon adsorption. Henry coefficients fit to the low-pressure data imply SBMOF-1 harbors an equi-
librium Xe/Kr selectivity of 16. Inset shows metal (Ca) and V-shaped organic ligand used to
synthesize SBMOF-1. (d) Comparison of experimental, equilibrium Xe/Kr separation capability
among MOFs at dilute conditions and at ≈ 298K; Henry coefficients were extracted from exper-
imental pure-component adsorption isotherms in the literature. Reproduced and adapted from
Nat. Commun. 2016, 7, 11831, under Creative Commons Attribution 4.0 International License
https://creativecommons.org/licenses/by/4.0/.

(DMMP), diethyl chlorophosphate (DCP), di-
isopropyl fluorophosphate (DFP), and dimethyl
p-nitrophenyl phosphate (DMNP)]. Judging
from the correlation of the simulated heats of
adsorption of the authentic nerve agents in the
CoRE MOFs with the heats of adsorption of
surrogates, e.g., DMMP, DCP, and DFP are
poor surrogates for soman adsorption in MOFs,
with DMNP its best surrogate.

Ni3(BTP)2 Matito-Martos et al.263 designed
a high-throughput screening strategy to iden-
tify MOFs for the capture of chemical warfare
agents (CWAs) sarin, soman, mustard in humid
environments. The authors screened a subset
of 2 932 MOFs from the CoRE database with
point charges assigned187 to account for CWA-
MOF electrostatic interactions during the sim-
ulations. First, a subset of 1 275 MOFs were
excluded because they exhibited pore limiting
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diameters too narrow (lower than 3.72 Å) to
accomodate CWA molecules. Second, the au-
thors simulated adsorption of the CWAs and
their surrogates in the 1 647 remaining MOFs
at dilute conditions, computing their Henry
coefficients and isosteric heats of adsorption
via Widom insertions. The heats of adsorp-
tion of the authentic CSW and its surrogate
were reasonably correlated for mustard gas and
its surrogate diethyl sulfide (DES), but less
so for sarin and somin and their surrogates.
MOFs displaying the highest Henry coefficients
of CWAs tended to harbor a largest cavity di-
ameter of around 5 Å. Next, to account for
competitive adsorption of water from the en-
vironment, Matito-Martos et al. computed the
Henry coefficients of water in each MOF, then
shortlisted 156 hydrophobic structures display-
ing Henry coefficients and heats of adsorption
lower than hydrophobic ZIF-8.264 In the short-
list of hydrophobic MOFs, the authors ran
(more expensive) GCMC simulations of mus-
tard gas and nerve agents sarin and soman at
13.8Pa and 0.6Pa, respectively, an estimate of
the lethal concentrations. Of eight MOFs pre-
dicted to exhibit the largest sarin, soman, and
mustard gas uptakes (the three were strongly
correlated), they selected Ni3(BTP)2 (CSD re-
fcode: UTEWOG; see Fig. 11a) for experimen-
tal synthesis and column breakthrough experi-
ments on the basis of its reported thermal and
chemical stability.265 The authors conducted a
column breakthrough experiment with 150mg
Ni3(BTP)2, flowing nitrogen gas with 80% rela-
tive humidity (water) and 1 ppm diethyl sulfide
(DES, a mustard gas surrogate) through the
column at room temperature and 20mL/min
and measuring the composition of DES at the
exit of the column with a gas chromatograph.
Fig. 11c shows that Ni3(BTP)2 readily cap-
tured DES for more than 7 hours, at which
point the MOF became saturated with DES,
and DES broke through the column. The con-
centration of DES in the eluted gas (before
saturation) was only 0.05 ppm, mimicking the
mustard gas concentration that would be in-
haled if Ni3(BTP)2 were a filter in a gas mask
within an environment of 1 ppm mustard gas
and 80% relative humidity. Further, adsorp-

tion in Ni3(BTP)2 was reversible; thermogravi-
metric analysis and temperature programmed
desorption indicated water was desorbed at a
lower temperature than for DES, proving that
the framework is selective for DES over wa-
ter. In summary, Matito-Martos et al. compu-
tationally pinpointed Ni3(BTP)2 as readily ad-
sorbing mustard gas in the presence of humid-
ity and demonstrated capture of its surrogate
molecule DES through column breakthrough
experiments.

(a)

(b) (c)

Figure 11: Computational identification of
Ni3(BTP)2 for chemical warfare agent cap-
ture.263 (a) The structure of Ni3(BTP)2 (CSD
refcode: UTEWOG). (b) Mustard gas and its
surrogate diethyl sulfide (DES). (c) DES break-
through curve. A N2 gas stream with 80%
relative humidity and 1 ppm DES at 298K
is passed, at 20mL/min, through a column
packed with 150mg of Ni3(BTP)2. Shown is a
measurement, via gas chromatography, of nor-
malized DES concentration at the outlet of
the column. Reprinted with permission from
Chem. Mater. 2018, 30, 14, 4571–4579. Copy-
right 2019 American Chemical Society
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6.3 Carbon Dioxide capture

Fossil fuels have been one of the main energy
sources since the 20th century in the United
States266 and are the dominant source of CO2

emissions into the atmosphere worldwide.267

The increasing CO2 concentration in the at-
mosphere is leading to significant changes in
the climate, and the average global tempera-
ture is projected to rise by 2.6 ◦C to 4.8 ◦C by
the end of the 21st century if CO2 emissions are
not mitigated from their current trajectory.268

In the United States, roughly 33% of energy-
related CO2 emissions are directly tied to the
burning of fossil fuels to generate electricity.269

Significant effort is devoted to develop efficient
technologies to capture CO2 from the flue gas
of fossil fuel-fired power plants before it is re-
leased into the atmosphere (post-combustion
capture). The captured CO2 can then be se-
questered in a geological reservoir.270 The tech-
nology currently used to capture CO2, such
as absorbing CO2 with aqueous alkanolamine
absorbents, has not proven to be energy effi-
cient and would reduce energy output of power
plants by ca. 30%.271 The energy penalty is
mainly due to the high cost regenerating the
amine solvent used to capture the CO2.

271 A
more recent development sees MOFs selectively
capturing CO2 from flue gas, which could re-
duce the energy penalty significantly.272 The re-
moval of CO2 from the flue gas is called post-
combustion carbon capture. An alternative is
to capture CO2 prior to fuel combustion, i.e.,
a pre-combustion strategy. Instead of directly
burning natural gas to produce electricity, nat-
ural gas and steam are converted, in the pres-
ence of a catalyst, to H2 and CO (steam re-
forming). The CO is then reacted with water
(water-gas shift reaction) to produce CO2 and
H2. CO2 can then be separated from H2 (rather
than from the flue gases) and sequestered, and
the pure H2 can be burned to produce elec-
tricity (without CO2 emissions). An advantage
to employing MOFs for pre-combustion carbon
capture is that the CO2/H2 mixture is at high
pressure already, and a pressure swing down to
atmospheric pressure can readily push CO2 out
and regenerate the MOF.

NOTT-101/OEt Chung et al.114 used a ge-
netic algorithm to find a performant MOF for
pre-combustion CO2 capture. To apply genetic
algorithms to search for MOFs with good se-
lectivity for CO2 over H2 and a high CO2 us-
able capacity, Chung et al. explored the hy-
pothetical MOF (hMOF) database by Wilmer
et al.213 The database contains some duplicate
“twin” structures, so the database was reduced
from 130 000 to ≈ 55 000 structures. The ge-
netic representation of each hMOF consisted
of a set of six integers representing the maxi-
mum and actual degree of interpenetration and
the species of the inorganic node, organic link-
ers, and the appended functional group (see
Fig. 12a). In a genetic algorithm, the series
of integers is called a chromosome, and each in-
teger within the chromosome is called a gene.
A genetic algorithm compares fitness between
different chromosomes, where the fitness is a
property of the chromosomes that we seek to
optimize. The chromosomes with higher fit-
ness are allowed to advance to the next genera-
tion and are then allowed to undergo genetic
changes, such as a random change in one of
their genes (mutation) or a gene swap between
two chromosomes (crossover). This process re-
peats, allowing the chromosomes to “evolve”.
Eventually, the genetic algorithm creates a gen-
eration that optimizes the fitness function.273

All hMOFs were described by a chromosome
and a subset of 100 diverse hMOF chromo-
somes were chosen for the initial generation.
Three genetic algorithms were initiated, each
with a different adsorption property serving as
the fitness: CO2 usable capacity, selectivity for
CO2 over H2, and an adsorbent performance
score (APS), a product of the two aforemen-
tioned properties. The genetic algorithms were
run for 10 generations, at which point Chung
et al. analyzed the MOFs in the last genera-
tions and found that only a few organic linker
genes and inorganic node genes were repre-
sented (see Fig. 12b), meaning that those genes
led to higher fitness throughout the evolution-
ary stages of the genetic algorithm. These genes
were used to obtain a preliminary list of MOFs
that exhibited both good selectivity for CO2

over H2, a high CO2 usable capacity, and APS
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(see Fig. 12c). Because of its high fitness, as
well as previous experience in MOF synthe-
sis, Chung et al. synthesized NOTT-101/OEt
and measured both CO2 and H2 adsorption
isotherms (see Fig. 12d). Good agreement
was found with simulated isotherms. NOTT-
101/OEt had a usable capacity of 3.8 mmol/g
and a CO2/H2 selectivity of 60. Compara-
tively, other notable MOFs studied for CO2/H2

separations in pre-combustion are Mg-MOF-74,
with a 2.6mmol/g usable capacity and a 365
CO2/H2 selectivity,274 and Cu-BTTri, with a
3.7mmol/g usable capacity and a 20 CO2/H2

selectivity.275

Selectivity and usable capacity, however, are
based on the equilibrium adsorption isotherms
and do not consider process objectives, such
as required purity and recovery. To check if
there exists a certain “threshold” selectivity
to achieve the hydrogen purity requirement of
99.999% for combustion, Chung et al. carried
out a series of pressure-swing adsorption (PSA)
simulations to find the lower limit of CO2/H2

selectivity. They found that, for precombus-
tion CO2/H2 separation, the CO2/H2 selectiv-
ity of the material needs to be greater than 30
to meet the process objective of 99.999% H2 pu-
rity. On the basis of process modeling, Chung
et al. concluded that, while NOTT-101/OEth
meets the process requirement, another porous
material, Cu-BTTri, cannot be used for pre-
combustion carbon capture application because
the CO2/H2 selectivity is not high enough to
generate the high purity H2 stream required for
subsequent energy generation.

6.3.1 Xylene enrichment

Mixtures of ortho-, para-, and meta-xylene and
ethylbenzene (C8 aromatics) are obtained from
the catalytic reforming of crude oil.276,277 The
p-xylene isomer is the most valuable compo-
nent of the C8 aromatic mixture. It is oxidized
to yield terephthalic acid or dimethyl tereph-
thalate, both feedstocks for the production of
polyethylene terephthalate (PET),276 which is
widely used for synthetic fibers (polyester) and
bottles.245 Pure o-xylene is also valuable to syn-
thesize phthalic anhydride, a precursor for pro-

duction of plasticizers.276 However, mixtures of
C8 aromatics are very challenging to separate
because of their similar shapes, boiling points,
and polarities.278 The two incumbent indus-
trial processes to separate C8 aromatic mixtures
are crystallization and, more often, selective
adsorption onto a solid-state material.276,277,279

MOFs are promising adsorbent materials for
separating C8 aromatics more effectively than
zeolites, which are currently used in a simu-
lated moving bed process to obtain high-purity
p-xylene.280

MOF-48 Gee et al.281 conducted multi-
component GCMC simulations of adsorption
in the CoRE MOFs immersed in a 1:3:6:3
ethylbenzene/o-X/m-X/p-X (X=xylene) mix-
ture at 9 bar and 50 ◦C (conditions for liquid
phase). Among the CoRE MOFs with the high-
est predicted selectivity for and capacity of p-
xylene, Gee et al. selected MIL-140B, MOF-48,
MIL-47, and MIL-125-NH2 to target for ex-
perimental investigation after also considering
chemical and thermal stability and the com-
mercial availability of their linkers and metals.
Liquid-phase breakthrough adsorption mea-
surements then tested the capability of each
MIL-140B, MOF-48, and MIL-125-NH2 to sep-
arate p-xylene. Of these, MIL-140B exhibited
the highest breakthrough p-xylene selectivi-
ties (1.8 over o-xylene, 1.6 over m-xylene, and
2.1 over ethylbenzene). The authors claim
that their column breakthrough experiments
indicated MIL-140B exhibits a higher p-xylene
selectivity than zeolite BaX currently used in
industry, but their breakthrough experiment
for BaX was conducted at 180 ◦C compared
to 50 ◦C for MIL-140B. Interestingly, though
MOF-48 and MIL-47 differ only by a dimethyl-
functionalization, MOF-48 exhibits p-xylene
selectivity while MIL-47 exhibits o-xylene se-
lectivity, emphasizing that subtle distinctions
in pore features can lead to selectivity switching
for these similarly-shaped C8 aromatic isomers.

A lesson from machine learning

The field of machine learning aims to
leverage data to train mathematical models
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Figure 12: The discovery of NOTT-101/OEt was guided using a genetic algorithm in conjunc-
tion with molecular simulations to evaluate fitness.114 (a) A chromosome describes a MOF struc-
ture with 6 integers (called genes), each representing a different property of the MOF. The
chromosomes define a chemical space that will be explored in the genetic algorithm. (b) A
visualization of the evolution of the primary organic linker gene throughout the genetic algo-
rithm using the adsorption performance score as the fitness. After 10 generations, only 3 genes
are predominantly contained within the chromosomes, hinting that these linkers are optimal for
CO2 capture. (c) The simulated adsorption properties of the MOFs from the genetic algorithm
search. Each point represents a hypothetical MOF that appeared/evolved in the genetic al-
gorithm. NOTT-101/OEt is marked. (d) A comparison between simulated and experimental
isotherms for NOTT-101/OEt. The experimental isotherms were scaled to take into account
the 92% pore activation of the synthesized NOTT-101/OEt sample. The inset shows the struc-
ture of NOTT-101/OEt with pores represented by dark spheres. Figure from Sci. Adv., 2016,
2, 10, e1600909, under Creative Commons Attribution-NonCommercial 4.0 International License
https://creativecommons.org/licenses/by-nc/4.0/.

or algorithms to perform a task. For ex-
ample, instead of explicitly programming a
computer to translate speech, identify and
classify traffic signs, detect fraudulent fi-
nancial transactions, and recommend mu-
sic, a machine learning algorithm/statistical

model is tuned to perform these tasks af-
ter taking in many examples (data) as in-
put. As more data is used to train the ma-
chine learning model, it generally performs
the task more effectively, though with dimin-
ishing returns.
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The development of the field of machine
learning has benefited dramatically from
large, open data sets that serve as arenas
for machine learning models and methods.
These open data sets (i) standardize bench-
marking and comparison of models, (ii) re-
veal insights into the inner-workings and
deficiencies of different learning algorithms
based on their mistakes while performing in-
tuitive tasks, (iii) foster competition, and
(iv) stimulate the development of better-
performing methods.

As an example, the open MNIST data set
of handwritten digits282 contains ca. 70 000
labeled, binary images of handwritten dig-
its 0, 1, ..., 9. The MNIST data set is par-
titioned into training and testing sets to
provide a widely-used, standard benchmark
for classification algorithms. Developments
in machine learning algorithms have led to
highly accurate handwritten digit classifiers
(0.21% error283). As a more challenging
arena, CIFAR-10 and -100284 data sets each
consist of 60 000 colored, labeled images and
contain more complicated classes such as
frogs, dogs, airplanes, etc.

To directly generate interest and de-
velop new supervised machine learning mod-
els and methods, open challenges are held
(sometimes prized), where a labeled data set
is publicly released for training a model. To
rank competitors, a testing data set, where
labels are withheld (i.e., the data set has
only independent variables), is also released.
Teams submit the test set labels predicted
by their trained model, and a leaderboard
ranks teams according to an evaluation met-
ric e.g., accuracy.

For example, Netflix in 2006 released rat-
ings by ca. 480 000 subscribers on ca. 18 000
movies, comprising ca. 100 million movie
ratings from 1 to 5.285 Three million ratings
(by the same set of subscribers, on the same
set of movies) were withheld as test data.
In 2009, a $1 million prize was awarded to
the team that improved upon the incum-
bent algorithm of Netflix, Cinematch, by
decreasing the root mean square error be-
tween predicted and actual ratings on the
test set by 10%. Both the release of the rat-
ings data and the competition generated in-

terest in recommendation systems, spurred
the sharing of ideas between groups, and led
to advances in recommendation algorithms
(which were disseminated).286,287 Koren,288

a member of the team that won the Netflix
Prize, noted “a clear spike in related publi-
cations, and the Netflix dataset is the direct
catalyst to developing some of the better al-
gorithms known in the field”. He noted that
the teams exhibited a collaborative spirit:
“the feeling was of a big community pro-
gressing together”.

As another example, the ImageNet Large
Scale Visual Recognition Challenge is an an-
nual, ongoing challenge since 2010, and it
has spurred innovation in object recognition
and detection in images.289 ImageNET is a
crowdsource-annotated database of millions
of images with hundreds of object categories.
An annual workshop is held at the end of the
year to disseminate and discuss the most in-
novative and successful approaches.289

Within the realm of materials sci-
ence, to spur developments and track
progress in crystal structure prediction,290

the CCDC holds a challenge to predict crys-
tal structures of molecules.291 To spur force
field development, we envisage holding an
open challenge to predict the adsorption
isotherms of different gases in MOF struc-
tures (holding the experimental MOF ad-
sorption data secret).

7 NIST Resources for Ad-

sorption Measurements

In 2014, the National Institute of Standards
and Technology (NIST) officially launched a
program devoted to adsorption science, with
two main aspects: a measurement laboratory
named the NIST Facility for Adsorbent Char-
acterization and Testing (FACT)292 and an ad-
sorption data repository. The purpose of the
FACT laboratory is to support programs re-
lated to research, development, and engineer-
ing of adsorbent materials by developing test-
ing procedures, disseminating reference mea-
surements, and providing impartial testing and
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characterization of adsorbent materials. A no-
table accomplishment of the FACT is the dis-
semination of a reference carbon dioxide ad-
sorption isotherm on a NIST Reference Mate-
rial, NIST RM-8852 (an Ammonium ZSM-5 ze-
olite), which was developed via an interlabora-
tory study.293 With an emphasis on develop-
ment and dissemination of standard methods
and measurements, measurement outputs of the
FACT may prove useful as reference points for
validation of laboratory measurements or as ref-
erence properties for future modeling efforts.
The data component of NIST’s efforts

was released in 2014 as a free, web-based
database of adsorption experiments, including
measured adsorption isotherms, entitled the
NIST/ARPA-E Database of Novel and Emerg-
ing Adsorbent Materials294 (NIST-ISODB)††.
The initial iteration of the database included
a list of previously-published journal articles
that describe adsorption experiments (with a
broad definition of “experiments,” including
molecular simulations, ab initio simulations,
model-based approaches, etc.) with tagged
metadata describing experimental parameters
such as the adsorbent material, adsorptive gas,
measurement temperatures, and pressure range
among other descriptors. The data contents
of NIST-ISODB were to be from two ma-
jor sources: the open scientific literature and
measurements from the FACT laboratory it-
self. The initial contents of the database tar-
geted materials in the MOF family, though it
also included carbon materials, zeolites, and
other common porous adsorbents. Adsorp-
tion isotherms present in the journal articles
that compose database entries were converted
from the source graphical or tabular form in
the article to a format compatible with NIST-
ISODB, which could then be accessed either
by displaying the isotherm graphically in the
NIST-ISODB web application (cf. Fig. 13) or
by downloading a structured data file from
NIST-ISODB. Furthermore, the NIST-ISODB
web application was and is capable of plotting
multiple isotherms, from the same or differ-
ent source articles, simultaneously, allowing

††https://adsorption.nist.gov/isodb

for online comparison of isotherms; simultane-
ous plotting of isotherms for the same adsor-
bent/adsorptive/temperature combination en-
ables a sort-of “virtual interlaboratory study”
of the particular adsorption experiment. The
NIST-ISODB has steadily grown to over 3 500
articles and more than 30 000 isotherms as of
publication of the present manuscript. Data
additions to the database are chosen either
from the results of string-based searches of the
extant literature or by direct submission of
data by outside laboratories. Other additions
to NIST-ISODB since its 2014 launch include
improved database vocabulary for adsorptive
species (via the InChIKey scheme295) and ad-
sorbent materials (see following paragraph),
an application programming interface (API)
for accessing the database contents (in par-
ticularly, the library of adsorption isotherms),
isotherm fitting tools inside the online isotherm
plotting utility, an ideal adsorbed solution the-
ory (IAST) calculator that integrates with the
API to estimate multicomponent adsorption
equilibrium, and a simple adsorption column
simulator that also uses IAST in conjunction
with the isotherm API functions to estimate
column breakthrough time.
One challenge identified early in the NIST-

ISODB project was that of the naming
scheme(s) for adsorbent materials and MOFs
in particular. In short, there is no stan-
dard method for naming MOFs and, per-
haps more critically, a specific MOF may go
by multiple names, easily leading to confu-
sion for novices and experts alike. For ex-
ample, the material named HKUST-1 in the
disclosure of its initial synthesis16 is now more
commonly known as CuBTC (short for cop-
per benzene-1,3,5-tricarboxylate), but is also
known as MOF-199296 and is sold by BASF
under the name BasoliteTM C300.297 Multi-
plicity of names, such as for CuBTC, hinders
effective searches in NIST-ISODB. To solve
this problem, the NIST Registry of Adsorbent
Materials298 (NIST-MATDB)‡‡ was released in
2017 as a companion to NIST-ISODB. The
overarching purpose of NIST-MATDB is to

‡‡https://adsorption.nist.gov/matdb
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Figure 13: Screenshot of an article entry293 available in the NIST-ISODB, selected from results
of a search using “NH4-ZSM-5” as the adsorbent material and “carbon dioxide” as the adsorbate
gas. Metadata about the experiments described in the article are shown in the upper half of the
screenshot. The isotherm visualization widget shows four separate isotherms from the source article
plotted together.
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identify adsorbent materials via unique iden-
tifiers (based on SHA-256 cryptographic hash
digests) that cross-references the names that
have been or will be applied to those materials.
Additionally, the NIST-MATDB provides for
association of external resources to the unique
identifiers, allowing, for example, association
of a CSD entry with an adsorbent material in
the NIST-MATDB. As for the NIST-ISODB,
the contents of NIST-MATDB are accessible
via both a web application and an API. Ad-
ditionally, the NIST-ISODB was reconfigured
to rely on NIST-MATDB for resolution of ad-
sorbent material names. Lastly, the NIST-
MATDB web application includes a feedback
tool by which the user community can provide
corrections, metadata improvements, and ad-
ditions to the registry. The intention is that,
via crowd-sourcing and followup auditing by
subject matter experts, the registry will be im-
proved using the collective knowledge of the
adsorbent materials, synthetic chemistry, and
crystallography communities.
The availability of both the NIST-ISODB

and NIST-MATDB provide a large quantity
of freely-accessible data on adsorbents and ad-
sorption experiments that can be leveraged for
computationally-driven approaches to material
development and refinement, e.g., through val-
idation of molecular simulations and bench-
marking of force fields. Additionally, the
APIs of both databases provide platforms for
automated exploitation of the open datasets
through either straightforward data mining
or more opaque machine-learning approaches.
For example, Park et al. used the NIST-
ISODB API to investigate the reproducibility of
experimentally-measured adsorption isotherms
and reported the perhaps not surprising, but
certainly concerning, conclusion that few exper-
imental adsorption isotherm experiments (e.g.,
for carbon dioxide adsorptive, perhaps only 15
MOFs out of thousands) can be clearly iden-
tified as reproducible based on literature data
in the NIST-ISODB.299 For example, Fig. 14
shows the authors’ compilation of isotherms of
carbon dioxide adsorption in HKUST-1 near
298K from the NIST-ISODB, which provides
graphical indication of the variability present

in reported experimental isotherms. Addition-
ally, Fig. 15 graphically summarizes their re-
sults, relating reproducibility of experimental
isotherms to consistency while also indicating
the number of independent isotherms avail-
able and the outlier types. One can envi-
sion other relatively straightforward uses for
the NIST-ISODB dataset by identifying spe-
cific materials or families of materials that could
then be reevaluated or evolved via computa-
tional approaches to achieve specific perfor-
mance objectives. As one example, the NIST-
ISODB isotherms could be data mined to search
for candidate adsorbents for chemical separa-
tions by applying a theory such as IAST to
suitable isotherms in the database. (Such a
use is already envisioned via example tools in
the NIST-ISODB application that integrate its
isotherm API functions with the pyIAST soft-
ware package.300,301) Similarly, integration of
NIST-ISODB and NIST-MATDB with chemi-
cal insight into adsorbents (e.g., via the CSD)
could be leveraged to identify families of MOFs
that could be the starting point for computa-
tional material evolution toward specific per-
formance metrics via genetic algorithm-driven
mutation of those MOF coupled with compu-
tational evaluation of the offspring materials
for various material properties and adsorption
characteristics. Such approaches are similar in
principal to the computational screening of the
hMOFs set by Snurr and co-workers,213,302,303

though with experimental adsorption isotherm
data as a starting point.
Another opportunity for computation-driven

materials development based on the NIST-
ISODB is in force field tuning and develop-
ment, an ongoing need that we discuss further
in Sec. 9.2. The isotherm dataset of NIST-
ISODB could serve as a massive training set
for the development of force fields specifically
for adsorptive fluids confined in MOFs and
other adsorbent materials. In fact, one can
argue that there is a strong analogy with the
machine learning competitions mentioned ear-
lier: the large, freely available datasets can pro-
mote the development of standards for bench-
marking force fields (e.g., resultant force fields
must satisfy essential performance metrics) and
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Figure 14: On the reproducibility of CO2 adsorption isotherms in HKUST-1.299 (a) Experimental
isotherms of carbon dioxide adsorption in HKUST-1 at temperatures of 298K ± 5K, as collected
and organized by Park et al.299 from the NIST-ISODB, to show the variability of laboratory mea-
surements for that particular adsorption experiment. (b) Box-and-whisker plot created from 13
(out of 18) non-outlier isotherms in panel (a). Boxes represent the upper and lower quartile, the
median is indicated by the straight line, and the small square is the mean. Whiskers represent
1.5 times the interquartile range. Reprinted with permission from Chem. Mater. 2017, 29, 24,
10487–10495. Copyright 2017 American Chemical Society.

then open competitions can drive progress in
molecular modeling. Such competitions could
be based on the provision of limited train-
ing data from the NIST-ISODB and require-
ments to predict isotherms for specific adsorp-
tive/adsorbent/temperature combinations. A
competition along these lines could be ongo-
ing, with a regularly or continuously updated
leaderboard ranking the submitted isotherms.
Competitions of this type would be similar
to the Industrial Fluid Properties Simulation
Challenge (IFPSC)304 (nine editions to date),
in which challenge entrants computationally
predict some thermophysical property based on
limited experimental measurements on which
to tune their simulations or other predictive
method. For example, the 2012 and 2014 IF-
PSC competitions305–308 involved prediction of
adsorption isotherms for perfluorohexane ad-
sorption on zeolite and activated carbon adsor-
bents, respectively, with only simple isotherms
(Nitrogen and/or Argon), pore-size distribu-
tion, and other structural characteristics as
training data. Lastly, force field development

and competitions based on open data resources
like those from NIST may also adopt work-
flow practices similar to “continuous integra-
tion” (CI) that is widely used in software engi-
neering. Given some guiding parameters (e.g.,
training force fields for a particular material
class against a specified set of adsorbates), a CI
workflow could monitor a database of adsorp-
tion isotherms, retrain a force field whenever
new data that fits the training specification is
available, and then re-run simulations to pre-
dict material and adsorption characteristics for
cases outside the training set.
The introduction of open data resources for

adsorption has also revealed opportunities and
challenges that stem from a lack of standardiza-
tion among researchers of adsorption and mate-
rial scientists beyond that of naming adsorbent
materials. (We note that one of the goals of the
FACT laboratory at NIST is to develop and dis-
seminate best practices for adsorption measure-
ments, which addresses this point in part.) One
specific issue is the difficulty encountered in
comparing isotherms from different laboratories
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Figure 15: Graphical summary of reproducibility and consistency results from Park et al. for
adsorption isotherms of carbon dioxide on various MOFs.299 On the x-axis, reproducibility increases
(according to Park et al.’s metrics) from left to right. Font size is indicative of the number of
independent isotherms available for the noted material and bolding/italicization identifies outlier
levels. The reader may consult Ref. 299 for full description of the reproducibility level, consistency
rating, and outlier levels. Reprinted with permission from Chem. Mater. 2017, 29, 24, 10487–10495.
Copyright 2017 American Chemical Society.

when the adsorption measurand is presented
in different units. NIST-ISODB reports more
than 60 unique, non-reducible types of adsorp-
tion units, including mmol/g (millimoles of ad-
sorbate per gram of adsorbent), the volumetric
units cm3(STP)/g (cubic centimeters of adsor-
bate gas at standard temperature and pressure
(STP) conditions per gram of adsorbent), frac-
tional units such as weight-percent, units nor-
malized by surface area, or mass or mole units
per unit cell, to name only a few.294 Each type
of units has its own advantages and particular
uses, but conversion to a different unit type of-
ten requires extra information that may not be
present in a manuscript describing an adsorp-
tion experiment or simulation (e.g., unit cell di-
mensions, bulk density, etc.). A broader issue
in the area of standardization involves descrip-

tion of adsorption experiments, the quantities
that are actually measured, and the clear pre-
sentation of both. For example, experimental
isotherms are typically presented as excess ad-
sorption isotherms,167,309 but rarely described
explicitly as such. Conversely, isotherms ob-
tained from molecular simulations are usually
absolute adsorption isotherms.167 Other exam-
ples of lack of description of adsorption experi-
ments include poor identification of the adsor-
bent material and, in the case of multicompo-
nent adsorption, poor or incomplete description
of the adsorptive gas composition. To address
some of these concerns, NIST developed an
isotherm data file based on the JavaScript Ob-
ject Notation (JSON) standard to contain both
the isotherm data and experimental metadata,
and the NIST-ISODB API serves isotherm data
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in this format (cf. Ref. 310). It is similar in prin-
ciple to the Crystallographic Information File
(CIF) developed and promoted by the Inter-
national Crystallography Union311,312 for repre-
senting periodic crystal structures. For the sake
of experimental/simulation reproducibility and
ease of data re-use, we strongly encourage the
MOF and adsorption modeling communities to
firstly describe their experimental/simulation
setup with sufficient detail to enable reproduc-
tion by other groups, to adopt conventions that
provide clarity in data representation and in-
terpretation, and perhaps utilize common data
formats like the JSON isotherm file.

8 Discussion

In Sec. 6, we surveyed instances of the com-
putational identification of performant MOFs
for hydrogen, methane, and oxygen storage,
carbon dioxide, xenon, and nerve agent cap-
ture, and xylene enrichment. The computa-
tional identifications of many of these near-term
MOFs for adsorption-based engineering appli-
cations were often predicated on a database of
open , computation-ready, experimental MOF
crystal structures.9,10 There are striking paral-
lels here with molecular biology and machine
learning (the “hypothesis-free science” that en-
abled the discovery of CRISPR119) and large,
open datasets that spurred developments in rec-
ommendation algorithms286 and computer vi-
sion.289 We anticipate the open NIST databases
of adsorption isotherm measurements will spur
further advances in force field development, by
taking advantage of the large sets of isotherms
available as training data and through the de-
velopment of standard benchmarking targets
and common data formats that facilitate com-
parison between groups worldwide.
High-throughput computational screening

techniques are not unique to the domain of
nanoporous materials.313,314 High-throughput,
first principles calculations have propelled the
discovery of organic light-emitting diodes,315 Li
battery materials,316 organic solar cell materi-
als,317 and catalysts.318–320 The field of drug
discovery has long adopted principles of high-

throughput computational screening and chem-
informatics.321,322

In addition to open databases of crystal struc-
tures, open data on (even failed) MOF synthesis
experiments could also help the MOF commu-
nity. Finding the optimal synthesis conditions
(solvent, temperature, reaction time) to yield
a high-quality (e.g., high surface area) MOF
crystal can be difficult and time-consuming.11

Moosavi et al.20 showed that machines can
learn from failed attempts to synthesize a MOF,
automatically altering the synthesis conditions
towards those yielding a higher-quality crystal.
While we focus on computation-driven MOF

discovery, we do not discount the chemical intu-
ition of experimental MOF chemists that often
results in successful, rational design of a MOF
selective for a particular gas. First, one can
graft functional groups onto the surface or use
metals that are known to attract (e.g., amine
functionalization to target CO2,

323 open tran-
sition metal sites to target ethylene324) or ex-
clude (e.g., functionalization with hydrophobic
alkyl chains to exclude water325) certain adsor-
bates. Second, one can gauge the length of the
linker required to manifest in a pore size ac-
commodating of and commensurate with the
target adsorbate.12 However, MOFs often ex-
hibit complicated pore geometries, which, from
the perspective of a configurational integral in
a partition function,65 dictate the ensemble of
configurations of the adsorbate(s) within the
pores and the energetics of its interactions with
the pore walls; subtle differences in pore ge-
ometry can have large effects on adsorption
when the pore size is commensurate with the
molecule.281 Also, interactions with e.g., coor-
dinatively unsaturated metal sites in MOFs are
difficult to predict.326 Moreover, some MOFs
harbor flexible backbones or rotating/wobbling
constituents189 and undergo structural changes
upon adsorption of gas,327 sometimes involving
delicate competition between entropy and en-
ergy.328 Thus, the rational design of a MOF
to exhibit a desired adsorption property is
very challenging, warranting the use of molecu-
lar models and simulations to carry out high-
throughput computational screenings to ac-
count for these subtle factors through molecular
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models.
Finally, in addition to open databases of crys-

tal structures, we reinforce that releasing com-
puter codes and/or input files is imperative for
reproducibility and efficient progress. See the
review of Coudert,329 who predicts that the
phrase “data available upon request” will be-
come obsolete.

9 Orienting the field

We now opine the most important future re-
search directions to routinely identify a set
of MOFs with optimal adsorption proper-
ties for an engineering application via high-
throughput computational screening; the list
of computationally-identified MOFs in Sec. 6
could be longer. Rigorously, the survey in Sec. 6
only indicates a degree of statistical signal in
the rankings predicted in high-throughput com-
putational screenings; there could be many false
negatives in the studies in Sec. 6. Moreover,
there could be under-reporting of experimen-
tal followups to computational predictions that
failed to agree.
In a computational MOF utopia, all MOFs

are rigid, perfect crystals lacking defects, and
the molecular models accurately and cheaply
describe potential energies. Future research di-
rections are based on leaving behind the pre-
sumption of a computational MOF utopia.

9.1 Treating MOF flexibility

MOFs are typically treated as rigid in high-
throughput computational screenings owing to
(a) the exorbitant cost to sample configura-
tions of the MOF and compute intrahost en-
ergies and (b) the lack of an accurate force
field that covers all coordination environments
found in MOFs. Often, treating the MOF as a
rigid “host” is an adequate approximation.330

Some MOFs however, are known to have flex-
ible backbones331 or constituents (e.g., rotat-
ing ligands332,333) that adopt different ensem-
bles of configurations depending on tempera-
ture, the amount of adsorbed gas, and the me-
chanical stress imposed on the framework; the

flexible modes of a MOF can dramatically in-
fluence adsorption.189,327 Even small pore size
fluctuations can be important when the (aver-
age) pore size is commensurate with the size of
the adsorbate.334 Therefore, we opine that ac-
counting for MOF flexibility in high-throughput
computational screenings is a significant next
step to more accurately predict gas adsorption
properties. This requires the development of
(i) accurate intrahost force fields for MOFs,
which is underway,52,53,55,56,188 (ii) efficient algo-
rithms to sample MOF configurations, also un-
derway,57 and (iii) increasing computing power.
Recently, to search for MOFs that exhibit neg-
ative gas adsorption, Krause et al.335 used DFT
to compute stress-strain relationships for linker
molecules that buckle under stress. After as-
sembling structural models with these linkers,
the authors used classical force fields to com-
pute the intrahost free energy as a function of
the unit cell volume. Bistability of the intrahost
free energy suggested the potential for negative
gas adsorption336 and helped inspire the discov-
ery of DUT-50, a new material (though isoretic-
ular to DUT-49337) that exhibits negative gas
adsorption.

9.2 Developing more accurate
force fields

Arguably, the most important future research
direction lies in the development of accurate
classical force fields (molecular models). Given
an accurate many-body potential energy de-
scription of the MOF and adsorbed gas sys-
tem, the equilibrium adsorption properties fol-
low from Monte Carlo simulations of a statisti-
cal mechanical ensemble.48,65 Owing to the ex-
orbitant computation required for first princi-
ples calculations of the potential energy of a
single MOF-gas configuration, it is often im-
practical to conduct a GCMC simulation of gas
adsorption in a MOF using a first principles de-
scription of the potential energy§§. As a conse-

§§Though, notably, DFT calculations were used as an
energetic description of small gas molecules in MOF-74
to compute Henry coefficients via Widom insertions338

by biasing the samples towards low-energy regions. Sim-
ilarly, Fetisov et al.339 conducted first principle Monte
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quence, simulations typically employ classical
interatomic potentials to model the potential
energy of an atomic system, whose parameters
are tuned to reproduce experimental data or
ab initio calculations. These cheaply-computed
potentials enable the simulation of gas in a large
number of MOFs but usually incur a loss in
accuracy compared to ab initio methods, par-
ticularly when transferred to a system different
from which they were tuned.

9.2.1 Van der Waals interactions

Off-the-shelf, generic force fields such as the
UFF,28 DREIDING,29 AMBER,341 OPLS,342

etc. are typically employed to describe van der
Waals interactions for high-throughput screen-
ing McDaniel et al.343 systematically compared
predictions of CO2 and CH4 adsorption in 424
MOFs among UFF and an ab initio force field
[based on symmetry-adapted perturbation the-
ory (SAPT)344]; predicted adsorption often dif-
fered significantly between the generic and ab
initio force field, but the statistics of the rank-
ing of the MOFs according to adsorption was
good (Spearman’s rank correlation coefficient
squared for CH4 and CO2 ranges from 0.81
to 0.98, considering uptake at both 1 bar and
30 bar and 298K). The later finding, though
specific to CO2 and CH4, emphasizes that
high-throughput computational screenings us-
ing generic force fields may rank materials with
sufficient statistics but not quantitatively pre-
dict adsorption in each MOF satisfactorily. To
an extent reducing the importance of generic
force field choice, Dokur et al.345 showed that
simulated CO2, H2, N2, and CH4 uptakes in
100 MOFs with UFF are well-correlated with
those using DREIDING (binary gas mixtures
at 1 bar, 298K).
Still, predictions of adsorption using generic

force fields are often not satisfactorily accu-

Carlo simulations of CO2, N2, and H2O adsorption in
Mg-MOF-74. To avoid wastefully devoting DFT calcu-
lations to high-energy trial configurations, the authors
employed (i) a configurational-bias Monte Carlo algo-
rithm and (ii) a cheaper, approximate potential for pre-
sampling configurations. Chen et al.340 simulated CH4

adsorption in CuBTC using ab initio calculations on a
grid to characterize the CuBTC-CH4 interaction.

rate, and significant research efforts should be
devoted to the development of accurate and
transferable force fields for predicting adsorp-
tion in MOFs. A flagship failure of generic force
fields is in accurately modeling the interaction
of some adsorbates with coordinatively unsat-
urated/open metal sites in MOFs33,45 because
they were not tuned to represent interactions in
these environments involving complicated elec-
tronic interactions such as π-complexes.34,35 For
example, Mercado et al.46 found that simulated
adsorption of CO2 and CH4 in M-MOF-74 (M
= Mg, Fe, Co, Ni, Zn) using UFF exhibits
very poor agreement with experiment owing
to the presence of open metal sites. On the
basis of periodic DFT calculations of the en-
ergy of the adsorbate at judiciously placed po-
sitions in the pores, they derived a force field
for CO2, CH4, and H2O in the M-MOF-74 fam-
ily, which yielded a more accurate prediction of
the adsorption isotherm. Fetisov et al.339 con-
ducted first principles Monte Carlo simulations
of CO2, N2, and H2O adsorption in Mg-MOF-74
and achieved good agreement with the experi-
mentally reported adsorption isotherms with-
out the manual effort of tuning a force field,
but at a large computational expense. Because
unsaturated metal sites sometimes provide the
strongest adsorption sites in a MOF,201 a lofty
goal is to develop a generic (across e.g., metal
paddlewheels in MOFs) force field for interac-
tions of adsorbates with unsaturated metals.47

Aside from unsaturated metals, still predictions
of adsorption via generic force fields are often
unsatisfactory. For example, though SBMOF-
1 was correctly predicted by the simulations to
be a highly-ranked material for Xe/Kr separa-
tions (see Fig. 10), the predicted Xe and Kr
adsorption isotherms deviate significantly from
the experiment (see Supplementary Figure 22
in Ref. 253).
A more radical idea is to abandon efforts to

develop a generic, transferable force field and,
instead, fine-tune/tailor a force field to each
MOF in an automated manner. Considerable
effort is currently spent on force field develop-
ment for a single adsorbate in a single MOF.45

However, automatic routines that judiciously
sample positions of adsorbates in the MOF for
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ab initio calculations could then be used to cor-
rect a prior assumption about the force field,
e.g., a generic force field description. Develop-
ment of such automatic force field tuners would
result in more accurate high-throughput com-
putational screenings of MOFs with minimal
human intervention.
Another important and related direction in

force field development is to leverage machine
learning models as force fields, trained on data
obtained from ab initio calculations, e.g., neu-
ral network force fields346–349 and Gaussian Ap-
proximation Potentials.350 Typically in force
field development, a strict functional form for
the interatomic potential is chosen, at least
partially motivated by physics (e.g., Lennard
Jones, Buckingham potentials). If the imposed
functional form does not adequately allow the
important physics to be captured, the tuned
force field will be inaccurate. In contrast, deep
neural networks are highly adaptable and ca-
pable of representing highly non-linear poten-
tial energy surfaces351 with minimal human in-
tervention. Therefore, in principle, neural net-
works can accurately reproduce the potential
energy surface governed by ab initio theory but
at a drastically lower computational cost. The
disadvantage of a neural network force field is
that much more data (ab initio calculations)
is needed to train it than for a traditional
force field where a physically motivated func-
tion form is imposed.348 The reason is that the
neural network must learn the shape of the po-
tential energy surface in addition to the quan-
titative details¶¶.
Notably, assessing the accuracy of a force field

via comparison with an experimental adsorp-
tion measurement is complicated because at-
tributing deviations between simulation and ex-

¶¶The following thought experimental clarifies why
more data is needed to fit a neural network to the PES
surface than to fit a traditional force field with an inter-
atomic potential imposed. Assume that the Lennard-
Jones potential is the ground truth for an interaction
between two atoms of A. Then, two independent data
points, i.e., the potential energy at two distances, is
enough to determine the 12-6 Lennard-Jones σ and ǫ.
In contrast, the neural network would need many more
data points to learn the 12-6 scaling with interatomic
distance.

periment to specific causal factors is extremely
difficult. First, there is significant variation in
the experimental adsorption isotherm measure-
ments,299 perhaps owing to varying synthesis
and activation protocols. Second, under the as-
sumption of quality experimental data, several
factors (e.g., neglect of flexibility, poor guest-
host interatomic potential [functional form and
parameters], neglect of polarizability of the ad-
sorbate, etc.) could contribute to poor agree-
ment with the simulation, and it is often diffi-
cult to definitively attribute error to any par-
ticular one of these factors. Ideally, one could
compare force field predictions to several mea-
sured properties (adsorption isotherms at dif-
ferent temperatures, heat of adsorption, vapor-
liquid equilibria of the bulk gas phase, com-
pressibility and thermal expansion coefficient
of the MOF, etc.) when assessing force field
predictiveness and tuning a new force field. A
sensitivity analysis of how force field parame-
ters affect the predictions could shed light on
the most important effects to describe in a par-
ticular MOF-adsorbate system. A standard
and comprehensive methodology to benchmark
both interatomic potentials for van der Waals
interactions and electrostatic potential model-
ing could propel force field development. Such
a methodology should be collaboratively devel-
oped by the relevant user communities and,
consequently, we do not yet suggest specific
criteria for tuning and defining both disper-
sion and electrostatics. However, we can en-
vision a methodology in which a force field is
tuned against a well-defined set of isotherms
(e.g., certain adsorbates and temperatures as-
sociated with conventional material characteri-
zation techniques and conditions352) and, per-
haps, other important material characteristics
such as pore volume, BET area, and (if appro-
priate) pore-size distributions. Furthermore,
this type of methodology can and should lever-
age existing data resources (e.g., NIST-ISODB)
and encourage the collection and distribution
(again, via open data resources) of specific
experimental measurements to facilitate force
field development and consequential accelera-
tion of materials discovery and refinement.
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9.2.2 Electrostatic interactions

The electrostatic potential field within a MOF
is typically described by assigning point charges
to the atoms of the framework. See Ongari et
al.32 for a summary and comparative assess-
ment of the hierarchy of methods to assign these
point charges to MOF atoms. There is signfi-
cant variance among the charges predicted by
the different methods, and predicted adsorption
of adsorbates with polar bonds can be sensitive
to these variations.173

Within the high-throughput screening
paradigm of generating a large library of hy-
pothetical MOF structures and screening them
for their adsorption properties via molecular
models and simulations, developing accurate
and computationally efficient methods to assign
point charges to MOF structures is imperative.
One future direction is to train a machine learn-
ing model to assign reliable charges on MOF
atoms. Towards this, two data-based meth-
ods, the connectivity-based atom contribution
(CBAC) method353 and the molecular building
block-based (MBBB) method354 assign a charge
to a given MOF atom based on its local bond-
ing environment and building block to which it
belongs, respectively. In the CBAC method, an
atom in a MOF with an unknown charge with a
given bonding environment is assigned a charge
equal to the average charge of all atoms with
that bonding environment found in a training
set of MOFs for which charges were assigned by
first principles calculations in conjunction with
the CHELP method.355 In the MBBB method,
charges are first assigned to molecular building
blocks constituting the library of MOFs using
first principles calculations in conjunction with
the CHELP method. Then, when the build-
ing blocks are combined to construct a library
of MOF models, the building blocks in the
assembled MOF inherit the charges from the
isolated building blocks. Both methods require
post-point charge assignment adjustments to
enforce charge neutrality.
An alternative to assigning point charges to

MOF atoms to describe the electrostatic poten-
tial in the MOF is to directly use an electro-
static potential grid obtained from electronic

structure calculations. Such an approach re-
quires more computer memory and disk space
to store the grid but (i) reduces computational
cost to compute electrostatic potential during
a simulation (Ewald sum vs. grid interpola-
tion) and (ii) is more accurate than translating
the electrostatic potential into a set of point
charges.
A daunting challenge is to account for the

change in the electrostatic potential within the
MOF as it flexes or as gas molecules adsorb on
it, transferring charge between the adsorbate
and the MOF. One could envision a protocol
where the point charges on the MOF are up-
dated every time the microstate of the system is
updated during the simulation. This however,
would result in more computational resources
needed for the calculation.

9.3 Treating MOF defects

Molecular simulations of adsorption in MOFs
apply periodic boundary conditions to mimic a
perfect, defect-free, infinite crystal. In practice,
MOFs can exhibit a significant degree of de-
fects and disorder (i.e., non-crystallinity) that
affect their adsorption properties.356,357 A flag-
ship example is UiO-66,358 whose inorganic Zr-
based node is coordinated to 12 benzene-1,4-
dicarboxylate (BDC) ligands to afford a highly
stable structure. UiO-66 can possess a signifi-
cant amount of linker vacancies that can be sys-
tematically tuned by varying the synthesis con-
ditions.359 Both experimental359 and compu-
tational360,361 studies have elucidated how the
linker defects significantly influence adsorption
of CO2 and H2O in UiO-66. Through molecu-
lar modeling, Bristow et al.362 investigated the
mechanism by which linker vacancies form in
UiO-66.
Zhang et al.363 used DFT calculations to as-

sess the thermodynamic stability and kinetic
accessibility of zinc metal node vacancies, linker
vacancies, and dangling linker defects in ZIF-
8. They found defects to be relatively low in
energy compared to the crystalline structure
but prohibitive yet surmountable kinetic barri-
ers exist to their formation from the crystalline
state. Molecular dynamic simulations showed
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that defective 6-member rings in ZIF-8 can en-
hance the hopping rate of adsorbates through
them.364

A means to predict which MOFs in a high-
throughput screening are most susceptible to
forming defects that significantly influence ad-
sorption would be useful for flagging computa-
tional predictions of adsorption predicated on
the perfect crystal assumption. That said, ar-
guably, synthetic conditions could be tuned to
eliminate defects, placing this problem in the
hands of experimental MOF chemists.

9.4 Predicting MOF synthesiz-
ability and stability

Stability is a prerequisite for deploying a MOF
for most practical applications.14 An important
research goal is to predict a priori the thermal,
chemical, and mechanical stability of a given
hypothetical MOF. Most directly stated by
Zunger, within the context of topological mate-
rials, but also applicable to hypothetical MOFs,
“theorists who design materials must add ex-
tra filters to avoid sending their chemistry col-
leagues off to the lab on a pointless quest” to
synthesize “fantasy materials”.365 Therefore, it
is important to develop computational methods
to predict the synthetic feasibility of hypothet-
ical MOFs, as it will help the community to
focus on the synthesis of high-performing hy-
pothetical MOFs with high fidelity for practical
applications. Efforts are underway to computa-
tionally discern the feasibility of synthesizing a
hypothetical MOF and identify synthetic con-
ditions that provide favorable thermodynam-
ics and kinetics for its formation, mainly by
modeling MOF self-assembly. Cantu et al.366

used DFT calculations and ab initio molecu-
lar dynamics to uncover the formation path-
way (and energies of the intermediates) of the
secondary building block of MIL-101. They
found that the highest energy barrier is the
formation of the metal center, where the or-
ganic linkers play a key role; linker addition
reactions have lower energy barriers that vary
depending on the arrangement of water and in-
cumbent linkers coordinated to the metal cen-
ter. Classical simulations have also been used

to study MOF self-assembly. Yoneya and co-
workers367 demonstrated how tuning the inter-
action parameters between the building blocks
can lead to the spontaneous formation of MOFs
in molecular dynamics simulations. Biswal
and Kusalik368,369 also simulated MOF self-
assembly and observed moieties that are im-
portant in MOF formation. Recent work com-
plements these efforts by employing enhanced-
sampling techniques. Colón and co-workers370

used enhanced-sampling techniques to simulate
the self-assembly of MOF-5, finding the pro-
cess is entropically favorable for the ordered
MOF structure. They also found free energy
barriers that are associated with structural re-
arrangements and solvent interactions that are
disrupted in an amorphous-to-crystalline tran-
sition. Similarly, Kollias and co-workers371 cal-
culate free energies to explore the role that sol-
vent and counterions play in the early-stage nu-
cleation of MIL-101. They found that the sta-
bility of the early structures and the presence
of amorphous vs. crystalline moieties can be af-
fected by the identity of the solvent and ions
present in solution.
Regarding chemical stability, in an early

study of MOF stability in the presence of water,
Greathouse and Allendorf372 conducted molec-
ular dynamics simulations of water in MOF-5,
treating the flexibility of MOF-5 and modeling
the ZnO coordination with a nonbonded poten-
tial. They showed distortion of the MOF struc-
ture at low water concentrations and the col-
lapse of the framework at higher water concen-
trations as the water molecules attack the ZnO4

polyhedra. In subsequent work, Bellarosa and
co-workers373 used Born-Oppenheimer molecu-
lar dynamics simulations and showed the degra-
dation of MOF-5 instead occurs through the
replacement of the organic linkers by water
molecules. Han et al.374 used density functional
theory calculations to elucidate the mechanism
by which acid gases degrade zeolitic imidazolate
frameworks (ZIFs) both inside the pores and at
the external surface of a crystallite.
Mechanical stability of MOFs under high

pressures is important when densifying MOF
powders for deployment in practical applica-
tions. Rogge et al.375 provide an account of
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advances in computationally predicting the me-
chanical stability of MOFs. Moghadam et al.81

recently trained an artificial neural network
to predict mechanical properties of MOFs and
found that topological features of the MOF are
strongly correlated to mechanical stability.

9.5 Multi-scale modeling

So far, the majority of high-throughput com-
putational screenings relied on simple perfor-
mance metrics based on equilibrium adsorption
properties of the material. Although these sim-
ple properties are important indicators of the
performance of these materials for adsorption-
based engineering applications, these metrics
do not completely determine process-level ob-
jectives.376–378 For instance, the usable capac-
ity and selectivity of CO2 are commonly used
performance metrics for CO2 capture applica-
tions, while the overall process objectives are
the cost of capturing and recovering the CO2

($/g CO2) and the productivity of the mate-
rial,378 both under CO2 purity and recovery
constraints. Since the improvements in equi-
librium adsorptive selectivity and usable capac-
ity do not necessarily translate into better pro-
cess performance, we envisage the integration
of process-level simulations and molecular sim-
ulations, feeding innate material properties ob-
tained from molecular simulations into process-
level (larger length scale) simulations to ac-
count for heat and mass transfer kinetics, pres-
sure drops in columns, etc. to properly rank
materials.378,379 However, (i) process-level mod-
eling requires many physical properties of the
material to be known, and (ii) often, process-
level detriments to material performance can
be corrected via engineering, e.g., poor thermal
conductivity can be addressed by incorporating
heat exchangers into the process.
Krishna380 discussed and contrasted the ma-

terial properties that determine performance
in two distinct separation processes using ad-
sorbent materials: pressure-swing adsorption
units (a bed packed with material) and mem-
brane permeation units (a thin layer of mate-
rial). The performance of a pressure-swing ad-
sorption unit is determined primarily by both

the equilibrium gas uptake and selectivity of the
material, and influences of intracrystalline dif-
fusion are typically considered undesirable. In
contrast, both equilibrium adsorption proper-
ties of the material and intracrystalline diffu-
sion rates are important determinants of mem-
brane permeation unit performance. Therefore,
the criteria on intrinsic properties for evaluat-
ing a material for a separation process critically
depend on the mode of its intended use.
First et al.377 combined molecular simulations

(to predict adsorption isotherms) and pressure
swing adsorption process modeling and opti-
mization of e.g., the column length and pressure
of adsorption and desorption, under methane
recovery and purity constraints, to rank zeo-
lites for CO2 capture from natural gas. Inter-
estingly, the authors found “no clear correlation
between the overall cost and material-centric
metrics, such as adsorption selectivity”.377

Recently, Leperi et al.381 developed a gen-
eral evaluation metric for post-combustion CO2

capture materials used in pressure-swing ad-
sorption units. Molecular simulations and full
process simulation and optimizations were car-
ried out to screen ≈ 2 900 CoRE MOF struc-
tures. Commonly used screening metrics, such
as the thermodynamic selectivity at dilute con-
ditions, adsorbent figure of merit, separation
factor, etc., show poor correlations with the
cost of CO2 capture at the unit operation level.
Using the generated data, the authors devel-
oped a general evaluation metric, based on the
intrinsic materials properties such as those ob-
tained from adsorption isotherms. The au-
thors showed the metric was, compared to other
screening metrics, more predictive of the cost of
CO2 capture using a pressure-swing adsorption
unit packed with that material.

F̄inis

We reviewed the demonstrated impacts of
molecular modeling and simulation on the dis-
covery of performant MOFs for adsorption-
based engineering applications. Our outlook is
that the highly reliable computational identifi-
cation of MOFs for deployment in gas storage,
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separations, and sensing will be routinized with
well-directed research efforts.
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(226) Gómez-Gualdrón, D. A.; Colón, Y. J.;
Zhang, X. et al. Evaluating topologi-
cally diverse metal–organic frameworks
for cryo-adsorbed hydrogen storage. En-
ergy & Environmental Science 2016, 9,
3279–3289.

(227) Ahmed, A.; Liu, Y.; Purewal, J. et al.
Balancing gravimetric and volumetric
hydrogen density in MOFs. Energy &
Environmental Science 2017, 10, 2459–
2471.

(228) Kaye, S. S.; Dailly, A.; Yaghi, O. M.
et al. Impact of preparation and han-
dling on the hydrogen storage proper-
ties of Zn4O(1,4-benzenedicarboxylate)3
(MOF-5). Journal of the American
Chemical Society 2007, 129, 14176–
14177.

61



(229) Rowsell, J. L. C.; Yaghi, O. M. Effects of
functionalization, catenation, and varia-
tion of the metal oxide and organic link-
ing units on the low-pressure hydrogen
adsorption properties of metal–organic
frameworks. Journal of the American
Chemical Society 2006, 128, 1304–1315.

(230) Denysenko, D.; Grzywa, M.;
Tonigold, M. et al. Elucidating Gating
Effects for Hydrogen Sorption in MFU-
4-Type Triazolate-Based Metal–Organic
Frameworks Featuring Different Pore
Sizes. Chemistry - A European Journal
2011, 17, 1837–1848.
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(280) Möıse, J.-C.; Bellat, J.-P. Effect of pread-
sorbed water on the adsorption of p-
xylene and m-xylene mixtures on BaX
and BaY zeolites. The Journal of Phys-
ical Chemistry B 2005, 109, 17239–
17244.

(281) Gee, J. A.; Zhang, K.; Bhattacharyya, S.
et al. Computational identification and
experimental evaluation of metal–organic
frameworks for xylene enrichment. The
Journal of Physical Chemistry C 2016,
120, 12075–12082.

(282) LeCun, Y.; Cortes, C.; Burges, C. J. C.
The MNIST database of handwritten
digits. http://yann.lecun.com/exdb/

mnist/, Accessed 1 April 2019, 1998.

(283) Wan, L.; Zeiler, M.; Zhang, S. et al.
Regularization of neural networks us-
ing dropconnect. International Confer-
ence on Machine Learning. 2013; pp
1058–1066.

(284) Krizhevsky, A.; Hinton, G. Learning mul-
tiple layers of features from tiny images.
University of Toronto Technical Report,
https://www.cs.toronto.edu/~kriz/

learning-features-2009-TR.pdf,
Accessed 15 May 2019, 2009.

(285) Bennett, J.; Lanning, S. The Netflix
Prize. Proceedings of the KDD Cup
Workshop 2007. New York, 2007; pp 3–6.

(286) Bell, R. M.; Koren, Y. Lessons from the
Netflix prize challenge. ACM SIGKDD
Explorations Newsletter 2007, 9, 75–79.

(287) Koren, Y.; Bell, R.; Volinsky, C. Ma-
trix factorization techniques for recom-
mender systems. Computer 2009, 42,
30–37.

(288) Koren, Y. The bellkor solution to the net-
flix grand prize. Netflix prize documenta-
tion 2009, 81, 1–10.

(289) Russakovsky, O.; Deng, J.; Su, H. et al.
ImageNet large scale visual recognition
challenge. International Journal of Com-
puter Vision 2015, 115, 211–252.

(290) Price, S. L. Control and prediction of the
organic solid state: a challenge to the-
ory and experiment. Proceedings of the
Royal Society A: Mathematical, Physi-
cal and Engineering Sciences 2018, 474,
20180351.

(291) Reilly, A. M.; Cooper, R. I.; Adji-
man, C. S. et al. Report on the sixth
blind test of organic crystal structure
prediction methods. Acta Crystallograph-
ica Section B: Structural Science, Crys-
tal Engineering and Materials 2016, 72,
439–459.

(292) https://adsorption.nist.gov/

factlab, Accessed 5 February 2019.

(293) Nguyen, H. G. T.; Espinal, L.; van
Zee, R. D. et al. A reference high-pressure
CO2 adsorption isotherm for ammonium
ZSM-5 zeolite: Results of an interlabo-
ratory study. Adsorption 2018, 24, 531–
539.

(294) Siderius, D. W., Shen, V. K., John-
son III, R. D. et al. , Eds. NIST/ARPA-
E Database of Novel and Emerging
Adsorbent Materials ; National Insti-
tute of Standards and Technology:
Gaithersburg, MD, 20899, 2014;
https://dx.doi.org/10.18434/T43882,
Accessed 14 December 2018.

(295) Heller, S. R.; McNaught, A.; Pletnev, I.
et al. InChI, the IUPAC International
Chemical Identifier. Journal of Chemin-
formatics 2015, 7, 23.

(296) Britt, D.; Tranchemontagne, D.;
Yaghi, O. M. Metal–organic frame-
works with high capacity and selectivity
for harmful gases. Proceedings of the
National Academy of Sciences 2008,
105, 11623–11627.

65



(297) https://www.sigmaaldrich.com/

catalog/product/aldrich/688614?

lang=en&region=US, Accessed 5 Febru-
ary 2019.

(298) Siderius, D., Shen, V., Eds. NIST Reg-
istry of Adsorbent Materials ; National
Institute of Standards and Technol-
ogy: Gaithersburg, MD, 20899, 2017;
https://dx.doi.org/10.18434/t4/1502644,
Accessed 14 December 2018.

(299) Park, J.; Howe, J. D.; Sholl, D. S. How
Reproducible Are Isotherm Measure-
ments in Metal–Organic Frameworks?
Chemistry of Materials 2017, 29, 10487–
10495.

(300) Simon, C. M.; Smit, B.; Haranczyk, M.
pyIAST: Ideal adsorbed solution the-
ory (IAST) Python package. Computer
Physics Communications 2016, 200,
364–380.

(301) Simon, C. M.; Smit, B.; Haranczyk, M.
Documentation for pyIAST. https://

pyiast.readthedocs.io, Accessed 1
February 2019.

(302) Colón, Y. J.; Fairen-Jimenez, D.;
Wilmer, C. E. et al. High-Throughput
Screening of Porous Crystalline Ma-
terials for Hydrogen Storage Capacity
near Room Temperature. The Journal
of Physical Chemistry C 2014, 118,
5383–5389.
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