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ABSTRACT: The general enantioselective synthesis of axially chiral disubstituted allenes from prochiral starting materials re-
mains a long-standing challenge in organic synthesis. Here, we report an efficient enantio- and chemoselective copper hydride-
catalyzed semi-reduction of conjugated enynes to furnish 1,3-disubstituted allenes using water as the proton source. This protocol is 
sufficiently mild to accommodate an assortment of functional groups including keto, ester, amino, halo, and hydroxyl groups. Addi-
tionally, applications of this method for the selective synthesis of mono-deuterated allenes and chiral 2,5-dihydropyrroles are de-
scribed. 

Allenes form a distinctive class of compounds capable of ex-
hibiting axial chirality. They are represented in over 2,900 
natural metabolites and synthetic compounds, and have been 
studied with regard to biological activity for over forty years.1 
The introduction of allenes into steroids, prostaglandins, car-
bacyclins, and unnatural amino acids and nucleosides has been 
shown to increase the metabolic stability, bioavailability, and 
potency of these bioactive compounds.2 Additionally, these 
cumulated dienes have found use in molecular materials and 
as synthetic intermediates in complex chemical syntheses as 
substrates due to their substituent-loading capability and en-
hanced reactivity under mild reaction conditions. Their tran-
formation often takes advantage of axial-to-central chirality 
transfer to generate one or more new stereogenic centers.3 
Finally, chiral allenes have also been explored in asymmetric 
autocatalysis and as ligands for the development of enantiose-
lective transformations.4-6  

 

Figure 1. Synthetic strategies for the construction of enanti-
oenriched allenes and representative examples of valuable 1,3-
disubstituted allenes 

While the utility of chiral allenes has been widely explored, 
the selective synthesis of these valuable materials still remains 
a challenge in organic synthesis.3a, 7 Traditional approaches to 
access enantioenriched allenes most commonly start from 
chiral, enantioenriched precursors wherein the allene product 
is generated through nucleophilic displacement, rearrangement 
or elimination with central-to-axial chirality transfer (Figure 1) 
or through resolution of racemic allenes. More recently, sever-
al methods have employed achiral or racemic starting materi-
als in catalytic asymmetric versions of these reactions to ac-
cess the desired product using catalysts bearing chiral ligands. 
However, the majority of these reports target the synthesis of 
tri- or tetrasubstituted allenes.8  

The direct catalytic conversion of prochiral 1,3-enynes to en-
antioenriched allenes has become a practical synthetic strategy 
in recent years, owing to the accessibility of these substrates.9 
Early reports by Hayashi describe the direct catalytic and en-
antioselective conversion of 1,3-enynes to boryl-, silyl-, or 
aryl allenes via palladium or rhodium catalysis.8a–d Since then, 
methods detailing the stereoselective transformations of 
enynes, including reports by Loh, Feng, Tang, Sun and Mal-
colmson, have provided novel routes to enantioenriched al-
lenes containing esters, lactones or amines.8g, l, n, p, 10 

The LCuH-catalyzed hydrofunctionalization of 1,3-enynes to 
access enantioenriched allenes was first reported by the Hov-
eyda group wherein trisubstituted allenyl boronate derivatives 
are generated in high yield and enantioselectivity (Scheme 
1a).11 Shortly thereafter, the Ge and Engle groups inde-
pendently disclosed their own reports of enyne hydroboration, 
followed by Ge’s report of the catalytic asymmetric hydroary-
lation of enynes to provide access to quinoline-substituted 
allenes.12–14  

Despite these recent advances, fewer reports describe the cata-
lytic synthesis of enantioenriched 1,3-disubstituted allenes 
from prochiral or racemic precursors.10, 15–20 While these 

•
HO

CO2Me

Isolated from Sapium japonicum 
(Anti-fungal agrochemical)

H

H

CO2Me•

HO
OHO

O

Enprostil
(Inhibitor of gastric HCl secretion)

H

•
Me

Synthetic Intermediate
(Synthesis of (+)-varitriol)

H H
H

Synthetic intermediate 
 (Synthesis of clavepictines A and B)

EtO2C
•

H

(CH2)5CH3

H
TIPSO

Laballenic Acid
 (Seed oil natural product)

CO2H

•
Et

Synthetic intermediate
(Synthesis of 

(-)-trans-whiskey lactone)

H

H

Me

R1

X

H

X

H

R1
Y

X

H

•
R1

H

Central-to-Axial 
Chirality Transfer

Traditional Methods

(Substitution, Elimination, 
Rearrangement, etc.)

Asymmetric 
Catalysis

Less Explored
Route

H

HO2C

•
n-C10H21

H
OHBnO

H

R2 R2

R2

R2
Achiral or Racemic 
Starting Materials

Disubstituted 
Allenes



 2 

methods have offered elegant and innovative routes to this 
class of allenes, the vast majority of them provide access to a 
limited scope of products including allenyl esters,16, 18 alco-
hols,19 and amines.10, 16, 20 This modest scope is perhaps due to 
difficulty in controlling the stereochemical outcome of a three-
carbon axis of chirality possessing two hydrogen substituents 
without an additional functional group handle. Consequently, 
there persists an unmet need for a general strategy to access a 
broad range of 1,3-disubstituted axially chiral allenes.  
Scheme 1. Precedent for the Proposed Asymmetric LCuH-
Catalyzed Semi-Reduction of 1,3-Enynes 

 

In the course of our ongoing studies on the hydroalkylation of 
1,3-enynes with imines, we serendipitously discovered an 
alternative strategy for the synthesis of 1,3-disubstituted al-
lenes (Scheme 1b). Analogous to our previous report on the 
hydroalkylation of conjugated enynes with ketones,21 enanti-
oenriched allenyl copper intermediates 2 are generated via 
hydrocupration of an achiral 1,3-enyne starting material (1). 
However, trapping of the allenyl copper species 2 directly with 
a proton, instead of a ketone (which favors the alternative SE2’ 
reaction pathway to yield g-adduct 3), would provide access to 
axially chiral 1,3-disubstituted allenes (4). Potential challenges 
in developing this reaction include avoiding the unproductive 
silylation of the protonating reagent,22 the regioselectivity23 
and enantioselectivity of the process, and preventing further 
reduction of the allene product in the presence of the copper 
hydride catalyst. To date, the semi-reduction of 1,3-enynes to 
enantioenriched disubstituted allenes has only been demon-
strated with the stoichiometric use of chiral metal reducing 

agents.24 Herein, we report the asymmetric catalytic semi-
reduction of 1,3-enynes to furnish axially chiral allenes ena-
bled by CuH-catalysis. 

We began our studies utilizing 1,2-bis((2S,5S)-2,5-
diphenylphospholano)ethane [(S,S)-Ph-BPE] in combination 
with Cu(OAc)2 and dimethoxy(methyl)silane (DMMS) to gen-
erate a chiral LCuH complex previously shown to engage 1,3-
enyne 1a (Table 1).21 At room temperature with t-BuOH as the 
proton source, the complete consumption of 1a occurred yield-
ing a complex mixture consisting primarily of products from 
the unselective hydrogenation of the desired product, allene 4a 
(entry 1). Decreasing the reaction temperature to –10 ºC 
slowed the over-reduction and provided 4a in 34% yield and 
60:40 enantiomeric ratio (er) (entry 2). A subsequent screen of 
several ethereal solvents indicated that both chemo- and enan-
tioselectivity were enhanced by replacing THF with 1,2-
dimethoxyethane (DME) (entries 3–5).  
Table 1. Reaction Optimizationa 

 

Entry T 
(ºC) Solvent Proton  

Source Silane % 
Conv. 

% 
Yieldb erc 

1 23 THF t-BuOH           
 (1.5 equiv) DMMS             100 0 – 

2 –10 THF t-BuOH          
(1.5 equiv) DMMS             100 34 60:40 

3 –10 MTBE d t-BuOH            
(1.5 equiv) DMMS             64 36 87:13 

4 –10 1,4- 
Dioxane 

t-BuOH            
(1.5 equiv) DMMS             67 26 92:8 

5 –10 DME t-BuOH            
(1.5 equiv) DMMS             50 36 96:4 

6 –10 DME i-PrOH             
(1.5 equiv) DMMS             100 68 99:1 

7 –10 DME i-PrOH             
(1.1 equiv) DMMS             100 90 99:1 

8 –10 DME H2O              
(0.55 equiv) DMMS             100 90 >99:1 

9e –10 DME H2O             
(0.52 equiv) TMCTS         100 90f >99:1 

a Conditions: Reactions were carried out under N2 atmosphere. 
0.2 mmol enyne (1 equiv), copper(II) acetate (3 mol%), (S,S)-Ph-
BPE (3.3 mol%), silane (4 equiv) in solvent (0.4 mL). b Yield was 
determined by 1H NMR spectroscopy of the crude reaction mix-
ture, using mesitylene as an internal standard. c Enantiomeric ratio 
was determined by GC analysis, and the absolute configuration of 
4a was determined by analogy to desilylated 4f (see the Support-
ing Information for more details). d MTBE = methyl tert-butyl 
ether. e Reaction was run with 1 mol% copper(II) acetate and 1.1 
mol% (S,S)-Ph-BPE over 16.5 h instead. f Reported as an average 
of two isolated yields.  

The use of a sterically less hindered proton source, i-PrOH, 
provided improved conversion and enantiomeric ratio of prod-
uct 4a. Moreover, we found that by decreasing the quantity of 
i-PrOH to 1.1 equivalents minimized the amount of overreduc-
tion that was observed (entries 6–7). As the use of a less hin-
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dered proton source proved beneficial for both yield and er, 
we next examined the use of H2O (0.55 equiv) which resulted 
in the efficient delivery of both protons in the enyne semi-
reduction (entry 8). Further, we found that substituting DMMS 
with 0.5 equiv of 2,4,6,8-tetramethylcyclotetrasiloxane 
(TMCTS) and decreasing the catalyst loading to 1 mol% pro-
vided improved reaction conditions for the enantioselective 
semi-reduction of 1,3-enyne 1a affording the desired product 
(R)-4a in 90% isolated yield and >99:1 er (entry 9). 
Table 2. Substrate Scope of the LCuH–Catalyzed Asym-
metric Semi-Reduction of 1,3-Enynes to Allenesa 

  
a Reactions were carried out under N2 atmosphere at –10 ºC. 

Isolated yields and enantiomeric ratios are reported as an average 
of two independent runs. b Yield was determined by 1H NMR 
spectroscopy using mesitylene as an internal standard due to the 
volatility of the product. c With 0.25 equiv H2O instead. d Yield 
and diastereomeric ratio reported for a single run.  

Next, we surveyed the generality of the LCuH-catalyzed 
asymmetric semi-reduction of an assortment of terminal 1,3-
enynes (Table 2). Unfunctionalized substrates are efficiently 
converted to the corresponding allenes with good yield and 
exceptional er (4a–c). Enynes bearing a variety of functional 
groups are tolerated under the reaction conditions including 
potentially reducible groups such as alkyl chlorides (4d) and  
ketones (4e) as well as ethers (4f, 4i), amines (4j, 4l), and var-

ious heterocycles (4i, 4k, 4n, 4o). Substrates containing unpro-
tected alcohols are not only tolerated, but the unhindered pri-
mary alcohol of enyne 1g, itself, serves as a proton source in 
the reduction, permitting the use of only 0.25 equivalents of 
H2O additive to furnish allene 4g. The reactivity of and selec-
tivity in the semi-reduction of sterically more encumbered 
enyne 1h, bearing an unprotected propargylic alcohol, were 
unaffected, providing allenyl alcohol 4h with 88% yield and 
>99:1 er. While substrates containing free N–H bonds react 
with high yield, the allene products are produced with a dimin-
ished er (4m, n). In the case of 1n it was demonstrated that the 
use of the protected variant, 1o, provided significantly im-
proved results (4o). Finally, this protocol exhibits excellent 
catalyst control in the semi-reduction of chiral enyne 1p to 
furnish either diastereomer of allene 4p depending on the en-
antiomer of ligand used.  

Our initial efforts to effect the asymmetric semi-reduction of 
internal 1,3-enyne substrates proved considerably more chal-
lenging. This difficulty was presumably due, in part, to an 
increased energetic barrier to hydrocupration, resulting in un-
productive silylation of the proton source and, in some cases, 
competitive overreduction of the initially-formed allene prod-
ucts. To ameliorate these issues, we found that the utilization 
of a protocol with the slow addition of water was essential 
(Table 3). The reaction of ester-containing enyne 1q occurred 
in moderate yield, largely due to competitive overreduction of 
the desired product, 4q. The antifungal antibiotic Terbinafine 
(1r) was cleanly transformed to 4r in 68% yield and 99:1 er, 
although it necessitated an increase in H2O and TMCTS load-
ing.25 The direct conversion of fatty acid natural product 1s to 
laballenic acid (4s), a seed oil natural product isolated from 
the Leonitis nepetaefolia plant could also be accomplished 26–29 

The in situ protection of carboxylic acid 1s with DMMS (to 
furnish the corresponding silyl ester) at room temperature was 
carried out, followed by slow addition of water at –10 °C to 
deliver laballenic acid in 50% yield and 93:7 er.  
Table 3. Select Examples of the LCuH–Catalyzed Asym-
metric Semi-Reduction of Internal Enynes to Allenesa 

 
a Reactions were carried out under N2 atmosphere at –10 ºC, 

H2O was added over a 16 hour time period. Isolated yields and 
enantiomeric ratios are reported as an average of two independent 
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runs. b Reaction required a 1 hour pre-stir at room temperature 
prior to addition of water at –10 ºC   

Based on previous mechanistic studies and DFT calcula-
tions,11, 21 we propose the following mechanism detailed in 
Figure 2. After generation of the chiral LCuH complex I, en-
antioselective hydrocupration of enyne II affords a chiral pro-
pargylic copper species (III). This undergoes a stereospecific 
1,3-isomerization to yield allenyl copper intermediate V. Next 
intermediate V is protonated to furnish the final product, al-
lene VI. s-Bond metathesis between VII and silane (VIII) 
results in the formation of silanol IX and regeneration of I. As 
less than a full equivalent of water is utilized in this process, 
we propose that silanol IX can also facilitate proto-
demetallation, producing siloxane X.  

 

Figure 2. Proposed catalytic cycle for the LCuH-catalyzed 
conversion of 1,3-enynes to allenes 

Two examples demonstrating further applications of this 
methodology are depicted in Scheme 2. The incorporation of 
deuterium into molecular scaffolds is pervasive not only in the 
pharmaceutical industry, due to the enhanced metabolic stabil-
ity and safety imparted by corresponding deutero-analogs, but 
also in mechanistic studies and protein crystallography.30 Sub-
stitution of H2O for D2O selectively delivers enantioenriched 
mono-deuterated products, as exhibited in the conversion of 
enyne 1t to allene 5 with 98:2 D/H incorporation (Scheme 2a). 
This protocol represents a new strategy for the deuterium la-
beling of allenes, employing an affordable, easy to handle and 
abundant deuterium source.  
Scheme 2. Applications of the LCuH-Catalyzed Asymmet-
ric Reduction for Deuterium Incorporation and Heterocy-
cle Synthesis 

 

Additionally, enantioenriched allenyl alcohols and amines are 
known to serve as valuable synthetic intermediates toward the 
production of chiral heterocycles including dihydrofurans and 
dihydropyrroles.3h, 31, 32 Taking advantage of the highly selec-
tive nature of gold-catalyzed cycloisomerization chemistry, a-
aminoallene 4l furnished 2,5-dihydropyrrole 6 with complete 
axial-to-point chirality transfer (Scheme 2b).33, 34 

In summary, we have developed a LCuH-catalyzed asymmet-
ric semi-reduction of 1,3-enynes to supply highly enantioen-
riched 1,3-disubstituted allenes in up to 98% yield and >99:1 
er. This chemistry benefits from the functional group tolerance 
afforded by the mild reducing nature of LCuH catalysts and 
employs only 1–2 mol% catalyst loading. Moreover, the utili-
zation of substoichiometric quantities of H2O as the proton 
source and TMCTS as the hydride source provides an efficient 
protocol for the hydrogenation of terminal 1,3-enynes. The 
reduction of internal conjugated enynes is enabled via slow 
addition of water and has been demonstrated through the late-
stage derivatization of antibiotic Terbinafine and the synthesis 
of the seed oil natural product, laballenic acid. Furthermore, 
this protocol provides an efficient synthetic route for the con-
struction of deutero-allenes as well as aza-heterocycles.  
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