
Utilizing Machine Learning for Efficient

Parameterization of Coarse Grained Molecular

Force Fields

James L. McDonagh,† Ardita Shkurti,‡ David J. Bray,∗,‡ Richard L. Anderson,‡

and Edward O. Pyzer-Knapp∗,†

†IBM Research UK, Hartree Centre, SciTech Daresbury, Warrington, Cheshire WA4 4AD,

U.K.

‡STFC, Hartree Centre, SciTech Daresbury, Warrington, Cheshire WA4 4AD, U.K.

E-mail: david.bray@stfc.ac.uk; epyzerk3@uk.ibm.com

Abstract

We present a machine learning approach to automated force field development in

Dissipative Particle Dynamics (DPD). The approach employs Bayesian optimization

to parameterize a DPD force field against experimentally determined partition coef-

ficients. The optimization process covers a discrete space of over 40, 000, 000 points,

where each point represents the set of potentials that jointly form a force field. We find

that Bayesian optimization is capable of reaching a force field of comparable perfor-

mance to the the current state-of-the-art within 40 iterations. The best iteration during

the optimization achieves an R2 of 0.78 and an RMSE of 0.63 log units on the training

set of data, these metrics are maintained when a validation set is included, giving R2

of 0.8 and an RMSE of 0.65 log units. This work hence provides a proof-of-concept,

expounding the utility of coupling automated and efficient global optimization with
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a top down data driven approach to force field parameterization. Compared to com-

monly employed alternative methods, Bayesian optimization offers global parameter

searching and a low time to solution.

Introduction

Molecular simulation has become a valuable technique for gaining insight into the behaviour

of chemical and materials systems. Many different techniques exist ranging from approxi-

mate and simulation coupled quantum mechanics,1,2 classical atomistic approaches such as

Molecular Dynamics (MD)3,4 and mesoscopic methods such as Coarse Grained Molecular

Dynamics (CGMD)5,6 and Dissipative Particle Dynamics (DPD).7–9

For simulations to provide useful insights, the molecular interactions need to be suitably

modeled. This is achieved through inter-particle potentials, which are idealized mathematical

descriptions of the interactions between particles. Typically, these potentials operate between

particular atoms or groups and represent a particular interaction (e.g. bond stretching, bond

bending and twisting, Van der Waals interaction, electrostatic attraction/repulsion etc), such

that the collection of all interactions present in a simulation is governed by a collection of

potentials. The collection of such potentials is referred to as a force field.

Force fields require extensive parameterization to ensure an optimal description of the

molecular interactions. This is generally achieved by testing how accurately a set of trial force

field parameters reproduces relevant physical observations, often from experiment or higher

level theory, such as quantum chemical data. This can require a large number of trials, while

one navigates to an appropriate set of parameters. This searching of the parameter space

is a laborious and typically expensive task. Many optimization attempts employ manual

fitting procedures,10,11 which are extremely expensive in terms of research time, as well as

requiring considerable existing insight on the part of the researcher. Others employ local

optimization techniques, which are typically restricted to search only in the vicinity of the

starting position.12 Less commonly used are global optimization strategies, which are the
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focus of this work. These methods enable searching of comparatively vast parameter spaces,

which are not bound to a local minima. However, global optimization procedures are often

too computationally expensive to utilize in force field development.

The use of the parameterization methods introduced above can be seen in the develop-

ment of a plethora of force fields. MD is one of the clearest examples of the complexity and

difficulty involved in accurate force field generation. Many of the leading MD force fields,

such as CHARMM,3 AMBER,4 OPLS,13,14 are the result of years of incremental improve-

ments and extensions through a variety of fitting methods. In fact these force field names

more correctly refer to a set of force fields with specific parameterizations for particular

applications. Within the MD community, there is an increasing interest in developing au-

tomated methodologies to speed up the process of parameterization.15–20 For example, new

parameters in CHARMM can be developed using semi-automated tools.15,16 In addition to

automation, a number of smarter methods are being incorporated into model parameteriza-

tion to help accelerate the process and to find better solutions. Examples of these methods

include the application of Gaussian processes to learn or parameterize inter-atomic poten-

tials and investigate their generalizability,21–24 along with a variety of other machine learning

approaches such as neural networks,24,25,25–29 which have shown promising results in recent

years.

Within the MD community accurate parameters and reliable models have been generated

for a variety of chemical classes; such as small drug molecules, proteins and hydrocarbons.

However, there are many industrially relevant fields not well served by the current MD force

fields. The reasons for this are two fold:

• the chemical constituents of products often lie outside the well parameterized chemical

classes;

• the scale (time and number of particles) for industrially relevant simulations often

exceeds what is currently tractable in MD on commonly employed computer clusters.
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This can result in a significant barrier to wide-scale adoption of modeling and simulation

within some sectors of the chemical industry.

In this work, we introduce the application of an efficient global optimization methodology,

Bayesian optimization, to automated top down parameterization of DPD force fields. This

strategy aids in alleviating the barriers detailed previously, as the force field can be optimized

automatically, on relevant data, in a reasonable time period. Additionally, the DPD method,

allows one to access time and length scales inaccessible via MD whilst maintaining coarse

molecular features.

Several groups have developed methods based around machine learning and Bayesian

models for bottom up fitting of DPD force fields utilizing the outputs of MD simulations.30–33

Liu et al. 32 provided some of the first applications in this area using force matching between

MD simulation and coarse graining with a Bayesian inference refinement. More recent work

by Dequidt and Solano Canchaya 30 also utilizes a force matching methodology, where by

an atomistic trajectory is sampled and coarse grained coordinates determined in relation

to the all atom models. Bayesian modeling was then applied to locate the most likely

DPD force field parameters to reproduce the sampled coarse grained coordinates. More

common approaches to CGMD and DPD force field parameterization are methods such as,

Iterative Boltzmann Inversion (IBI) and stochastic parametric optimization.34 IBI is typically

used to determine parameters, which reproduce a reference Radial Distribution Function

(RDF). The method involves the calculation of initial CGMD parameters approximated as

the potential of mean force between a pair of coarse grained particles at a given distance.

This initial estimate is iteratively refined by a correction factor. The method can suffer

from practical limitations such as the selection of an interaction cut-off distance.34–37 The

stochastic parametric approach involves the selection of an empirical function with a number

of free parameters which can be fit to reproduce target properties.34,38

Whilst these bottom up fitting methods for DPD show significant promise, the accuracy

of the underlying atomistic force field determines the accuracy of the DPD model. Here there
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is a danger that the atomistic force field is not well suited to model the behavior or chemicals

of interest. In this article, we tackle this issue by performing a top-down parameterization

of a DPD force field directly to experimental data, hence one can select the data best suited

to their problem. As an example, here we are using data on partition coefficients (logP ). In

this work, logP has been adopted because of the abundance of curated data available in the

literature, the wide community interest in this property39–41 and it has been used previously

in work by Anderson et al. 11,42 to manually fit DPD force fields.

The proposed Bayesian optimization method enables an efficient automated search, which

learns a probabilistic approximation of the parameter landscape via a machine learning

technique known as a Gaussian process. The search is carried out over a range of DPD

parameters, which form a high dimensional grid. These ranges are defined prior to the

optimization process. Such a prior definition allows for expert knowledge to be encoded into

the optimization process. To the authors knowledge this is a novel approach.

We focus on a modest set of molecules made up of alkanes and primary alcohols. Our aim

in this work is to provide a proof-of-concept, hence we focus on well understood chemistry

which has open experimental literature data available for validation. Experimental logP

data, obtained from the literature, is used as a reference in this work.

We calculate a predicted logP from DPD simulations, using the protocol of Anderson

et al..11 Whilst DPD is not the most efficient method for calculating logP , we have found

that logP is a good parameter for top down fitting of DPD parameters. Therefore we

apply existing and documented methods for calculating logP using DPD in this work.11

The Bayesian optimization process then efficiently guides the search to regions of parameter

space which minimizes the error between the experimental values and the simulation values.

Noting that the optimization in the present case is over a discrete high dimensional grid the

hypothesis here is that the Bayesian optimization will locate an optimal region of parameter

space very efficiently. It may be possible to further refine this result considering a continuous

parameter space.
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The remainder of the article is arranged as follows: an outline of the general methods

adopted in order to develop an automated parameterization process; the presentation of a

proof-of-concept test case using logP as the target of the optimization process; a discussion

and evaluation of the results; finally, we summarize the main findings of the paper and

discuss potential extensions of the proposed method.

Methods

The automated Bayesian parameterization procedure described in this work requires several

elements to be connected in a workflow. The workflow consists of simulations, analysis and

optimization. We have developed a workflow engine named CAROL,43 which is used to

orchestrate the simulation and analysis process. In this section we describe the automated

procedures and inputs including: the Bayesian optimization scheme, the DPD simulation

details and literature data.

Bayesian Optimization Scheme

Bayesian optimization is machine learning approach, capable of efficiently balancing the ex-

ploration exploitation dilemma that is commonly encountered in optimization problems.44–46

The optimization of DPD force field parameters is achieved through a python based Bayesian

optimization library. The Bayesian optimization library constructs a probabilistic model of

the objective function utilizing scikit-learn’s47 Gaussian process regression with a square-

exponential kernel.

k(x, x′) = σ2exp

(
(x− x′)2

2l2

)
(1)

Equation 1 defines the squared exponential kernel where x and x′ denote a pair of inputs

l is the length scale parameter and σ is the variance of function values from the mean. The

hyper-parameters are optimized by maximizing the log-marginal-likelihood. The Bayesian
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optimization library employs an expected improvement (EI) acquisition function to select

the next point to sample. EI is here used with an epsilon parameter, that assists in balancing

the exploration and exploitation of the parameter space by defining a minimum magnitude

of improvement, which is expected of a new sample point. The improvement is calculated

from the utility function (γ(x)), commonly referenced as the improvement function:48,49

γ(x) =
µ(x)− f ∗ − ε

σ2(x)
, (2)

In the improvement function, defined in equation 2, µ(x) is the mean, σ2(x) is the vari-

ance ε defines the minimum improvement margin and f ∗ is the currently best located point

assigned as the lowest loss. The EI acquisition function can then be defined in terms of γ(x)

thus:

EI(x) = µ(x)− f ∗Φ(γ) + σ(x)φ(γ) (3)

Equation 3 defines the expected improvement acquisition function in terms of gamma.

Φ(γ) is the cumulative distribution function and φ(γ) is the probability density function.48

This is a commonly applied embodiment of Bayesian optimization that has been deployed

in other areas.50,51

In this study, we optimize a DPD force field by minimizing the error in calculated logP

data compared to experimental logP data for nine solute molecules over three different

solvent pairs defining logP . The combination of the nine solutes and three different solvent

pairs results in 15 logP data points for training.

The standard DPD force field is purely repulsive and soft-core in nature. The primary

parameter in these DPD force fields, which governs the chemical interactions, is the so called

conservative repulsion parameter Aij. This parameter governs the strength of the repulsion

between beads of type i and j. The unique pairwise interactions and the ranges of their

conservative potential repulsion parameters are shown in Table 1.
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Table 1: The pairwise bead-bead interactions optimized in this work: each interaction pair
is bounded within the intervals defined by Aij ∈ [ALowerij , AUpperij ]. We note here that 2H2O−
2H2O interaction acts as reference and remains fixed at 25.0.

Interaction pairing ALowerij AUpperij

2H2O− 2H2O 25.0 25.0
2H2O− CH3 35.0 47.0
2H2O− CH2 39.0 51.0

2H2O− CH2OH 14.0 26.0
CH3 − CH3 24.0 36.0
CH3 − CH2 19.0 31.0

CH3 − CH2OH 41.0 53.0
CH2 − CH2 9.0 21.0

CH2 − CH2OH 22.0 34.0
CH2OH− CH2OH 25.0 37.0

Seven potential values in the ranges specified in Table 1 were selected with a spacing of 2

DPD units, inclusive of the lower and upper bounds. The sampling grid which specifies the

parameters is generated as a Cartesian product over the sets of interaction values resulting in

a sampling grid of 40, 353, 607 (79) potential unique combinations of conservative repulsion

parameters.

Our workflow engine, CAROL, manages the execution of the DL MESO DPD simulation

engine and the UMMAP analysis package, which calculates the logP from the simulation

data. The Bayesian optimization library and CAROL communicate passing predicted logP ,

experimental data and trail force fields where required. Within the optimizer the calculated

logP data is used to perform an evaluation of force field performance, before selecting the

next point in parameter space for sampling. The optimizer finally updates the simulation

inputs to reflect its new choice of trial force field parameters. This process is carried out

iteratively for a fixed number of iterations.

At the end of each iteration, the accuracy of the parameters with respect to logP is

determined using the L2-norm, defined as in equation 4. The L2-norm serves as a loss

function within the model optimization process.
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L2− norm =

√√√√ N∑
n=1

(|xexpn − xmodeln |2) (4)

where N is the number of samples, xexpn is the real observable for the nth experiment and

xmodeln is the corresponding model observable for the nth experiment run with the current

parameter set. In our implementation the observable x will be logP . The loss function is

calculated from the 15 chemical systems that we simulate in the training set and defines a

single metric for the utility of the parameters for a single iteration. With this loss function

a value of 0 would represent a complete fit.

For the optimization process to begin, the Gaussian process model, which acts as a

probabilistic surrogate for the real objective function, is initialized with known data from

previous calculations. This is achieved by selecting at random 10 force fields and running

simulations to obtain the loss (as defined in equation 4), which are then provided as training

data to the Gaussian process. Once complete the real optimization process begins and runs

in a sequential manner, assessing the suitability of the force field parameters one set at a

time for a total of 30 iterations. This number of iteration was selected as it represents

approximately one week of compute time for the current proof-of-concept case. The choice

of number of iterations is somewhat arbitrary and could be increased or decreased as one

desires dependent on resources and the accuracy required of the force field.

For each iteration of the workflow, simulations and analysis tools were run over 15 nodes,

each with 16 cores. The Bayesian optimization library on the other hand is computationally

inexpensive and is executed on a single core.

Appropriate error handling and monitoring of the simulation and analysis stages are

performed to ensure suitable feedback can be provided at each iteration. This prevents

the automation process faulting and failing to complete. Three types of major failures are

detected and handled within this workflow: simulations may not run or fail to complete; the

force field parameters are bad such that the simulated system has only a single liquid phase
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rather than two (a requirement for measuring logP 11); or, the model observable lies outside

the measurable range (i.e. there is poor sampling). The workflow handles failed simulations

by assigning an extreme value to the observable, i.e. logP values of ±10.0. This is also the

modus operandi where the force field fails such as when the simulated water and organic

solvent partition has collapsed or significantly mixed. In this event there is no clear way to

define the regions to sample and hence calculate the concentration of solute within a region.

DPD model definition

In our approach the DPD beads represent molecular fragments comprising 1–2 ‘heavy atoms’

(specifically C and O in this work), with the exception of water (H2O) which is treated super-

molecularly. This provides the potential for a wide variety of both aqueous and non-aqueous

systems to be modeled by combining these fragments in different configurations. Crucially

this approach also leads to an extensible parameter set, since the molecular palette is easily

enlarged to include other chemical groups.

In our model we adopt four different bead types representing water, two representing

alkanes and one bead for alcohol functionality (Table 2). To establish the basis for the

coarse grained (CG) scheme, we first follow Groot and Rabone in defining a water mapping

number, in our case Nm = 2 so that each water bead (2H2O) corresponds, on average, to

two water molecules.52 Following well established protocols we also assert that the density

of water in our model (in reduced DPD units) corresponds to ρr3c = 3, where rc is the cutoff

distance for an interaction.7 We can then use the mapping number tautology ρNmvm ≡ 1,

where vm ≈ 30 Å3 is the molecular volume of liquid water, to determine that rc ≈ 5.65 Å.

This underpins the conversion of all lengths and molecular densities in the model.

Alkane molecules are constructed from connected (bonded) beads comprising (i) CH2

groups of atoms and (ii) CH3, a terminal methyl group. Similarly alcohol molecules are

constructed by bonding together alkane beads and a specific bead containing an alcohol

functionality, e. g. comprised of the CH2OH group of atoms. Atom to beaded structures for
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the molecules explored in this work are given in detail in Table 2.

Table 2: Coarse grained (CG) representations of molecules considered in the present work.
The CG bead content is denoted by the contents of square brackets.

molecule smiles code n beads CG bead mapping

n-hexane cccccc 6 [CH3][CH2]4 [CH3]

n-heptane ccccccc 7 [CH3][CH2]5 [CH3]

methanol co 1 [CH2OH]

ethanol cco 2 [CH3][CH2OH]

1-propanol ccco 3 [CH3][CH2] [CH2OH]

1-butanol cccco 4 [CH3][CH2]2[CH2OH]

1-pentanol cccco 5 [CH3][CH2]3[CH2OH]

1-hexanol cccccco 6 [CH3][CH2]4[CH2OH]

1-heptanol ccccccco 7 [CH3][CH2]5[CH2OH]

1-octanol cccccccco 8 [CH3][CH2]6[CH2OH]

1-nonanol ccccccccco 9 [CH3][CH2]7[CH2OH]

butan-1,4-diol occcco 4 [CH2OH][CH2]2[CH2OH]

Having decided on the CG level, the next part of the model definition is to specify the

bonded interactions between beads: once set these interactions will not be optimized by the

parameterization procedure. Here we take an approach motivated by previous work and our

own experience. A simple harmonic potential φb = 1
2
kb(rαβ − r0)2 was chosen to represent

bonds between connected DPD beads, where rαβ is the distance between bonded beads α

and β. The nominal bond length, r0, is set as 0.3 for bonds [CH2]− [CH2/3] and 0.35 for

bonds [CH2OH]− [CH2/3]. This minimizes the number of parameters to be fitted in this

initial exploration of applying Bayesian optimization in this manner. A single bond constant

kb = 150 was adopted throughout (in units of kBT ). Note that, contrary to the usual practice

in MD, we (and others) do not exclude the 1-2 and 1-3 non-bonded interaction between two

bonded DPD beads.

In our model we explicitly introduce an element of rigidity by including a harmonic

angular potential between conjoining pairs of bonds. This has been demonstrated to be

essential for the correctness of molecular models at the level of coarse graining used here.53 54
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We here adopt the same three-body angular potential used by Smit and collaborators,53,55

viz. φa = 1
2
ka(θαβγ − θ0)2 where θαβγ is the angle between the bonds ~αβ and ~βγ of bonded

bead triplet α, β and γ. We use θ0 of 105◦ for angles [CH2/3]− [CH2]− [CH2/3], 125◦ for

angles [CH2OH]− [CH2]− [CH2/3] and ka = 5 (in units of kBT ) for all angles.

For the non-bonded interactions between beads i and j we take the standard DPD pair-

wise soft repulsion, φ = 1
2
Aij(1 − ri,j/Rij)

2 for r ≤ Rij and φ = 0 for ri,j > Rij, where

Ai,j is the interaction strength, Ri,j the interaction cut-off distance and ri,j the distance

between centers of bead i and j.7 We set the self-interaction of water beads to be equal to

AH20,H20 = 25.0. The optimization of all other Aij (i 6= j and i = j) is the central problem

addressed in the present work.

Literature Data

In this work we have collected experimental data from the literature for three definitions of

logP : Octanol/Water (logP(Oct/H2O)); Hexane/Water (logP(Hex/H2O)) and Heptane/Water

(logP(Hep/H2O)). Previous attempts towards parameterizing DPD force fields to logP data fo-

cused exclusively on logP(Oct/H2O).
11 From compilations of experimental data on logP(Oct/H2O)

measurements it is clear that in some cases the quality of the data is quite variable. For

simple alkanes and alcohols (simple alcohol meaning here an alkane chain with a single

OH substitution), the variance between experimental procedures can be as large as 0.6 log

units, considering direct measurement methods only.56 If indirect measurement methods are

included, the variance in reported logP values for these molecules can be as large as 0.7

log units (see the range in reported logP values for 1-butanol and methanol in Sangster

199757). Typical estimates of experimental errors on a single determination for logP range

≈0.05 - 0.25 log units.56 Similar experimental errors are reported for direct methods measur-

ing logP(Hex/H2O).
58,59 The difficulties in assessing the accuracy of experimental data for force

field parameterization has been expounded for other properties of industrial interest.60 This

places bounds on the accuracy our force field can realistically achieve. Given that the target
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data used here comes from a variety of experimental sources we would consider a good result

to have errors in the region of ≈ ±0.7 log units. This level of error is consistent with other

current state-of-the-art logP prediction methods, which generally come from Quantitative

Structure Activity Relationships (QSAR).61,62

Table 3: logP data from the literature curated for use in this work with the source reference
given by each value.

Solute logP(Oct/H2O) logP(Hex/H2O) logP(Hep/H2O)

1-propanol 0.2557 -1.4863 -1.5264

1-butanol 0.8457 -0.7865 -0.7064

1-pentanol 1.5157 -0.4063 -0.4064

1-hexanol N/A 0.4565 0.4564

1-heptanol N/A 1.2163 0.9864

1-octanol N/A N/A 1.6264

1,4-butanediol -0.8011 N/A N/A

Bayesian Optimization Workflow

Figure 1 visually depicts the connections between the various workflow elements adopted in

this work. The simulations are all run with the DL MESO DPD66 simulation engine and

the analysis, which predicts the logP from the simulations, is provided by the UMMAP

program.67 The sections in orange outline the areas where the workflow engine CAROL43

orchestrates the simulations and analysis. The sections in blue outline the areas controlled

by the Bayesian optimization library, which evaluates the relative success of a set of force

field parameters, selects the next force field to trial and produces updated input files for the

simulations.

13



Figure 1: Flow charts representing stages that compose CAROL and the Bayesian optimiza-
tion library. Arrows in the flowchart show the data flow direction. Left, the initialization
process provides initial training data sampled randomly without replacement. Right, the
optimization process, once the optimizer is trained, it selects a new sampling point based
upon its current knowledge of the parameter space.

On the left hand side of Figure 1, the initialization process is expounded, which provides

initial training data for the optimizer upon which to initialize its Gaussian process. In this

phase, force field parameters are selected at random from a sampling grid constructed by

the optimizer based upon user input. Once complete, the optimizer has some information

on the parameter space it is operating within and thus can begin to guide the parameter

optimization process.

The optimization process is detailed on the right hand side of Figure 1. In this phase the

optimizer calculates a loss at the end of each iteration which is added to the Gaussian process

training data. The Gaussian process is retrained and the acquisition function recalculated

using the retrained Gaussian process. The maximum value of the acquisition function is

found and the force field corresponding to the maxima in the acquisition function is then

trialed.
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Results and discussion

We present here the results of the automated DPD force field parameterization using Bayesian

optimization. We begin by assessing the performance and overall utility of the optimization

method using summary statistics considering all training set systems. We follow this with a

microscopic investigation, exploring the choices of parameters from a physical perspective.

Finally, we validate the force field using examples from outside the training set.

Bayesian Optimization Vs Random Sampling

Bayesian optimization searches the parameter space in an intelligent manner balancing the

need for exploration in a global search with local exploitation. As an initial benchmark

we compare our results against several instantiations of a random search. This tests that

intelligent navigation provides a benefit above simple random trail and error. The param-

eterization engine was initialized with 10 random samples across the grid. The engine was

then run for 30 optimization iterations. This process was independently repeated three times

using different initial training sets. The purpose of such repetition, was to test the methods

performance with variations in the starting data, given a reasonable limit in the number of

optimization iterations which can be performed in a timely manner (30 optimization itera-

tions in the current work represents approximately one week over 15 compute nodes).

Bayesian optimization does not operate in the same manner as a conventional gradient

based optimization routine. Instead, it operates probabilistically balancing exploration and

exploitation, meaning that sequential steps will not necessarily show improvement. As a

result, it is much clearer to track the so called regret, which follows the best currently

located parameters and associated loss. Figure 2 displays the mean regret trajectory over

the three independent Bayesian optimization runs and three independent random sampling

runs. The solid lines represent the lowest mean loss encountered at that iteration over the

three independent runs of the Bayesian optimization and random sampling. The shaded
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regions are the boot strapped (random sampling with replacement) 95% confidence intervals

calculated at each point over the three independent runs of the Bayesian optimization and

random sampling.

Figure 2: Comparison of optimized and randomly sampled runs. The boot strapped 95%
confidence bounds are shown by the shaded areas and the mean regret for each iteration over
three independent repetitions of random sampling and Bayesian optimization are displayed
as the solid lines. The zeroth iteration is set to the mean of the Bayesian optimization
training data for both the random and Bayesian optimization runs.

From Figure 2, the trend is clear, Bayesian optimization consistently achieves a lower

loss value (lower regret) faster than random sampling. This is an important first hurdle,

displaying the need for intelligent guidance in order to minimize the time to solution. This

test also suggests that the parameter space is sufficiently complicated that given the same

number of chances, one is unlikely to stumble upon the best solution.

The best force fields found in the independent runs themselves achieved the summary

statistics described in Table 4 and 5. The summary statistics clearly demonstrate the su-

periority of the Bayesian optimization runs, in which the RMSE from the best Bayesian

optimization force fields is substantially lower than the best random sampling force fields.
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Additionally, the R2 metric reveals better correlations between predicted and experimental

data for the Bayesian optimization runs compared to the random sampling runs. These

trends remain when the independent runs are considered in isolation rather than on average.

The data for each independent Bayesian optimization run is given in Table 5. Data on all

runs, including the independent random sampling runs is given in the SI.

Table 4: Summary statistics for the best trialled force field from each random or optimization
run over 30 iterations.

Run name R2 RMSE
Best from Random sample 0.63 1.2

Best from Bayesian optimization 0.78 0.63

LogP Predictions

In this section, we investigate the accuracy of the logP predictions and the optimal parame-

ters are explored for physical significance. Considering firstly all three Bayesian optimization

runs, one can see that the best force fields over the three runs appear to sit in two different

regions of parameter space. The data is shown in Table 5.
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Table 5: The best force fields found in each of the independent Bayesian optimization runs
and the best force field found from random sampling. In all cases the dissipative parameter
γij = 4.5 for all interactions. The dissipative cutoff for all simulations is set to 1.15. All
simulations were run in the NPT ensemble at a DPD temperature of 1 and pressure of 23.7,
which correspond to 25o and 1 atmosphere. Bond lengths, Rij, are applied to all simulations.

Interactions Rij Aij BO
run 1

Aij BO
run 2

Aij BO
run 3

Best
Random
Aij

CH2 − CH2 0.9250 21 21 9 15
CH2 − CH2OH 0.9370 22 22 22 26
CH3 − CH2 0.9410 19 19 19 25
CH3 − CH3 0.9570 36 36 32 26
CH3 − CH2OH 0.9525 49 53 49 43

CH2OH− CH2OH 0.9800 25 31 25 27
2H2O− CH2 0.9625 39 39 39 39
2H2O− CH3 0.9785 35 35 35 37
2H2O− CH2OH 0.9900 14 14 14 16
2H2O− 2H2O 1.0000 25 25 25 25

Loss 3.3 2.45 2.91 4.59
R2 0.72 0.78 0.77 0.63

RMSE 0.86 0.63 0.75 1.19

Looking at the results in Table 5 Bayesian optimization runs 1 and 2 seem to occupy a

similar region of parameter space with generally similar parameters except CH3 − CH2OH

and CH2OH− CH2OH, which differ by 4 and 6 DPD units respectively. However, Bayesian

optimization run 3 displays a slightly different force field suggesting potentially two related

regions of the parameter space which hold suitable force fields.

Across the three force fields, six interactions are the same; CH2 − CH2OH, CH3 − CH2,

2H2O − CH2, 2H2O − CH3, 2H2O − CH2OH and the reference interaction 2H2O − 2H2O.

Interestingly, this includes all four of the water interactions. This may be rationalized as the

solvents must remain relatively immiscible in order to provide an interface in the simulation

cell between the solvents, which is a requirement for a logP calculation to be carried out.

Therefore, interactions which maintain relatively immiscible solvents could be considered a

prerequisite for successful calculations. From the remaining four interactions, which are all

between the organic molecule bead types, the variation in performance of these force fields
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is derived.

In comparison to similar force fields, generated previously by some of the authors (RLA

and DB), published in Anderson et al ,11 the present force field offers greater flexibility in

terms of molecule definition. This is due to CH2 beads being defined as oppose to coarser

CH2 −CH2 beads, meaning that odd carbon chain lengths can be constructed. The present

force field and that of Anderson et al 2017, offer a comparable level of accuracy on the

training data in terms of logP predictions. However, this level accuracy is maintained over

the validation set in the present case, where as the previous attempt suffered a substantial

reduction in accuracy over the validation set. In addition to these scientific points, RLA

estimates the parameterization published in Anderson et al 2017 took approximately 16

weeks. The present parameterization effort took approximately 1.5 weeks from initializa-

tion to termination, hence the present method offers a substantial improvement in time to

solution.

Considering the results from Table 4, it is clear that Bayesian optimization run 2 provided

the best force field parameters considering the summary statistics. The optimal force field

in this run generated DPD logP predictions across the set of 15 systems with an RMSE of

0.63 log units and an R2 0.78 on the training set. Comparing this against the best force

field located by random sampling, which achieved RMSE 1.19 and R2 0.63, it is clear that

Bayesian optimization has arrived at superior force fields. The results are presented visually

in Figure 3.
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1-butanol heptane in water

1-butanol hexane in water

1-butanol 1-octanol in water

1-butanol heptane in water

1-butanol hexane in water

1-butanol 1-octanol in water

A – Best from Bayesian optimization B - Best from random sampling

Figure 3: Cyan beads are water, grey beads are the organic solvent and green beads are
the solute. Column A, left, represents the logP predictions over all 15 solutions for the
best force field encountered during Bayesian optimization . Column B, right, represents the
logP predictions over all 15 solutions for the best force field encountered during random
sampling. A representative example of the simulations employing both force fields is given
for the solute 1-Butanol in each of the solvent combinations. Y error bars represent the
standard deviation.

Considering Figure 3, it is clear that the best force field located by random sampling

is biased towards more positive logP s. In the system snapshots, one can visually verify

that fewer solute molecules are present in the aqueous phase, which would lead to a more
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positive logP . The grey dashed lines represent ±0.7 log units, the maximum spread found

in the experimental data for some solute molecules. In Figure 3, it is also notable that most

predicted points lie within this ±0.7 log unit error margin for the best force field found using

Bayesian optimization , and achieve a smaller standard deviation around this mean value (y

error bars). However, applying the best force field from random sampling, most points lie

outside of the ±0.7 log unit error margin and the standard deviation in some cases cannot

be calculated due to samples in which no solute molecules are found in one of the solvents.

Both force fields however, manage to maintain a solvent boundary between the water and

organic solvent, which is something that not all force fields that were trialed achieved.

In the simulations using the best force field, we can see that families of solute molecules

in the different solution mixtures follow the expected trends as the carbon chain lengths

increase. There is also an interesting observation that the logP(Oct/H2O) seems to follow a

different trend to the other definitions of logP . This is demonstrated by the separation of

the logP(Oct/H2O) systems lying clearly on a different trend, with a shallower gradient, to

the logP(Hep/H2O) and logP(Hex/H2O) systems. This is perhaps due to the slight miscibility of

water in octanol which is also present in the simulations.

Currently our loss function weights all points equally. This is chosen to insist that the

force field is generally applicable across this family of systems. However, this does mean that

a failed molecule can dominate the loss function, leading to a suggestion that the force field

is poor, which whilst true when considered over all systems, is not necessarily the case for all

other systems in the data set. Therefore, naturally the question of whether the accuracy in a

defined, potentially small set of molecules, is more important than general applicability could

be posed. In this work, there is an additional consideration; if we can automatically generate

these force fields in a small enough amount of time does general applicability matter? We

could simply generate bespoke force fields optimized for accuracy over generality. We believe

this is a topic for further work and consideration with a caveat that, even though the current

work shows a substantive reduction in the time to generate a force field compared to some
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of the authors previous work, another considerable reduction in the time to solution would

be needed to make such a suggestion practical.

Validation

In this section we validate the force field parameters. Figure 4 shows the results from a

validation set of four similar molecules with experimental logP ’s. One can see clearly that

the validation set lies on the same trend lines as the training data as shown in Figure 4.

Having added the validation data to the training data the summary statistics remain similar

R2 0.8 and RMSE 0.65, compared to the training set R2 0.78 and RMSE 0.63. In comparison

to some of the authors previous work this model maintains its accuracy from training into

the validation data. Previous work showed a notable increase in RMSE when moving from

training to validation set.11
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Figure 4: logP validation test. Blue data were included in the training set discussed above.
Red data were used as validation set.

Future work

We believe there are areas where further improvements can be made, which will require sub-

sequent thorough investigations. Of particular note, investigations detailing the effects of

different kernel choices for the Gaussian process and acquisition function for Bayesian opti-

mization need to be investigated. Additionally, the effects of varying the loss function should

be considered together with the questions of transferability and multi-objective optimization.

There are also further questions about how best to access the potential parameters, which

rest between the grid points we have defined and how to automatically determine the opti-

mal coarseness of the model. However, we do believe this novel method holds much promise,
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owing to its efficiency, relative ease of automation and low compute overheads.

Conclusions

In conclusion, we show that Bayesian optimization can be effectively applied to optimize a

molecular force field, which is treated as a black box function. Having provided 10 randomly

selected initial data points Bayesian optimization finds a force field with an RMSE of 0.63

log units and an R2 of 0.78 for the training set in 30 optimization iterations. This level of

accuracy is in line with current state of the art cheminformatics models. This force field has

been found in approximately 1.5 weeks, with no human intervention once the process had

begun, demonstrating Bayesian optimization’s ability to automatically discover good regions

of parameter space for molecular interaction potentials. This is in comparison to the sixteen

week time frame that resulted in the development of parameters in Anderson et al.201711

Over several separate instantiations of Bayesian optimization and random sampling, we

show that Bayesian optimization locates a superior force field faster. We also note that

the observable parameter, in this case logP , is much more poorly predicted by even the

best of the randomly sampled force fields. The best force fields from all of the independent

Bayesian optimization instantiations provide reasonable predictions with RMSE’s and R2

values in line with state-of-the-art models.

Considering the current state-of-the-art force fields available for DPD, and the methods

employed to generate these force fields, we believe our approach is arguably one of the most

efficient taking approximately 1.5 weeks, start to finish, to generate a good force field over

a modest data set with relatively modest compute resources (15 compute nodes). Many

state-of-the-art DPD force fields have been generated by hand requiring months, possibly

years, of a researcher’s time. In this work, we also see that the force field which is found

has similar predictive accuracy for logP compared to other DPD force fields. Additionally,

the force field is shown to be stable in its predictive accuracy over a small validation set to
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a greater extent than in other state-of-the-art DPD force fields.11

Acknowledgement

The authors thank Michael Johnston, Bill Swope and Kirk Jordan for many stimulating

discussions that helped shape the work contained in this article. This work was supported

by the STFC Hartree Centre Innovation: Return on Research programme, funded by the UK

Department for Business, Energy & Industrial Strategy.

References

(1) Car, R.; Parrinello, M. Unified Approach for Molecular Dynamics and Density-

Functional Theory. Phys. Rev. Lett. 1985, 55, 2471–2474.

(2) Tuckerman, M. E. Ab initio molecular dynamics: basic concepts, current trends and

novel applications. Journal of Physics: Condensed Matter 2002, 14, R1297.

(3) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S. a.;

Karplus, M. CHARMM: a program for macromolecular energy, minimization, and dy-

namics calculations. Journal of computational chemistry 1983, 4, 187–217.

(4) Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.; Cheatham III, T. E.;

DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. AMBER, a package of computer

programs for applying molecular mechanics, normal mode analysis, molecular dynam-

ics and free energy calculations to simulate the structural and energetic properties of

molecules. Computer Physics Communications 1995, 91, 1–41.

(5) Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; De Vries, A. H. The

MARTINI force field: coarse grained model for biomolecular simulations. The journal

of physical chemistry B 2007, 111, 7812–7824.

25



(6) Rudd, R. E.; Broughton, J. Q. Coarse-grained molecular dynamics and the atomic limit

of finite elements. Phys. Rev. B 1998, 58, R5893–R5896.

(7) Groot, P. B., Robert D.Warren Dissipative particle dynamics: Bridging the gap between

atomistic and mesoscopic simulation. The Journal of Chemical Physics 1997, 107,

4423–4435.

(8) Espanol, P.; Warren, P. Statistical Mechanics of Dissipative Particle Dynamics. Euro-

phys. Lett. 1995, 30, 191.
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(37) Reith, D.; Pütz, M.; Müller-Plathe, F. Deriving effective mesoscale potentials from

atomistic simulations. Journal of computational chemistry 2003, 24, 1624–1636.

(38) Izvekov, S.; Voth, G. A. A multiscale coarse-graining method for biomolecular systems.

The Journal of Physical Chemistry B 2005, 109, 2469–2473.

(39) Schnackenberg, L. K.; Beger, R. D. Whole-molecule calculation of log P based on

molar volume, hydrogen bonds, and simulated 13C NMR spectra. Journal of chemical

information and modeling 2005, 45, 360–365.

29



(40) McDonagh, J.; van Mourik, T.; Mitchell, J. B. Predicting melting points of organic

molecules: applications to aqueous solubility prediction using the general solubility

equation. Molecular informatics 2015, 34, 715–724.

(41) Lyubartsev, A. P.; Jacobsson, S. P.; Sundholm, G.; Laaksonen, A. Solubility of Organic

Compounds in Water/Octanol Systems. A Expanded Ensemble Molecular Dynamics

Simulation Study of log P Parameters. The Journal of Physical Chemistry B 2001,

105, 7775–7782.

(42) Anderson, R. L.; Bray, D. J.; Del Regno, A.; Seaton, M. A.; Ferrante, A. S.; War-

ren, P. B. Micelle Formation in Alkyl Sulfate Surfactants Using Dissipative Particle

Dynamics. Journal of Chemical Theory and Computation 2018, 14, 2633–2643.

(43) Shkurti, A. https://www.scd.stfc.ac.uk/Pages/carol.aspx 2018,

(44) Chen, J.; Xin, B.; Peng, Z.; Dou, L.; Zhang, J. Optimal contraction theorem for

exploration–exploitation tradeoff in search and optimization. IEEE Transactions on

Systems, Man, and Cybernetics-Part A: Systems and Humans 2009, 39, 680–691.

(45) Auer, P. Using confidence bounds for exploitation-exploration trade-offs. Journal of

Machine Learning Research 2002, 3, 397–422.

(46) Tan, K. C.; Chiam, S. C.; Mamun, A.; Goh, C. K. Balancing exploration and exploita-

tion with adaptive variation for evolutionary multi-objective optimization. European

Journal of Operational Research 2009, 197, 701–713.

(47) Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine

Learning Research 2011, 12, 2825–2830.

(48) Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R. P.; De Freitas, N. Taking the human

out of the loop: A review of bayesian optimization. Proceedings of the IEEE 2016, 104,

148–175.

30



(49) Brochu, E.; Cora, V. M.; De Freitas, N. A tutorial on Bayesian optimization of expensive

cost functions, with application to active user modeling and hierarchical reinforcement

learning. arXiv preprint arXiv:1012.2599 2010,

(50) Jasrasaria, D.; Pyzer-Knapp, E. O. Dynamic Control of Explore/Exploit Trade-Off In

Bayesian Optimization. arXiv preprint arXiv:1807.01279 2018,

(51) Groves, M.; Pyzer-Knapp, E. O. Efficient and Scalable Batch Bayesian Optimization

Using K-Means. arXiv preprint arXiv:1806.01159 2018,

(52) Groot, R.; Rabone, K. Mesoscopic Simulation of Cell Membrane Damage, Morphology

Change and Rupture by Nonionic Surfactants. Biophysical Journal 2001, 81, 725–736.

(53) Venturoli, M.; Smit, B. Simulating the self-assembly of model membranes. PhysChem-

Comm 1999, 2, 45–49.

(54) Nagarajan, R. Molecular Packing Parameter and Surfactant Self-Assembly: The Ne-

glected Role of the Surfactant Tail. Langmuir 2002, 18, 31–38.

(55) Venturoli, M.; Sperotto, M. M.; Kranenburg, M.; Smit, B. Mesoscopic models of bio-

logical membranes. Physics Reports 2006, 437, 1 54.

(56) Sangster, J. Octanol-Water Partition Coefficients of Simple Organic Compounds. Jour-

nal of Physical and Chemical Reference Data 1989, 18, 1111–1229.

(57) Sangster, J. Octanol-water partition coefficients: fundamentals and physical chemistry ;

John Wiley & Sons, 1997.

(58) Bergström, C. A.; Norinder, U.; Luthman, K.; Artursson, P. Experimental and com-

putational screening models for prediction of aqueous drug solubility. Pharmaceutical

research 2002, 19, 182–188.

31
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