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Abstract

In this manuscript we present a model for simulating active electrochemical systems

using a classical molecular dynamics framework. We describe a computationally effi-

cient method of enforcing the electrostatic properties of constant potential boundary

conditions and demonstrate how this method can be adapted to support stochastic in-

terfacial charge transfer processes. We highlight the utility of this model by simulating

the nonequilibrium dynamics of a model battery system. We demonstrate the ability

of this model to support the formation of a stable double structure, consistent with

expectations from macroscopic equilibrium. We also illustrate how this model can be

used to provide microscopic physical insight into the results of standard potential jump

experiments.

1 Introduction

Chemical reactions at electrode interfaces are generally sensitive to the conditions of their

local molecular environment. Heterogeneity in these conditions – for example due to thermal

fluctuations in local electrolyte composition – cannot be resolved by most electrochemical

measurements, yet can play a central role in determining the overall kinetics and thermody-

namics of a given reaction.1,2 This heterogeneity can be modeled using molecular dynamics

(MD) simulations, however, incorporating the influence of chemical reactivity into MD sim-

ulations presents several challenges. In this paper, we describe an efficient model based on

classical MD that is capable of simulating the dynamics of interfacial charge transfer in a

fluctuating electrolyte solution confined between constant potential electrodes. We demon-

strate the utility of this model by presenting results of nonequilibrium simulations of a

generic reactive electrochemical system subject to an instantaneous change in the applied

electrode potential. As we highlight, these simulations can be extended to compute direct

experimental observables and relate them to the underlying molecular scale electrochemical

dynamics.
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The reactions that drive most electrochemical systems take place at the electrode-electrolyte

interface. The unique properties of this interface are primarily due to the physical character-

istics of the electrode and its influence on the adjacent electrolyte. The electrode serves as

a physical barrier that can support a tunable buildup of surface charge. This barrier breaks

the translational symmetry of the electrolyte, promoting the emergence of anisotropic and

possibly highly correlated interfacial molecular structure. The presence of surface charge

provides an electrochemical potential gradient, and an associated potential drop, that ulti-

mately leads to the formation of the electrical double-layer. In reactive systems, the electrode

provides a source or sink of electrons, thereby facilitating (and sometimes catalyzing) the

redox reactions that drive the flow of charge (and sometimes mass) in driven electrochem-

ical applications such as batteries. Capturing these interfacial properties in a single model

framework is challenging because their interactions span a wide range of characteristic time

and length scales.

A common solution to this challenge is to model the electrolyte as continuum that in-

teracts empirically with the electrode.3–5 Continuum modeling approaches have been widely

used in the analysis and interpretation of electrochemical measurements because they are

highly efficient and are easily extended to experimentally relevant time and length scales.

However, because these models are highly parameterized and contain very few specific molec-

ular details, they are not reliable as a predictive framework and therefore of limited use as

a basis for molecular insight and design.

Another common approach to modeling electrode-electrolyte interfaces is to utilize simu-

lation methods based on first-principles electronic structure calculations. Ab initio molecular

dynamics (AIMD), usually based on density functional theory (DFT), provides the ability

to explicitly describe the electronic rearrangements involved in electrochemical reactions.6

First-principles electronic structure and AIMD have been extensively used to compute re-

action mechanisms7,8 and energy barriers,9,10 as well as to describe molecular structure and

dynamics at the electrode-solvent interface.11 Despite having generated an enormous amount
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of valuable physical insight, these approaches are generally limited in scope to very small

systems (typically 100s of atoms over 10s of ps) due to the inherent computational expense

of electronic structure calculation. Connecting the results of these first-principles studies

to experimentally relevant systems therefore often requires assumptions about the role of

fluctuations, disorder, and molecular correlations in the extended system.

Classical molecular dynamics (MD) simulation can effectively bridge the system size gap

between continuum and first-principles modeling approaches. However, traditional force

fields lack the functionality to model constant potential electrodes or to simulate chemical

reactivity. Over the past 20 years, numerous methodological advances have targeted this

lack of functionality. This includes the development of methods for simulating constant

potential electrodes,12,13 reactive force fields for simulating bond making/breaking,14,15 and

stochastic approaches to modeling interfacial electron transfer events.16 Despite these sep-

arate advances, there have been no MD-based models that combine both tunable constant

potential electrodes and the capability for interfacial electron transfer which is sensitive to

fluctuations in the electrolyte system.

In this paper, we present a model for elecrochemically active and electrostatically con-

sistent electrodes held under constant potential conditions that is fully compatible with

standard classical molecular dynamics. Specifically, this model (i) treats the constant poten-

tial boundaries in a computationally efficient manner, (ii) allows for outer-sphere oxidation

and reduction at both electrodes, and (iii) can include the effect of ion intercalation into the

electrode, so that both the total charge and number of redox-active particles in the electrolyte

can fluctuate throughout the course of the simulation. We demonstrate the application of

this model by simulating a nanoscale Li-ion-type battery system, such as illustrated in Fig. 1.

The physical processes that determine the performance of this type of battery system, namely

interfacial electron transfer and the transport of ions across the interface and through the

electrolyte, cannot be simulated with standard classical MD. The functionality provided by

our model enables a computationally efficient simulation of the microscopic dynamics of the
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electrolyte-electrolyte interface under operating conditions.
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Figure 1: A diagram of a model battery system. Two electrodes are held at a constant
potential difference, ∆V . V0 and V1 set the chemical potential of electrons in the electrodes,
µanode and µcathode, respectively. Current is driven by the preference for oxidative formation
of cations at the anode (1a at the left-hand electrode) and reductive elimination of cations at
the cathode (1b at the right-hand electrode), and mediated by the diffusion of cations across
the electrolyte (2). Thus, the overall performance is dominated by ion migration through
the electrolyte and redox reactions at the electrodes.

One of the primary challenges in modeling an electrochemical cell is efficiently handling

the electrostatic interactions between the electrodes and the electrolyte. To capture the

correct electrostatic behavior, proper treatment of the simulation cell boundary conditions

and electrode polarizability are essential. Because of the long-range nature of Coulomb

interactions, distance-based cutoff methods give the incorrect asymptotic behavior17 and

the periodicity of the system needs to be considered carefully. Here we focus specifically on

simulation cells with parallel planar electrodes positioned at the boundaries of the z directions

and periodically replicated in the other x and y directions. Figure 2 shows the difference

in long range symmetry between a bulk system periodically replicated in all directions and

a two-dimensional slab system appropriate for modeling an interfacial system. Summation

techniques for the calculation of electrostatic forces and energies in a two-dimensional slab

system exist, but are more computationally expensive and less numerically robust than a

standard three-dimensional calculation.18

Another challenge in modeling electrochemical systems is describing the surface charge
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Figure 2: A schematic comparison of I. a fully three-dimensional periodic system and II.
a slab system with finite width in the z direction. Both systems are illustrated in two-
dimensions for convenience.

of the electrode. A straightforward approach is to treat the electrode as a constant and

uniformly charged surface. However, despite being easy to implement and computationally

efficient, this approach lacks important physical effects, such as the ability to polarize in re-

sponse to local charge fluctuations, that can qualitatively alter the static and dynamic prop-

erties of the electrode-electrolyte interface.19 Under constant potential conditions, surface

charge distribution polarizes in response to nearby charge density. A variational procedure,

introduced by Siepmann and Sprik 20 and applied to electrochemical cells by Madden and co-

workers,12,21 enforces the constant potential condition by allowing the charge on individual

electrode atoms to fluctuate based on the surrounding environment. While computationally

expensive, this method has the distinct advantage of being able to enforce a constant po-

tential condition in systems with non-planar electrodes. In systems with planar electrodes,

Perram and Ratner have shown that constant potential conditions can be enforced using

explicit image charges.22 More recently, Voth and coworkers have developed a computation-

ally efficient procedure for enforcing constant potential boundary conditions based on use

of image charges.13 Here, we build upon these efforts by reformulating the image charge

approach for describing constant potential electrodes so that the forces and energies can be

computed using the more efficient, full three dimensional Ewald summation.

Methods for including redox reactions in classical molecular dynamics necessarily neglect

most electronic detail. In this paper, we limit our scope to simple Marcus-type outer sphere
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electron transfer, where the active species is not electronically coupled to the electrode.

The standard method for calculating electron transfer rates using classical MD simulation

are based on the generation of free energy surfaces for the reactant and product states by

sampling the equilibrium fluctuations in the vertical energy gap (i.e., the canonical Marcus

theory reaction coordinate). With this method, the average kinetics of the electron transfer

can be inferred from Marcus free energy curves and the average Marcus rate can be applied to

treat the interconversion of products and reactants at an electrode boundary in nonequilib-

rium simulations.13 To account for the effects of spatial and temporal variability in electron

transfer rate, Subotnik and coworkers have developed a surface hopping method where the

probability of electron transfer for a given redox active species is related to the instantaneous

value of its vertical energy gap. This method inherently encodes the concentration depen-

dence of the rate and allows for the study of correlations between electron transfer events.

We build upon this method to include the mass transfer associated with the exchange of

electrochemically active ions between the electrolyte and the electrode material.

The structure of the paper is as follows: First, in section 2 we describe a computationally

efficient method for enforcing the constant potential boundary conditions and compare the

results and complexity to existing methods. We then describe the model for electron and

mass transfer. The details of the implementation of the two methods are briefly described

in section 2.4. Finally, in section 3 we present results from a nonequilibrium simulation of a

model battery system.

2 Methods

2.1 Enforcing Constant Potential Boundary Conditions

The distribution of charge within a constant potential electrode can fluctuate in response to

the dynamics of charged species within the electrolyte. The ability to properly describe these

fluctuations is essential for understanding the equilibrium and nonequilibrium properties of
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the electrode-electrolyte interface. Here, we consider model systems that are bounded by

two parallel, planar, polarizable electrodes, each with an independently assigned voltage.

Each electrode imposes a boundary condition where the value of the electrostatic potential

is equal to the assigned electrode voltage at all points along the electrode surface.

We define our coordinate system so that the electrode boundaries lie along the z-axis,

with one electrode at position z = 0 and the other at position z = d, as illustrated in

Figs. 2 and 3. We decompose the constant potential conditions in to two components. One

component that describes the polarization fluctuations that are native to neutral constant

potential electrodes and one component that describes the uniform electric fields that result

from charging the electrodes. This decomposition is possible due to the additive nature of

electrostatic interactions.

We enforce the neutral component of the constant potential condition at each boundary

using the method of image charges reflected across the two planes at z = 0 and z = d.

Reflecting all charges, including images generated by previous reflections, across both elec-

trode planes leads to a periodic system consisting of the active system of interest, a reflected

system, and infinite periodic replicas as illustrated in Fig. 3. The active and reflected system

together compose an electrostatically neutral repeat unit, extending from z = −d to z = d,

which is periodic in all three dimensions. Perram and Ratner showed using a Green’s func-

tion formalism that the total electrostatic energy in such a system is exactly twice that of

a slab system sandwiched between two ideal metal boundaries.22 This configuration ensures

that the potential at z = 0 and z = d are zero, while also transforming the system to a

fully three-dimensional periodic system (see Fig. 2I) where electrostatic interactions can be

calculated using the more computationally efficient and robust family of fully three dimen-

sional k-space summation techniques (e.g. pppm23). Further computational speedup can be

gained by exploiting the symmetry of the unit cell.22

To enforce the electrostatic effect of a potential drop ∆V across the cell, we introduce a

uniform field of magnitude ∆V/d between z = 0 and z = d along the z-axis which preserves
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a constant potential along each image plane. Notably, in an isolated system the absolute

value of the reference potential is irrelevant and so we pin it to the z = 0 electrode. As such,

this system setup corresponds to an electrostatic potential of Ψ = 0 at z = 0 and Ψ = ∆V

at z = d, as described in more detail in Appendix A.

In theory, the field generated by the potential drop has magnitude −∆V/d in the region

z = −d to z = 0 giving a repeat unit with a net field of zero. In practice, only the forces in the

active system need to be calculated to propagate molecular dynamics since the configuration

of the reflected system is completely determined by the configuration of the active system.

active system
reflected system

+-

+

+

repeat unit
x z

y

-

-

z=0 d-d

Figure 3: A schematic representation of the periodic system. The two parallel image charge
boundaries at z = 0 and z = d lead to repeating symmetry due to a recursive introduction of
image charges. The periodicity in the y dimension is directly analogous to the x dimension.
The blue lines show the electrostatic potential drop due to the uniform field.

2.1.1 Active System Energy

The method of image charges ensures that the electrostatic potential is correct within the

active system (i.e. the volume confined between the electrodes), but interactions between

particles in the reflected system are not physically meaningful. The energy of the active sys-

tem therefore includes all active-active and active-image coulomb interactions, but excludes

all contributions from image-image interactions. The forces on the active particle are derived

from this energy. Since force calculation can be restricted to atoms within the active system,

propagating the dynamics of the active system using molecular dynamics is straightforward.
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Including short range, nonbonded energy terms and the electrostatic potential energy

described above, the total active system potential energy Uact is given by,

Uact({r},∆V ) = USR({r}) + UCoul({r}) + UF ({r},∆V ), (1)

where {r} denotes the nuclear configuration of all members of the active system, USR is the

potential energy of the system due to short range (e.g., Lennard-Jones-type interactions)

within the active system (and its periodic replicas), UCoul is the electrostatic energy of the

active system (including its interactions with image charges), and UF is energetic contribution

of the potential drop on the active system. The short-range contribution is typically given

by,

USR({r}) =
Nact∑
〈ij〉

wSR(ri, rj) +
Nact∑
i

wwall(ri), (2)

where the summation denotes a sum over all unique pairs of particles, wSR is the pair-wise

shortwave interaction potential between particles, and uwall describes the interaction between

particles and the electrode surface. The Coulomb contribution can be expressed as,

UCoul({r}) =
Nact∑
i

qiΦ(ri), (3)

where qi is the charge on species i and Φ(r) is the electrostatic potential (due to active

species, inactive species, and their periodic images) evaluated at position r. the contribution

from the potential drop is given by,

UF ({r},∆V ) =
Nact∑
i

∆V qizi/d, (4)

where zi is the position of species i along the z-axis.

From a practical standpoint, we want to implement the system in such a way that the

total active system energy can be calculated using existing standard molecular dynamics
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(MD) routines. For the Coulomb interactions, the active system energy is exactly half

the total energy of the repeat unit which can be calculated using an Ewald summation or

faster particle-mesh techniques.22,24 For short-range interactions, treating the reflected sys-

tem atoms as point charges with no short-range interactions means that the calculated total

short-range energy can be used as-is. For the contribution to the potential due interactions

with the constant field, only charges in the active system should be included.

2.1.2 Comparison to existing methods

As discussed in the introduction, there are several existing methods for including electrode

boundary conditions in MD simulations of electrochemical systems. Table 1 shows a sum-

mary of the highlights and limitations of each method. The first two columns indicate

whether a method correctly reproduces the phenomena of conducting electrodes at zero ap-

plied voltage and when the boundaries are held at an applied potential. The third column

indicates whether the method can be applied to systems without planar electrodes. The last

column uses the number of charged particles in a system as a proxy for the computational

cost of the method. N is the number of charged particles in the active system and this

column gives the total number of charged particles required in the total system. Since cal-

culating electrostatic interactions scales roughly as M3, where M is the number of charged

particles, it is often the most computationally expensive step of MD simulation.

Although conceptually simple and computationally efficient, constant distribution of

charge on the electrode surfaces fails to reproduces the results of experimentally relevant

conducting, or constant potential, boundary conditions. By adding an explicit term for

the applied potential to the method developed by Perram and Ratner,22 we are able to

leverage the computational benefits of fewer charged particles and a fully three dimensional

periodicity in a system with a potential bias.

In order to verify the equivalency of this method to previous methods, we compare the

energy contributions of a test charge in a simulation held at constant potential. We have
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Table 1: Comparison of methods for including electrode boundary conditions

Const. Potential Const. Potential Non-planar System System
at ∆V = 0 at ∆V 6= 0 Electrodes Size Symmetry

constant charge x x X N 2D-slab
Ratner22 X – x 2N 3D
Madden12 X X X – a 2D-slab
Voth13 X X x 3N 2D-slab
This paper X X x 2N 3D

a This method adjusts the charges on the electrode atoms in the simulation through an
iterative procedure. Each step of this iteration requires a full electrostatic calculation so
the computational cost also includes a factor of the number of iterations required.

recreated a version of the validation system, System I, used by Voth and coworkers where the

image planes reside at z = 0 and z = 51.1 Å.13 The cell is 50 Å in the x and y dimensions.

A single charge of q = −e was placed at the center of the x and y directions and energy was

measured as a function of z position. For comparison to the energies obtained by Voth and

coworkers, an arbitrary energy constant was added to the results from these simulations since

there are no explicit electrode atoms in this simulation and an addition of a constant energy

term does not affect the magnitude of the calculated forces used to propagate dynamics in

section 3. Figure 4 shows that the total system energy for System I as a function of the test

charge position. In agreement with previous methods, the total energy of a charged particle

between biased electrodes includes a nonlinear term due to image charge effects and a linear

term whose slope is determined by the applied potential.

2.2 Electrochemical boundary conditions

We model charge transfer as a stochastic process with a rate that fluctuates in response

to the dynamics of the electrolyte. In this manuscript, we consider the case of coupled

ion-electron transfer that would correspond to the intercalation or deintercolation processes

that drive the performance of Li-ion batteries. We model this process in the limit where

adiabatic effects are fast compared to the simulation time step and thus are only described
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Figure 4: Energy of a test charge as it is moved perpendicular to the electrode surface. Open
shapes are the results from the iterative method by Siepmann and Sprik,20 closed shapes are
the energies obtained by Petersen et al.,13 and lines are the method described in this paper.
Squares and the solid line represent the total energy of the active system while long-dashed
and circles mark the contribution to the total energy due to image charge interactions and
the short-dashed and triangles mark the contribution due to the applied potential.
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empirically. Specifically, we express the probability per unit time for creating a new ion or

removing an existing ion (i.e., deintercalation or intercalation, respectively) as a function of

the energy change to create a neutral particle at the interface and then pass a charge to it

(or vice versa). The procedure we describe can be easily simplified to model the case where

only charge (and not mass) is transferred.

As an example of our procedure, consider the deintercalation of a cation, as illustrated

in Fig. 5. We model this concerted process as the product of two sequential steps. We first

insert a neutral dummy particle into the electrolyte at the electrode interface and then we

pass an electron from the particle to the electrode to create a cation. We express the total

probability for this event as a product of probabilities to perform each step independently.

More formally, we express the probability for adding a new cation to the system as,

Pox = P (1)
ox P

(2)
ox , (5)

where P
(1)
ox is the probability to insert a neutral particle at a specific position in the system

and P
(2)
ox is the probability for outer-sphere electron transfer from the neutral particle to the

electrode.

The probability for the first step is given by a standard grand canonical Monte Carlo

acceptance criteria,

P (1)
ox = min

[
1, exp

(
−β∆U (1)

ox

)]
, (6)

where 1/β = kBT – the Boltzmann constant times temperature – and ∆U
(1)
ox is the energy

change associated with the addition of the neutral particle.25 This expression does not include

a term for the chemical potential or fractional volume element of the neutral test particle since

the neutral particle is replaced with a positively charged ion if the oxidation is successful.

The probability for the second step is taken from the method of Subotnik and coworkers,16

where the energy to remove an electron from the simulation is compared to the distribution
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Figure 5: The leftmost panel shows the system where a site (shown as a dotted circle) might
be the site of a new cation. The middle panel shows the change in nuclear positions as-
sociated with the insertion of a neutral test particle. The final panel shows the electronic
rearrangement necessary to result in a positively charged ion in the simulation box. ∆U

(1)
ox

and ∆
(2)
red involve a change in nuclear configuration and thus are compared against a Boltz-

mann distribution to determine a probability of success. ∆U
(2)
ox and ∆

(1)
red involve a change in

electronic configuration and are compared to the density of electronic states in the electrode.

of unoccupied electronic states in a metal. Specifically,

P (2)
ox =

Γ(z)

1 + exp
(
Velectrode − β∆U

(2)
ox

) , (7)

where Γ(z) is the distance dependent electronic coupling between the particle and electrode,

Velectrode specifies the Fermi level of the electrode, and ∆U
(2)
ox is the energy change associated

with the charge transfer, which includes contributions from all induced image charges. We

use Γ(z) = Γ0exp(−∆z/λ), where Γ0 is the normalized maximum coupling strength, ∆z

is the closest distance between the particle and the electrode surface, and λ is a decay

parameter.

We define the probability for the reverse process, i.e., cation reduction and intercallation,

analgously to Eq. 5. Specifically, we define,

Pred = P
(1)
redP

(2)
red =

 Γ(z)

1 + exp
(
β∆U

(1)
red − Velectrode

)
min

[
1, exp

(
−β∆U

(2)
red

)]
, (8)

where ∆U
(1)
red and ∆U

(2)
red correspond to the change in system energy associated with electron
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transfer from the electrode to the cation and the removal of the remaining neutral dummy

particles, respectively.

This method describes a process where the change in charge state is accompanied by an

intercalation of the species into the electrode, removing it from the electrolyte. In a system

where an electrochemically active species acts as a redox couple (i.e. both charge states are

solvated species) the particle insertion/removal steps are no longer required and this method

reduces to the model presented by Subotnik and coworkers.16

2.3 Simulation Details

All simulations were run using the open-source molecular dynamics software LAMMPS.26

Simulations included two oppositely charged ionic species with the same mass and radius.

The simulation box was 70 Å by 70 Å in the x and y directions with a 140 Å electrode

separation giving a total periodic z distance of 280 Å including the explicit image charges.

The initial concentration of each species was 1.2 mol/L . Solvent interactions were treated

implicitly using a Langevin thermostat with a damping time of 30 fs and temperature of

302 K. Ion-ion interactions were treated using a Lenard Jones 12-6 potential and Coulomb

interactions were calculated using the pppm method.23 The ion-electrode short range inter-

action was included using a wall interaction derived by integrating over a three-dimensional

half-lattice of Lennard Jones 12-6 particles.27 Simulations were run with a timestep of 0.5

fs.

Figure 6 shows a rendering of the active system (i.e. not including reflected system) for

scale.

2.4 Implementation Details

Separate fixes were developed to handle the image charge placement and the electrochemical

boundaries. For the image charges, the fix ensures that every charged atom in the active

system has a corresponding oppositely charged particle reflected across the image plane.
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Figure 6: A snapshot of the active system. Blue particles are negative ions and orange
particles are positive ions. The system is 7 nm by 7 nm by 14 nm.

The fix also keeps track when charged particles are added or removed from the system and

adjusts the image system accordingly which is necessary for the correct computation of the

change in energy due to the addition of a charge (e.g. ∆U
(2)
ox and ∆U

(1)
red).

For the electrochemical reactions, the routine is summarized below:

1. Attempt frequency: an appropriate frequency must be chosen to control how often a

redox event is attempted. Since each trial requires a full system energy calculation, we

choose a frequency that allows for a well-sampled system while avoiding computational

waste due to unnecessary attempts. This frequency can be adjusted to model the

dynamics of specific chemical systems.

2. Type selection: it is first decided whether a redox attempt will be an oxidation or

a reduction through a random selection. The probability of a reduction attempt is

freduction and oxidation is 1− freduction.

3. Site selection: The trial redox event is attempted at a randomly selected site. For

computational efficiency, the statistics of Γ(z) are used to weight the site selection

such that it is exponentially more likely that a site closer to the electrode is selected

for evaluation. For oxidation, the selected site becomes the center of mass for the

insertion of the test particle. For reduction of an existing particle, the selected site

serves as the center of a sphere with radius rsearch, within which any active cation

may be reduced. The exact relationship between freduction, rsearch, and the volume

concentration of active and inactive species is not considered in this work. Simulations
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in this work use freduction = 0.9 and rsearch = 2.8 Å

4. Acceptance criteria: equations 5 and 8 are used to calculate the probability of accep-

tance based on the energy differences. Note that the Γ(z) term is included in the site

selection statistics and is thus not included explicitly in the evaluation of equations

5 and 8. This probability is then compared to a pseudo-random number and on a

successful attempt the number of particles in the active system changes by one. On a

failed attempt, the system is reset to the previous configuration.

3 Results and Discussion

3.1 Emergent Double Layer Formation

One important benchmark is that the model is efficient enough to reach equilibrium condi-

tions under an applied field. For an electrochemical cell, this field arises from the differential

charge buildup on the electrode surfaces when held at a potential. Migration of the ions to

screen the field through the formation of a double layer structure can take times ranging

from microseconds to minutes (or longer) depending on the total concentration of mobile

charge carriers, viscosity of the electrolyte, and distance between electrodes since ions may

need to diffuse nearly the entire length of the cell.

Gouy-Chapman theory proposes that the distribution of these screening ions can be

understood by taking into account the electrostatic interactions between charged ions and

the surface as well as the entropic contribution of ion position.28 The resulting interfacial

potential can be solved using the Poisson-Boltzmann equation, and results in a diffuse layer

over which the interfacial field is screened. More sophisticated models include the effects of

finite-volume charge carriers and short-range interactions on the double layer structure.29,30

For simplicity, we will compare the results of our simulations to the linearized Poisson-

Boltzmann solution even though we expect the lack of excluded volume interactions to lead
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Figure 7: The equilibrium distribution of ions as a function of distance from the left elec-
trode. Upper and middle panels show the density of positive an negative ions normalized
by the average density with no applied field respectively. Field strength increases as the
color changes from teal to dark blue. The dashed black lines show the linearized Poisson-
Boltzmann solution for the highest applied field in the region near the left electrode. Lower:
The net charge density obtained by subtracting the negative ion density from the positive
ion density.
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to a more compact predicted double layer.

Figure 7 shows the average equilibrium distribution of ions for simulations with an applied

field ranging from 300 to 2700 MV/cm. Densities are normalized to the bulk concentration

at equilibrium and the net charge density is computed by subtracting the negative charge

density from the positive charge density. As expected, the Gouy-Chapman solution, shown

for the highest field as a dashed black line, predicts a more compact double layer structure

since charge can build up at the interface to an arbitrary density whereas real systems, and

this model, are limited by the finite volume of charge-carrying ions.

3.2 Current-Voltage Response
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Figure 8: The response of the model to an applied potential step. Upper: the difference in
potential between the two electrodes as a function of time. Lower: the solid black line plots
the current density through the system measured as a function of time. The red dashed line
is a fit to a single exponential decay plus an offset.

One strength of this model in comparison to those that use a fixed reaction rate is the

ability to better understand the non equilibrium behavior before a steady state is reached.

In order to verify that this microscopically defined model correctly reproduces the expected

macroscopic response, we computed an ensemble of trajectories where the system was first
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equilibrated for 140 ns with ∆V = 0mV and at time t = 0 the potential was instantaneously

increased to ∆V = 350mV.

The current density is computed by keeping track of the number of successful oxidations

and reductions at both the left and right boundary. The total average flux through the

system is then 1
2
abs

(
#e−in,left + #e−out,right

)
= 1

2
abs ([nred,left − nox,left] + [nox,right − nred,right])

per time interval. nox and nred are the number of successful reductions or oxidations at the

given boundary. It should be noted that while this count of electron transfer events gives

the Faradaic current through the system, this definition does not include the capacitive

current generated by the movement of charge within the cell. At steady-state, however, the

total current in an electrochemical cell has no contribution from nonfaradaic, or capacitive,

current. A future model which includes explicit enforcement of a voltage differential as

discussed in the previous section should address these issues.

Figure 8 shows the current density as a function of time averaged over 1000 independent

trajectories. At t < 0, fluctuations around zero are an indication that even at equilibrium,

there is still electrochemical activity with deviations from zero driven by thermal fluctuations.

At t = 0, the spike initial current in driven by the large difference between the initial

electrochemically active ion concentration at the interface and the concentration at steady

state. The decay to steady-state is fit well by an exponential decay plus an offset equal to

the steady-state current density, shown in the figure by the orange dashed line. Typically,

current decay due to a diffusion-limited depletion of active concentration at the interface

is characterized by a t−1/2 dependence,28 however we observe an exponential decay which

is characteristic of bulk depletion of a reactant due to a first order reaction. This is most

likely an indication that the chosen set of parameters favors a charge transfer limited current

instead of a diffusion limited current at early times. The current density for the simulation is

notably much higher than existing electrochemical cells. Factors contributing to this include

the inherently smoother dynamics of the implicit solvent and the large surface area to volume

ratio of the nanoscale cell. Incorporation of more chemical detail into the solvent dynamics
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will lead to slower reaction rates. The rate can also be tuned by varying the electronic

coupling decay parameter λ or the trial frequency for charge transfer events.

0 28 56 84 112 140
0

0.5

1

1.5

2

0 28 56 84 112 140
0

0.5

1

1.5

2

0

200

400

600

800

1000

1200

1400

tim
e 

(p
s)

Cation Density

Anion Density

N
or

m
al

iz
ed

 D
en

si
ty

Distance (Å)

Distance (Å)

N
or

m
al

iz
ed

 D
en

si
ty

Figure 9: The early-time concentration density as a function of Upper: the normalized
concentration profiles of the electrochemically active cations. At t = 0 (lightest) the voltage
in stepped from zero to 350mV. The concentration then decays at the left electrode and
increases at the right electrode, driving the change in current density seen in figure 8. The
darkest line is the density averaged over the t = 1.1ns to t = 1.4ns after the application
of the potential difference. Lower: The normalized density profiles of the electrochemically
inactive counterion (anion).

The response of the system to the potential jump can also be understood through the

response of the ion concentration profiles. Figure 9 shows the ion densities as a function of

time over the first 1400 ps after the application of the voltage difference. The cation density

at the left interface decays and the density at the right interface increases, setting up a

concentration gradient across the cell. The initial spike and decay in observed current is due

to the large charge transfer rate at the beginning when the chemical potential of the system

at the interface is far away from the chemical potential enforced by the electrode boundary

conditions. Additionally, at the left interface, the larger initial concentration of positive ions

at the interface leads to an increase in the probability of any one ion being reduced. As

the concentration at the interfaces approaches the steady state concentration, the reaction

rate at the interface decays to the steady state rate. The anion density changes much less
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dramatically than the cation density since any changes are second order effects due to the

Coulombic interactions with the density profile. The small increase in ion concentration at

the interface is due to image charge stabilization, the same interactions which lead to the

decay in free energy near the interface for an isolated ion shown in figure 4.

4 Conclusions

In this paper, we have implemented an electrochemically active model of a complete elec-

trochemical cell with molecular detail. By adding a term to account for the voltage bias, we

were able to leverage the efficiency of an existing method22 to compute accurate electrostatic

interactions. The electrochemical reactions were included as stochastic events using both the

vertical energy gap due to a charge transfer and the change in energy due to a particle in-

sertion/removal to determine the reaction probability. These methods, applied to a simple

test system reproduce the expected equilibrium and nonequilibrium response and provide a

toolset for understanding more complicated systems where electrostatic interactions, solvent

structure, and electrochemical driving play a role in complicating the ‘textbook picture’ of

the electrochemical interface.
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5 Appendix A: Electrostatic potential at the boundary

For simplicity, and without loss of generality, we can consider the metal boundaries to be

at z = 0 and z = d. For each particle in the active system at position ract = (xi, yi, zi) and

charge qi, the reflected particle is at position rref = (xi, yi,−zi) and has charge −qi.

The electrostatic potential Ψ in the active system in this system is given by eq 9.

Ψ(x, y, z) = zF +
∞∑

l=−∞

∞∑
m=−∞

∞∑
n=−∞

N∑
i=0

qi√
A+ (z − (zi + 2dn))2

+
−qi√

A+ (z − (−zi + 2dn))2

(9)

Note that the definition of A is given by equation 10 and involves the x and y contributions

to the distance which are the same for active charges and image charges.

A = (x− (xi + lx0))
2 + (y − (yi +my0))

2 (10)

The sums over l,m and n account for periodic images in the x, y, and z dimensions respec-

tively and N is the total number of atoms in the active system. x0 and y0 are the length of

the periodic cell in the x and y directions respectively.

The first term comes from including the reflection of each particle and the last term

accounts for the applied potential. By breaking the summation over n into a sum from 1

to infinity, we can rewrite the expression as shown in equation 11, where the n = 0 term

is accounted for by ψn=0 =
∞∑

l=−∞

∞∑
m=−∞

N∑
i=0

qi√
A+(z−zi)2

+ −qi√
A+(z−(−zi))2

. Note that ψn=0 = 0
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when z = 0

Ψ(x, y, z) = zF + ψn=0 +
∞∑

l=−∞

∞∑
m=−∞

∞∑
n=1

N∑
i=0

qi√
A+ (z − (zi + 2dn))2

+
qi√

A+ (z − (zi − 2dn))2

+
−qi√

A+ (z − (−zi + 2dn))2

+
−qi√

A+ (z − (−zi − 2dn))2

(11)

At the z = 0 plane, the first and fourth terms inside the the summation will cancel as will

the second and third terms. Thus Ψ = 0 at z = 0 as desired. Since the system is infinitely

periodic, we can rewrite equation 9 in terms of a repeat unit spanning z = 0 to z = 2d. In

this case, a repeat unit will include a particle at position zi and reflection −zi + 2d. Again

splitting the sum over n into two parts gives equation 12. With the shifted frame, the n = 0

term is now ψn=0 =
∞∑

l=−∞

∞∑
m=−∞

N∑
i=0

qi√
A+(z−zi)2

+ −qi√
A+(z−(2d−zi))2

. Note that here ψn=0 = 0

when z = d.

Ψ(x, y, z) = zF + ψn=0 +
∞∑

l=−∞

∞∑
m=−∞

∞∑
n=1

N∑
i=0

qi√
A+ (z − (zi + 2dn))2

+
qi√

A+ (z − (zi − 2dn))2

+
−qi√

A+ (z − (−zi + 2d+ 2dn))2

+
−qi√

A+ (z − (−zi + 2d− 2dn))2

(12)

Evaluated at z = d, the first and fourth terms inside the summation add to zero as do the

middle two terms. This gives a total potential of Ψ = dF = ∆V everywhere along the z = d

plane as desired.
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