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Abstract  

 The transcriptional regulator TtgR belongs to the TetR family of transcriptional repressors. It depresses 

the transcription of the TtgABC operon and itself and thus regulates the extrusion of noxious chemicals with 

efflux pumps in bacterial cells. As the ligand binding domain of TtgR is rather flexible, it can bind with a 

number of structurally diverse ligands, such as antibiotics, flavonoids and aromatic solvents. In the current 

work, we perform equilibrium and nonequilibrium alchemical free energy simulation to predict the binding 

affinities of a series of ligands targeting the TtgR protein and the agreement between the theoretical 

prediction and the experimental result is observed. End-point methods of MM/PBSA and MM/GBSA are 

also employed for comparison. We further study the interaction maps and identify important interactions in 

the protein-ligand binding cases. The current work sheds light on atomic and thermodynamic understanding 

on the TtgR-ligand interactions. 
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Introduction 

With the development of computational forces, computer simulations are becoming cheaper and more 

efficient. Before relatively costly experimental studies, it is better to predict the possibility of success through 

computational investigations. In material science and biophysics, the power of computer simulation is widely 

acknowledged.1-9 A series of computational models and algorithms have been proposed, and a number of 

software have been developed. For instance, VMD,10 CHARMM-GUI11-12 and built-in tools of MD software 

such as the leap module in AMBER have been developed for model constructions. Gaussian,13 Q-Chem,14 

GAMESS,15 NWchem,16 ORCA,17 and Terachem18 have been developed for quantum mechanical (QM) 

calculations. Software such as AMBER,19 CHARMM,20 GROMACS,21 LAMMPS,22 NAMD,23 and Tinker24 

are used for molecular dynamics (MD) simulations. The simulated systems become larger and larger. The 

descriptions of the system, the Hamiltonians, become more and more accurate. The resulted agreement 

between computational predictions and experimental outcomes is thus enhanced. 

 However, even with the most advanced computational power and the most efficient algorithms, MD 

accessible timescale still cannot fully satisfy the needs of researchers. We always want to build a box as large 

as possible to eliminate the finite-size effect,25-29 use Hamiltonians as accurate as possible,30-36 and simulate 

our systems as long as possible to get reliable and converged estimates.37-41 Normally, if there is no breaking 

or formation of chemical bonds, the polarization effect is not significant and the phenomena of interest happen 

at about several ns to ms, all-atom force fields are preferred to describe the motion of molecules. The statistical 

mechanical insights obtained from MD simulations rely on the ergodic assumption, where the time-averaged 

quantities are used to estimate ensemble averages. To obtain well-converged results from brute force 

simulations, there should be no rare events in the system. However, there are often slow motions that hinder 

the convergence of the simulation. To overcome the free energy barriers causing rare events, a series of smart 

sampling techniques are proposed. Examples of enhanced sampling techniques include umbrella sampling,42-

46 nonequilibrium steered MD,47-50 and various replica exchange methods in the temperature, Hamiltonian and 

pH spaces.51-56 As the systems of interest in modern research are often complex, an accurate description of the 

process often requires defining several collective degrees of freedoms. These important slow degrees of 

freedoms are often represented as collective variable (CV), reaction coordinate or order parameter. Even with 

proper definition of the important CVs, simulation in the high-dimensional CV space is complex and the 

computational cost is very high. If the only quantity of interest is the free energy difference between different 

states, such as the difference between the binding affinities of different ligands with the same protein, the 

simulation can be simplified with the so-called alchemical method. Alchemical free energy simulations 

construct alternative transformation pathways connecting the thermodynamic states and are widely applied in 

drug discovery,37, 57-64 pKa shift predictions,41, 65-67 solvation free energy calculations,68-71 protein-protein 



binding8, 72-75 and protein-DNA interactions.76 The free energy differences between different systems or states 

are obtained by alchemically switching the Hamiltonian from one state to another, and integrating the 

ensemble averages of the partial derivative of the alchemical Hamiltonian or reweighting via the Zwanzig 

equation or its derivatives.8, 41, 60, 68, 75, 77-81 The integration methods are termed as thermodynamic integration 

(TI)79-80 and the reweighting techniques are referred to as free energy perturbation (FEP)82 and acceptance 

ratio methods.83-85 Among all the equilibrium reweighting methods in the alchemical transformation, the 

acceptance ratio method of Bennett Acceptance Ratio (BAR) and its multistate variant named multi-state BAR 

(MBAR) have the best efficiency.41 The nonequilibrium extensions of FEP and BAR are Jarzynski’s Identity 

(JI)86-87 and Crooks’ Equation (CE).88 The nonequilibrium technique uses a different simulation protocol. The 

system initiates from equilibrated configurations. Its Hamiltonian is switched gradually from one state to 

another. The nonequilibrium work accumulated during the nonequilibrium pulling is used as input for 

reweighting. The nonequilibrium alchemical methods have been applied in a number of cases.41, 60, 68 Although 

the alchemical method is theoretically rigorous, it is often computationally demanding in large-scale 

applications. As a result, the less-detailed end-point methods named MM/PBSA and MM/GBSA89 are also 

popular in drug discovery. They can be very efficient but are less accurate.  

The bacteria resist naturally occurring deleterious compounds and antimicrobial agents of semi-synthetic 

antibiotics and biocides by expelling them with efflux pumps. The active major cell protective behavior 

transports deleterious chemicals from the cytoplasmic membrane to the external environment and thus reduces 

the concentration of the noxious compounds in the cell.90-92 The multidrug resistance efflux pump in Gram-

negative bacteria mostly belongs to one of the five bacterial efflux transporter families, the resistance-

nodulation-cell division (RND) superfamily.93-95 The expression of the multidrug resistance efflux pump is 

controlled by transcriptional regulators, such as TtgR of the non-pathogenic bacterium Pseudomonas putida 

DOT-T1E.96-97 They directly bind with the toxic chemicals and activate the efflux pump genes.  

The DOT-T1E strain has high resistance to noxious organic solvents.98 It has three essential RND efflux 

pumps, including TtgABC, TtgDEF, and TtgGHI.99 The transcriptional regulator of TtgR depresses not only 

the transcription of TtgABC operon but also the expression of itself. As an important member of the TetR 

family of transcriptional repressors,100-103 the TtgR operator has two functional domains: a highly conserved 

N-terminal helix-turn-helix DNA binding domain, and a less conserved C-terminal domain for dimerization 

and ligand binding.104-107 There is an angle of about 80° between the two domains. As the ligand binding 

domain has less sequence conservation, a number of structurally diverse ligands can be recognized by this site. 

Specifically, TtgR is able to bind with antibiotics, flavonoids and aromatic solvents.108-110 For instance, the 

antimicrobial properties of the flavonoids of quercetin, naringenin and phloretin lead to their abilities of 

binding to TtgR.111 The binding between the effector and TtgR often leads to the dissociation and the 



transcriptional activation of TtgABC and TtgR.96 The size, shape and the charge distributions of the ligands 

can differ significantly. The only common feature of the ligands is the existence of aromatic rings.  

All-atom understanding of the interactions between the transcriptional regulator TtgR and inhibitors is 

indispensable. Although experimental structures provide snapshots of the interaction networks in the complex, 

dynamics and short-lived interactions are missing. Therefore, in the current work, free energy simulations are 

performed to calculate the binding affinities between TtgR and its inhibitors. The comprehensive equilibrium 

and nonequilibrium alchemical methods are used and agreements between the predictions and the 

experimental values are obtained. We further test the performance of the end-point methods of MM/PBSA and 

MM/GBSA in the current case. After checking the accuracy of the predicted thermodynamics, we investigate 

the conformational ensemble and identify important interactions stabilizing the protein-ligand complex. We 

expect the current work to shed light on the understanding the TtgR-inhibitor interactions and the further 

development of possible drugs targeting this protein. 

 

Method and Computational Details  

System preparation. The structure of 2UXH, 2UXI, 2UXP and 2UXU are used to obtain the coordinate 

of the protein atoms.111 The missing residues in protein are added with the Modloop web interface.112 The 

AMBER14SB force field is used to describe the protein. The structures of ligands are obtained from the above-

mentioned pdb files and the PubChem Compound Database. The 2D chemical structures of the ligands 

considered in this work along with an illustration of the protein-ligand binding case are given in Figure 1. In 

the parameterization of the force field parameters for ligands, we perform geometry optimization on the ligand 

atoms at AM1-BCC113 level and then derive the atomic charges. The other parameters such as bonded terms 

and vdW radius are obtained from the GAFF force field.114 The systems are solvated with TIP3P115-116 water 

molecules following the 12 Å criteria, namely the minimum distance between the surface of the protein-ligand 

complex and the edge of the periodic box being larger than 12 Å. The truncated octahedron cell is replicated 

in whole space by periodic boundary conditions. Non-polarizable spherical counter ions of Na+ parameterized 

for TIP3P water model by Joung and Cheatham117-118 are added for neutralization.  

Free energy simulation. In order to compute the relative binding affinities between different inhibitors, 

we construct the thermodynamic cycle in Figure 2a. The closure of the thermodynamics cycle gives 

, , , ,bound PA PB unbound PA PB binding PB binding PAG G G G      . The right-hand side of the equation is the difference 

between binding affinities of protein-B and protein-A complexes, which is our aim in the free energy 

simulation. The double free energy difference in the left-hand side of the equation is the relative binding 

affinities between the ligand A and the ligand B, which is the quantity we extract from simulations. Two types 



of simulations are performed to obtain the two free energy differences in the left-hand side of the equation. 

The first term ,unbound PA PBG   is computed from the transformation between ligands in the absence of protein. 

In solution, ligand A is gradually mutated to ligand B along the alchemical pathway. Therefore, this calculation 

can also be understood as the calculation of the relative solvation free energy of the two ligands. The second 

term ,bound PA PBG   is obtained by similar mutation procedures in the presence of the protein.  

As the differences in structures of the ligands are relatively large, even with the help of the staging regime, 

the convergence behavior of transformations between different ligands is expected to be poor. To make the 

alchemical free energy simulation easier to converge, instead of selecting a reference ligand and then 

performing the transformation from it to the other ligands, we construct a transformation map shown in Figure 

2b, according to chemical intuition. In this transformation map, neighboring ligands share high similarities 

and thus the alchemical mutation introduces smaller perturbations to the system. 

The similar atom mapping technique is often used to improve the convergence behavior of alchemical 

free energy simulation. The method maps similar atoms in different inhibitors and sets the non-bonded 

parameters (i.e. atomic charges and vdW radius) in different ligands to be the same. To effectively and 

realistically represent the variation of force field parameters of ligands upon the alchemical mutation, in our 

transformation, we do not use this scheme. The whole ligand is included in the alchemical region and all non-

bonded parameters are allowed to vary. As a result, no two atomic charges share the same value in different 

ligands. This setting introduces much larger fluctuations compared with maximum similarity mixing regimes41, 

60 and thus has worse convergence behavior, but the true variation in Hamiltonians in mutating the ligand is 

represented more realistically.  

Equilibrium and nonequilibrium free energy simulation are performed along the alchemical pathway. As 

the difference between the full A state and the full B state is large, to increase the phase space overlap between 

neighboring states in equilibrium sampling and to reduce the dissipation in nonequilibrium pulling, we employ 

the staging regime or the stratification scheme. As the creation and annihilation of atoms at the end states in 

the vdW transformation results in vdW singularity,119-128 which hinders the convergence of the simulation, we 

employed the nonlinear separation-shifted softcore-potential119, 122-124, 129 to avoid the problem. Further, in 

order to simplify the procedure of the transformation, the softcore scheme is applied to both the vdW 

transformation and the charge transformation and the two types of mutation are performed altogether. Also 

due to the use of the soft-core potential, the linear mixing rule can be used to combine the Hamiltonians of 

two ligands to determine the Hamiltonians of the intermediate states. Another technical note is that the net 

charges of all ligands considered in the current work are zeros and thus the alchemical mutation does not 

introduce new charges to the system. Therefore, there is no need to add corrections for the non-equal charges 



of the two ligands for simulations with periodic boundary condition.  

Firstly, we provide details about equilibrium free energy simulations. In equilibrium alchemical 

transformation, the intermediate states are equally spaced from min 0.00   to max 1.00   with increments 

of 0.05eq  , leading to 21 states in total. The phase space overlap between neighboring states is checked 

with the quantitative estimator of phase space overlap named overlap matrix.130 The matrix relates non-linearly 

with the covariance matrix of MBAR. The matrix O in the current case is a 21 x 21 matrix and its element Oij 

gives the average possibility of finding a sample from state i at state j.130 According to previous experience, 

reliable free energy estimates can be obtained when the main diagonal and its neighbors are appreciably larger 

than 0.03.130 In each alchemical intermediate state, 9000 cycles energy minimization, 600 ps NVT heating 

from 0 K to 303 K and 2 ns NPT equilibration are performed in order to get rid of the bias due to the initial 

configuration. After equilibration, 2 ns production run with a sampling interval of 2 ps is performed to 

accumulate the times-eries data. Isotropic position scaling and Berendsen barostat is implemented to regulate 

the pressure. As there are 21 windows and 2 types of simulation (solvated ligand and protein-ligand systems), 

for each mutation of ligand the total sampling time is 84 ns. To get a theoretically rigorous estimate of 

statistical uncertainty, we calculate the autocorrelation time   of the partial derivative of the alchemical 

Hamiltonian 

i

H

  





130-131 and the statistical inefficiency 1 2   . The whole dataset is then subsampled 

by   to extract the independent data points.41, 60, 68 Three post-processing methods including TI with 

trapezoid rule for numerical integration,79-80, 132 the bidirectional reweighting regime of BAR,133 and multistate 

reweighting estimator of MBAR are used to extract the free energy estimates from alchemical free energy 

simulations.84-85 According to our previous experience, these three methods are among the most reliable and 

efficient free energy estimators based on equilibrium dynamics.41, 71, 134-135 

Secondly, we provide details about the nonequilibrium transformation. The initial configurations for 

nonequilibrium transformations are obtained during the above equilibrium alchemical transformation. As the 

window spacing used in equilibrium sampling is already dense enough for reliable reweighting with 

equilibrium perturbation-based estimators, to illustrative the feature of nonequilibrium pulling, we use a larger 

increment of 0.1non eq   , with which the instantaneous perturbation is relatively large. We calculate the 

statistical inefficiency and extract 100 independent configurations in each alchemical intermediate. 

Bidirectional pulling simulations are initiated from these uncorrelated configurations and nonequilibrium 

works are accumulated. The alchemical order parameter   is changed by 0.001 every 200 fs. According to 

our previous experience on nonequilibrium stratification in the alchemical space, this transformation speed is 



already very slow and able to obtain converged results with reasonable computational costs even in hard-to-

converge cases.41, 60, 68 The resulting overall computational cost in the nonequilibrium alchemical 

transformation is similar to that in the equilibrium one. According to our previous work, the overall statistical 

uncertainty is non-linearly dependent on the overall simulation time.48, 68 Thus, the overall statistical 

uncertainties in equilibrium and nonequilibrium transformation should be similar.  

As the alchemical method is computationally demanding for large-scale applications, often the more 

efficient but less accurate end-point free energy methods are employed. We thus perform end-point free energy 

calculations with MM/PBSA and MM/GBSA89 to compare their accuracy with the alchemical method. The 

protein-ligand complex is prepared in the same way as the alchemical free energy simulation, namely 

AMBER14SB for protein, GAFF and AM1-BCC charge for ligand, Na+ ions for neutralization and TIP3P 

water for solvation. For each protein-ligand complex, 5000 cycles of minimization and 2 ns NPT equilibration 

are performed. Then 100 ns production run with a sampling interval of 100 ps is performed to extract 1000 

configurations. The 100 ns sampling time is the typical length of sampling in applying the end-point methods. 

The 100 ps sampling interval is very long in MD simulation and we expect the obtain uncorrelated samples 

with such a setting. The gas-phase enthalpy changes and solvation free energies are calculated with the 1000 

independent configurations. The GBOBC model136-137 is used in GBSA calculations. All other settings remain 

their default values in AMBER.   

In all simulations, the SHAKE138 algorithm is employed to constrain bonds involving hydrogen atoms in 

protein, ligands and water molecules.139 The time step used is 2 fs. Langevin dynamics140 with the collision 

frequency of 2 ps-1 are implemented for temperature regulation. A cut off of 10 Å for non-bonded interactions 

in the real space is used and the long-range electrostatic interactions are treated with the PME method.141 MD 

simulations81 are performed with the AMBER19 suite and all other calculations are obtained with homemade 

codes. 

 

Result and discussion 

Convergence behavior of the free energy simulation. Firstly, we check the convergence behavior of 

the alchemical free energy calculation. Here, the example we choose is the transformation from AGI to LU2. 

These two ligands are structurally similar. The alchemical mutation between them includes the –OH 

substitution. As we include the whole ligand into the alchemical region and do not use similar atom mapping, 

the alchemical transformation is performed actually by annihilating AGI and creating LU2 at the same time. 

The phase space overlap in this case is checked with the overlap matrices, which are given in Figure S1. We 

notice that the elements of the overlap matrices are large enough for reliable reweighting.   



The ensemble averages and the time series of the partial derivative of the alchemical Hamiltonian, 

i

U
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, 

are shown in Figure 3. The charge distributions of the two ligands are also compared in Figure 3a, from which 

we know that the perturbation of the –OH substitution on the atomic charges is not very significant. In Figure 

3a, the ensemble average of 
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
 in the protein-ligand complex varies similarly with that in the ligand-only 

system, which indicates that both ligands perform similarly in protein-ligand complexes and solution. As a 

result, the overall free energy difference in the alchemical pathway is small. The time series of 
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 in 

Figure 3b are stable in all states and no multi-state behavior is observed. Therefore, the convergence of the 

alchemical free energy simulation is expected to be good.  

The end-point free energy simulation is performed for the normal length of 100 ns. The standard errors 

of the mean of the MM/PBSA and MM/GBSA results are given in Table S1, from which we know that the 

statistical errors are very small, indicating good convergence behavior. 

The quality of predictions. The quality of the computational predictions is assessed with the accuracy, 

the statistical uncertainty and ranking metrics. Firstly, we get an overview of the predictions. The ligand of 

AGI is used as the reference and we calculate the differences between binding affinities of it and all other 

ligands. The predictions from the alchemical and end-point free energy simulations are summarized in Table 

1. More detailed results of end-point methods are given in Table S1.  

Firstly, we discuss the alchemical predictions. The TI results suffer from large statistical uncertainties. Its 

bias is also large (c.a. 2 kcal/mol). This phenomenon is triggered by the non-linearity of 

i

U






, which leads 

to integration bias inevitably. By contrast, the perturbation-based BAR and MBAR are successful in bias 

elimination and thus provide predictions in agreements with the experimental values, as they rely on 

statistically optimal multi-directional free energy perturbation rather than numerical integration. The free 

energy estimates obtained from these two methods are very similar, which is expected when the phase space 

overlap is not very large. The statistical errors of BAR and MBAR are also much smaller than those of TI. 

The predictions of nonequilibrium pulling simulations are in agreement with the equilibrium results 

(specifically BAR and MBAR predictions), which indicates the convergence of the nonequilibrium pulling. 

The statistical errors of the CE results are very similar to those of BAR and MBAR, which is expected as both 

simulations are of similar lengths. Compared with the alchemical results, the end-point results are less accurate 

but with significantly smaller statistical errors. Therefore, the elimination of bias is the major concern in end-

point free energy simulations.  



After checking individual predictions, we focus on the error quantities of MSE, RMSE and MAE, which 

reflect the average errors of the predictions. Among alchemical methods, TI has the largest errors, while BAR, 

MBAR and CE share very similar error estimates. This phenomenon indicates that in the alchemical free 

energy calculation for protein-ligand binding, the statistically optimal perturbation-based estimators including 

the equilibrium methods of BAR and MBAR and the nonequilibrium CE are more efficient than that the 

integration-based TI. The values of the ranking metric PI are similar for all of the four estimators, indicating 

the correctness of the predicted rank. Namely, all of the alchemical methods can correctly predict the relative 

binding affinities. Therefore, if only the rank of binding affinities is of interest, TI is as effective as the other 

estimators. As for the end-point methods, the error quantities are much larger than the alchemical ones. The 

ranking metrics of MM/PBSA is smaller than 0, which indicates that the rank predicted is totally wrong. By 

contrast, the MM/GBSA has a PI of 0.6, which is as good as the alchemical methods. Therefore, the 

MM/GBSA method can be efficient in predicting the rank of binding affinities, although the absolute values 

of the end-point predictions are inaccurate. 

The comparison between the computational predictions and the experimental results are shown in Figure 

4a, from which we know that BAR, MBAR and CE predictions are the best among all methods, the TI results 

are a little worse than them and end-point methods provide the worst predictions. These observations are 

consistent with the previous discussions in the aspects of the error quantities and ranking information.  

We further decompose the free energy difference in the alchemical transformations in Figure 2b with 

MBAR reweighting. The enthalpic and entropic contributions to the free energy differences are provided in 

Table 2. The double enthalpy difference of complex ligandsH H H     and the double entropy difference 

T S   give the enthalpic and entropic changes during the alchemical mutation, respectively. The statistical 

uncertainties of the enthalpic and entropic contributions are much larger than those of the free energy 

differences in Table 1, which is triggered by the correlation between the statistical uncertainties of H  and 

T S  . In each alchemical transformation, the ligand-only systems have smaller statistical uncertainties than 

the protein-ligand complexes. Despite the size of the statistical uncertainties, we can still obtain some insights 

from this decomposition. The changes in enthalpy and entropy are plotted in Figure 4b, from which we notice 

that the sum of the enthalpic change and the entropic change is almost zero in all alchemical transformations. 

This phenomenon indicates the existence of the entropy-enthalpy compensation,142-144 which is widely 

observed in biological systems.145-153 The existence of such compensation emphasizes the importance of using 

the free energy difference rather than its enthalpic or entropic component in predicting the binding 

thermodynamics in drug discovery. 

 



Interaction patterns of the protein-ligand complexes. Aside from the thermodynamic information, we 

extract more detailed interaction patterns of the protein-ligand binding from simulations.  

Firstly, we calculate the number of hydrogen bonds between the ligand and its surroundings in complex 

and solvated ligand systems. The time series, mean and standard error of the mean of the number of hydrogen 

bonds are shown in Figure S2 and summarized in Table S2. We notice that for ligands except QUE, the 

numbers of hydrogen bonds formed in the solvated ligand system are larger than those in complexes. There 

are obvious differences between the numbers of hydrogen bonds formed for different ligands. 

Then, we investigate further details about protein-ligand interactions. As the crystal structures of protein-

ligand complexes are only available for some of the ligands under investigation, we use equilibrated structures 

to study the interaction map for protein-ligand binding. In Figure 5a and Figure S3, the interaction maps for 9 

ligands under consideration are shown. We can identify important residues contributing favorable interactions 

in protein-ligand binding.  

For 1NP, the interaction map tells us that SER77 forms stable hydrogen bonds with the ligand. From 

simulations, we also observe short-lived protein-ligand hydrogen bonds involving GLU78 and MET89. The 

ligand 2NP is structurally similar to 1NP and is a –OH substitution of 1NP. As a result, the interaction map of 

2NP is very similar to that of 1NP. Its extra –OH group forms weak hydrogen bonds with GLY140. For 27K, 

in the interaction map, the ALA74-27K hydrogen bonds seem to be stable. From the trajectories, we know 

that the GLU78 forms the most stable hydrogen bonds with the ligand, while the ALA74-27K hydrogen bonds 

are weaker. Short-lived hydrogen bonds involving GLY140 are also observed. For CLM, the interaction map 

shows two candidates of important residues, including ASP172 and HIS112. From simulations, we know that 

the ASP172-CLM interaction is strong, while the HIS112-CLM interaction is relatively weak. For G50, the 

interaction map gives ASN110 as the important residue for hydrogen bonding, while the trajectories give three 

important residues for hydrogen bonding, including ASN110, SER77 and CYS137. AGI is larger than all 

above ligands and its interactions are more complex. The interaction map gives three residues for hydrogen 

bonding, including ASP172, ASN110 and MET89. From trajectories, we identify one more residue of HIS112. 

For CUE, the interaction map gives ASN110, while the trajectories identify GLY140, LEU66 and HIS67 as 

important residues for protein-ligand binding. Short-lived CYS137-CUE hydrogen bonds are also observed. 

The interaction map of LU2 identifies ASN110, HIS67 and CYS137 as important residues, which is consistent 

with the observation from simulations. The last ligand of QUE is similar. The interaction map gives HIS67, 

ASN110, HIS114 and CYS137, which is consistent with the simulation results.  

Therefore, considering the discussion about important residues stabilizing protein-ligand complexes, the 

residues are in the regions of LEU66-HIS67, SER77-GLU78, MET89, ASN110-HIS114, CYS137-GLY140, 

and ASP172.  



As these interaction maps are extracted from a single structure, the dynamics of the system and the 

fluctuations of the interactions are not considered. We thus seek for ways to represent the fluctuation of the 

important stabilizing interactions during the simulations to get a better understanding. A better way to visualize 

the residue-specific interactions is the time series of contact numbers. The numbers of contacts between alpha-

C atoms and the ligand atoms are plotted in Figure 5b and Figure S4. The red dots and green dots represent 

regions in close contacts with the ligand and thus have stronger interactions. From these plots, we know that 

the above-mentioned regions are in strong interactions with the ligand. Further, these interactions are formed 

in the entire simulation. These observations indicate that the above-mentioned interactions stabilize the 

protein-ligand interactions and the binding pose formed is very stable.  

The time evolution of secondary structures are shown in Figure 6 and Figure S5, from which we can see 

how the secondary structures of protein change during the simulation. The secondary structures fluctuate and 

there is no obvious sign for conformational changes. The root-mean-squared fluctuation (RMSF) of C-α is 

calculated for different protein-ligand complexes, the results of which are shown in Figure 7. The RMSF plots 

for different complexes are similar, which indicates that the interactions between protein and ligands are 

similar. One exception is the protein-CLM complex. It seems that the protein-CLM complex has larger 

conformational fluctuations in several parts of the protein, such as the region of the 130th-140th and the 150th-

170th residues. This phenomenon should be triggered by the unique chemical structure of CLM, which results 

in different strengths of protein-ligand interactions.   

 

Conclusion  

In this work, free energy calculations are employed to investigate the binding thermodynamics of several 

ligands targeting the transcriptional regulator TtgR. The alchemical method with equilibrium and 

nonequilibrium dynamics is coupled with the statistically optimal reweighting estimators to extract the relative 

binding affinities. The end-point methods including MM/PBSA and MM/GBSA are also employed for 

comparison. The results suggest that the accuracy of the alchemical method is very good and the predicted 

ranks of binding affinities agree with the experimental value, while the end-point methods fail to provide 

accurate predictions of the binding affinities. However, MM/GBSA does predict the correct rank of the 

binding affinities, which suggests that the method may be useful in finding the hits in drug discovery. The 

enthalpic and entropic contributions are extracted from the free energy differences with MBAR reweighting. 

The enthalpic change upon the alchemical mutation is almost completely compensated by the entropic change, 

indicating the existence of the entropy-enthalpy compensation. Therefore, we should rely on the binding free 

energies rather than the binding enthalpies of entropies to determine the rank of ligands. Detailed investigation 

including the interaction patterns from the interaction maps extracted from equilibrated structures, the 



formations of intra-molecular hydrogen bonds, the number of contacts between protein backbone and ligand 

atoms, the fluctuation of secondary structures and the conformational fluctuations of protein backbone reveal 

the important residues stabilizing the ligands. These residues fall in the regions of LEU66-HIS67, SER77-

GLU78, MET89, ASN110-HIS114, CYS137-GLY140, and ASP172. The current work sheds light on the 

atomic details of the interaction between the transcriptional regulator TtgR and its inhibitors. 
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Table 1. Free energy differences computed via various methods ( TIG , BARG , MBARG , MM/PBSAG , 

MM/GBSAG ) as well as the corresponding experimental values ( EXPG , EXPG ). All values are in kcal/mol. 

The mean signed error (MSE), the mean absolute error (MAE), the root-mean-squared error (RMSE), and 

Pearlman's predictive index (PI) serve as quality measurements. The ligand of AGI is used as reference and 

thus its values are all zeros.  

Ligand EXPG  EXPG  
TIG  SD BARG  SD MBARG  SD CEG  SD MM/PBSAG  SD MM/GBSAG  SD 

1NP -5.3  1.4  4.0  3.3  1.8  0.7  1.5  0.8  1.9  0.8  -0.6  0.2  11.6  0.2  

2NP -5.8  0.8  2.0  3.5  -0.0  0.8  -0.1  0.9  0.8  0.9  2.0  0.2  12.5  0.2  

27K -6.5  0.2  2.0  3.1  0.4  0.7  0.5  0.8  0.3  0.7  -1.3  0.3  5.6  0.3  

CLM -6.9  -0.2  1.0  3.4  -0.1  0.7  -0.1  0.9  -0.7  0.8  9.7  0.3  5.4  0.3  

G50 -6.9  -0.2  1.6  2.2  0.1  0.5  0.2  0.5  0.1  0.4  -2.6  0.3  -2.4  0.3  

AGI -6.7  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CUE -6.6  0.1 -0.6 1.3 -0.7 0.3 -1.0 0.3 -0.6 0.3 6.4 0.3 5.3 0.2 

LU2 -7.1  -0.5 1.0 1.2 0.3 0.2 0.0 0.3 0.4 0.4 9.3 0.3 7.0 0.2 

QUE -8.1  -1.4 -0.2 2.1 -1.1 0.5 -1.0 0.5 -1.0 0.6 11.2 0.3 5.1 0.2 

RMSE     1.5   0.5  0.5   0.5  6.7  6.9  

MSE   -1.2  -0.1  0.0  -0.1  -3.8  -5.5  

MAE   1.3  0.4  0.4  0.4  5.1  6.0  

PI     0.7   0.7   0.6   0.8   -0.6   0.6   

 

 

 

 

 

 

  



Table 2. Free energy decomposition into enthalpic and entropic contributions from MBAR reweighting for 

transformations from the reference ligand AGI to another ligand in ligand-only and protein-ligand systems. 

The difference between the enthalpy change for mutations in protein-ligand complex and ligand-only 

system, complex ligandsH H H    , gives the enthalpic contribution to the difference between binding 

affinities, and the entropic contribution complex ligandsT S T S T S        can be obtained similarly. The 

free energy difference in each transformation in Table S1 can be calculated with the enthalpic and entropic 

components in this table via G H T S     . The relationship between the data in this table and those in 

Table 1 is H T S G     . All values are in kcal/mol. The reference ligand is AGI and thus all its 

values are zeros. 

Transformation 

ligands complex complex-ligands 

ligandsH  SD ligandsT S   SD complexH  SD complexT S   SD H  SD T S   SD 

27K-> 1NP 3.2 1.9 -2.9 1.9 33.9 12.1 -32.4 12.1 30.6 12.2 -29.5 12.2 

1NP->2NP -3.3 1.9 -0.8 1.9 0.0 19.9 -5.8 19.9 3.3 20.0 -4.9 20.0 

27K->G50 -29.6 9.1 22.0 9.1 16.8 29.6 -24.6 29.6 46.3 30.9 -46.6 30.9 

27K->CLM -25.7 3.6 14.6 3.6 30.2 34.2 -41.8 34.2 55.9 34.3 -56.4 34.3 

AGI->G50 -25.8 9.3 12.2 9.3 48.9 24.0 -62.3 24.0 74.7 25.7 -74.5 25.7 

AGI->CUE -22.3 2.1 -3.2 2.1 17.6 12.1 -44.6 12.1 39.9 12.2 -41.3 12.3 

AGI->LU2 -13.1 3.7 5.0 3.7 -9.2 12.2 1.1 12.2 3.9 12.8 -3.9 12.8 

LU2->QUE -12.0 5.2 13.1 5.2 -49.9 24.5 50.2 24.5 -37.9 25.1 37.1 25.1 

 

 

  



 

Figure 1. An illustration of ligand binding to transcriptional regulator TtgR is given at the center. The ligand 

AGI is used to generate the picture. The charge maps of the 9 ligands binding to TtgR are shown around the 

complex. Their 2D chemical structures are shown in Figure 2.  

 

  



 

Figure 2. a) Thermodynamic cycle used to compute the relative binding affinities between different ligands. 

A and B denote two ligands binding at the same site, Protein-A is the protein-ligand complex and Protein+A 

refers to unbound protein and ligand. ,binding PAG  and ,binding PBG  denote the binding affinity between protein 

and ligand A and that between protein and ligand B, respectively. ,unbound PA PBG   is the free energy 

difference between unbound protein and B in solution and unbound protein and A, and ,bound PA PBG   

represents the free energy difference between solvated protein-B complex and solvated protein-A complex. 

The relative binding affinity between protein-B and protein-A complexes can be obtained from the double 

free energy difference , , , ,bound PA PB unbound PA PB binding PB binding PAG G G G      , according to the closure of 

the thermodynamic cycle. b) The transformation map used to calculate the relative binding affinities between 

different ligands. The transformations in the map are defined according to similarities in the structures. Such 

setting minimizes the magnitude of alchemical perturbation and thus enhances the convergence.  

  



 

 

Figure 3. a) 

i

U






  as a function of   in protein-ligand system and ligand-only system for 

transformations from AGI to LU2. The distribution of the atomic charges of the ligands are also given. b) 

Timeseries of 

i

U






. The time-evolution of 

i

U






 does not show much fluctuation and no multistate 

behavior is observed. The unit of 

i

U






 and 

i

U






 is kcal/mol.  

 

  



 

Figure 4. a) Comparison between calculated binding affinities and experimental values. We notice that both 

the statistical error and the bias of TI are relatively large compared with BAR and MBAR. The agreement 

between BAR/MBAR predictions and the experimental values is good. Compared with the alchemical method, 

MM/PBSA and MM/GBSA give worse predictions. b) Correlation between the enthalpic and entropic 

contributions of difference between binding affinities obtained from MBAR reweighting. The mutation 

induced enthalpic change depends linearly on the entropic term and their sums are almost zeros in all mutation 

cases, namely 0x y  , indicating the existence of the entropy-enthalpy compensation.  

  



  

 

Figure 5. a) Interaction maps for protein-1NP complex obtained from equilibrated structures. b) Time 

evolution of number of contacts between alpha-C atoms of protein and the ligand. Red dots denote contacts 

larger than 10, green dots represent contact number between 5 and 10, blue ones are those larger than 1, and 

the other are represented by white dots.  



 

Figure 6. Time evolution of secondary structures of protein-1NP complex. In the plot of secondary structures, 

the helical structure is plotted with green dots, the beta component is plotted with red dots, and the coil region 

is represented by blue dots.   



 

Figure 7. RMSF of C-α atoms of protein during conventional MD simulations.  

  



Supporting Information: Theoretical understanding of the thermodynamics and 

interactions in transcriptional regulator TtgR-inhibitor binding from free energy 

simulation 

Zhaoxi Sun1,2*, Xiaohui Wang1,3, and John Z.H.Zhang1,4,5*  

1State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East 

China Normal University, Shanghai 200062, China 

2Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich 52425, Germany 

3Institute of Computational Science, Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-

6900, Lugano, Ticino, Switzerland 

4NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China 

5Department of Chemistry, New York University, NY, NY 10003, USA 

 

*To whom correspondence should be addressed: proszx@163.com, john.zhang@nyu.edu 

  

mailto:john.zhang@nyu.edu


Table S1. Detailed free energy differences from MM/PBSA and MM/GBSA. gasH  is the gas-phase 

enthalpy change upon binding or the protein-ligand interaction energy. solG  is the solvation free energy and 

the subscripts of PB and GB denote the implicit solvent model used to calculate the solvation free energy. 

MM/PBSAG  and MM/GBSAG  are the relative binding affinity of ligands with AGI as the reference.  

 

Ligand gasH  SD ,sol PBSAG  SD ,sol GBSAG  SD MM/PBSA SD MM/GBSA SD 
MM/PBSAG  SD 

MM/GBSAG  SD 

1NP -35.51  0.07  27.91  0.06  13.09  0.05  -7.60  0.10  -22.41  0.09  -0.64  0.22  11.59  0.19  

2NP -34.27  0.08  29.32  0.08  12.81  0.06  -4.95  0.12  -21.46  0.10  2.01  0.23  12.55  0.20  

27K -41.46  0.16  33.24  0.12  13.07  0.11  -8.22  0.21  -28.40  0.20  -1.26  0.29  5.61  0.26  

CLM -47.17  0.16  49.92  0.19  18.59  0.10  2.75  0.25  -28.58  0.19  9.71  0.32  5.42  0.25  

G50 -63.17  0.18  53.59  0.13  26.79  0.09  -9.58  0.23  -36.37  0.20  -2.62  0.30  -2.37  0.26  

AGI -50.80  0.14  43.83  0.14  16.79  0.08  -6.96  0.20  -34.00  0.17  0.00  0.28  0.00  0.24  

CUE -39.29  0.14  38.72  0.10  10.56  0.11  -0.56  0.18  -28.73  0.18  6.40  0.27  5.27  0.24  

LU2 -47.88  0.12  50.21  0.12  20.88  0.10  2.33  0.18  -26.99  0.16  9.29  0.27  7.01  0.23  

QUE -51.71  0.14  55.93  0.15  22.85  0.11  4.21  0.21  -28.86  0.18  11.17  0.29  5.14  0.24  

 

 

 

 

  



Table S2. Number of hydrogen bonds formed between the ligand and its surroundings in ligand-only and 

protein-ligand systems. hbondN  denotes the number of hydrogen bond and SD is the standard deviation of 

the mean of hbondN . 

Ligand 

ligand complex 

hbondN  SD hbondN  SD 

1NP 5.08  0.08  1.99  0.04  

2NP 6.20  0.08  3.30  0.04  

27K 4.36  0.07  2.54  0.04  

CLM 7.83  0.09  5.70  0.05  

G50 10.01  0.11  6.65  0.06  

AGI 6.19  0.08  5.18  0.05  

CUE 6.17  0.09  5.35  0.05  

LU2 6.48  0.09  6.21  0.06  

QUE 6.92  0.10  7.43  0.07  

 

  



Figure S1. The overlap matrices of alchemical transformation from AGI to LU2 in a) ligand-only system and 

b) protein-ligand system for overlap check. The plot clearly shows that the elements are large enough for 

reliable reweighting.  

 

 

  



Figure S2. Hydrogen bonds formed between the ligand and its surroundings in protein-ligand system (left) 

and ligand-only system (right). The widths of the average lines are the standard error of the mean of the 

number of hydrogen bonds. 

  

  



 

 

 

  



Figure S3. Interaction maps for protein-ligand complexes obtained from equilibrated structures.  

 

 

 



 

  



Figure S4. Residue-specific numbers of contacts between alpha-C atoms and the ligand in protein-ligand 

complexes. Red dots denote contacts larger than 10, green dots represent contact number between 5 and 10, 

blue ones are those larger than 1, and the other are represented by white dots. 



 

  



Figure S5. Time evolution of secondary structures of protein-ligand complexes. The helical structure is plotted 

with green dots, the beta component is plotted with red dots, and the coil region is represented by blue dots.  



 

 

 

 

 


