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Abstract

An accurate ab initio ground-state intermolecular potential energy surface (PES) was determined for

the CO-CO2 Van der Waals dimer. The Lanczos algorithm was used to compute ro-vibrational energies on

this PES. For both the C-in and the O-in T-shaped isomers, the fundamental transition frequencies agree

well with previous experimental results. We confirm that the in-plane states previously observed are geared

states. In addition, we have computed and assigned many other vibrational states. The rotational constants

we determine from J = 1 energy levels agree well with their experimental counterparts. Planar and out-of-

plane cuts of some of the wavefunctions we compute are quite different, indicating strong coupling between

the bend and torsional modes. Because the stable isomers are T-shaped, vibration along the out-of-plane

coordinates is very floppy. In CO-CO2, when the molecule is out-of-plane, interconversion of the isomers

is possible, but the barrier height is higher than the in-plane geared barrier height.
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I. INTRODUCTION

CO-CO2 is a Van der Waals dimer composed of the two monomers CO and CO2, both of

which are of astrophysical interest. Its infra-red and microwave spectra have been recorded and

its structure determined.1–3 CO-CO2 has two stable isomers. Both are T-shaped with the CO2

monomer at the top of the T and the CO monomer the stem of the T. The lower-energy isomer

has the C of CO close to the C of CO2. The higher-energy isomer has the O of CO close to

the C of CO2. We shall refer to these isomers as C-in and O-in. Both isomers are shown on

the right side of Figure 1. The C-in isomer was first studied by Legon and Suckley1 and later

by others.4,5 The existence of the O-in isomer was predicted by ab initio calculations6 and later

confirmed.2 For both isomers, two inter-monomer transition frequencies have been observed. One

is for an in-plane state and the other for an out-of-plane state.2,3 Harmonic frequencies have also

been computed with ab initio methods.5–7 Although the experimental frequencies for the lower

energy C-in isomer are rather close to the ab initio harmonic frequencies, the experimental O-in

frequencies are not close to the harmonic values. In the C-in case, the agreement is good enough

that the experimental in-plane vibration was assigned to the "CO rock/geared bend".

In this paper, we report a new four-dimensional (4-D) ab initio potential energy surface (PES)

that is a function of the intermolecular coordinates of CO-CO2, and energy levels computed on

it. The PES is built using points computed at the CCSD(T)-F12b/VTZ-F12 level. The only ap-

proximation in the energy-level calculation is the separation of the high frequency intra-monomer

coordinates from the low frequency inter-monomer coordinates. Energy levels and wavefunctions

are computed with the Lanczos method and a large spherical-harmonic type basis. It has been

demonstrated that such calculations are accurate for other Van der Waals dimers.8–11 Probability

Density (PD) and wavefunction cut plots are used to label the energy levels. We find significant

coupling between in-plane and out-of-plane coordinates. The experimental transition frequencies

are actually from combination bands, but they are expected to be very close to the fundamentals

we calculate.

II. IMLS PES FITTING

The coordinates used to define the 4-D intermolecular CO-CO2 potential: r0, θ1, θ2, and φ2,

are depicted in Figure 2. ~r0 is the vector from the centre of mass of CO to the centre of mass
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FIG. 1: r0-optimized contour plot of the PES as a function of the extended angles θ̃1 and θ̃2. For each pair of

angles, the energy (given in cm−1) is optimized with respect to the center-of-mass distance r0. The position

of stationary points—and the corresponding molecular configuration—is highlighted. The extended-angle

coordinates are similar to those described elsewhere.12 Every structure with a c superscript, on the right

side, is a copy of a structure on the left side. TS and TSc label geared transition states; TS∗ and TS∗c are the

anti-geared transition states. The dashed curve shows the geared path for the molecule, from TC, to TSc, to

TOc, to TS and back to TC.

of CO2, ~r1 and ~r2 are vectors aligned with the monomers. r0 is the length of ~r0, and θ1 and θ2

are (respectively) the angles between ~r0 and the vectors ~r1 and ~r2. The fourth coordinate is the

dihedral (out of plane) torsional angle, labeled φ2, which is the angle between the vectors ~r0 ×~r1

and ~r0 ×~r2.

Both monomers were held rigid. As in previous studies,12,13 for the CO molecule we used

r1 = 1.1282 Å, corresponding to the rotational constant B = 1.9317 cm−1.13,14 CO2 is linear, with

each CO bond-distance fixed at rCO = 1.162086 Å, which is consistent with the experimental

rotational constant 0.39021894 cm−1.15,16 Masses of 15.9949146221 u and 12 u were used for
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FIG. 2: Coordinates used to describe CO-CO2. r0: center-of-mass separation (length of ~r0); θ1 and θ2:

angles between ~r0 and the vectors~r1 and~r2 respectively; and φ2: torsional angle.

16O and 12C, respectively. All ab initio calculations were performed using the Molpro electronic

structure code package.17 A lower level guide surface was constructed using data at the explicitly

correlated CCSD(T)-F12a/VDZ-F12 level.18 Data for the final high-level PES was generated using

the CCSD(T)-F12b/VTZ-F12 method and basis set.19

The 4-D PES was constructed using an automated interpolating moving least squares method,

which has been used in several previous studies12,20–22 and has been recently released as a software

package under the name AUTOSURF.23,24 This interpolative approach can accommodate arbitrary

energy-surface topographies and is particularly advantageous in cases with large anisotropy, which

are challenging for traditional Legendre expansions. The shortest intermonomer center-of-mass

distance considered is R = 2.1 Å, with the additional restriction of a maximum repulsive energy of

6 kcal/mol (∼ 2100 cm−1) above the separated monomers asymptote. To guide the placement of

high-level data—and avoid computing and discarding computationally expensive ab initio energies

in highly repulsive regions—an initial lower-level guide surface was constructed using a set of

1949 symmetry-unique points, distributed using a Sobol sequence biased to sample the short range

region more densely. For the high-level PES, the global estimated root-mean-squared fitting error

tolerance was set to 0.2 cm−1 and the total number of automatically generated symmetry-unique

points needed to reach that target was 2654. The ab initio data coverage of the fitted PES extends

to R = 20.0 Å. A local fit was expanded about each data point, and for each of the local fits, a

fitting basis of 301 functions was used. The final potential is obtained as the normalized weighted

sum of the local fits.

Figure 1 shows the PES in planar configurations. The plot is made by finding the value of r0

that minimizes the energy for each θ1,θ2 pair. The plot is in the extended coordinates, (θ̃1, θ̃2).

We use extended coordinates similar to those defined in Ref. 12. They are not identical because

we want the range of (θ̃1, θ̃2) to be from 0 to 2π so that wavefunctions on extended plots appear
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in the middle, and not at the edges. The extended coordinates are also used to make wavefunction

plots. They are defined in Figure 3.

I II’

IV’ III’

π

Ψ(θ̃1, θ̃2, π, γ) Ψ(2π − θ̃1, θ̃2,0, γ + π)

Ψ(θ̃1,2π − θ̃2,0, γ) Ψ(2π − θ̃1,2π − θ̃2, π, γ + π)

0

π

2π

θ̃2

θ̃12π

FIG. 3: Definition of the extended angles (θ̃1, θ̃2) in the [0, 2π] range. In our convention, monomer 1 is left

of monomer 2 and the positive directions for θ̃1 and θ̃2 are clockwise and counter-clockwise, respectively.

Given in each quadrant is the computed wavefunctions Ψ(θ1,θ2,φ2,γ). By equating the first (second)

argument in Ψ in the figure with θ1(θ2) one obtains the definition of the extended coordinates in each

quadrant. For example, in the bottom right quadrant, θ̃1 = 2π − θ1. The definitions here complement the

definitions of the extended angles in the [-π , π] range given Ref. 12. Quadrants II’, III’, IV’ are obtained

from quadrants II, III, IV of Ref. 12 by shifting one or two angles by 2π .

The advantage of using extended coordinates is that it is easy to visualize a planar motion

during which φ2 changes from 0◦ to 180◦. For example, TC (the global minimum), TSc, TOc,

TO, and TS are points on a disrotatory (or geared) cycle. The corresponding geared coordinate

is Qg = θ1 +θ2. The path is easily identified in extended coordinates, but one must exit the plot

on the right at TOc and re-enter on the left at TO and also exit at TS at the top of the plot and re-

enter at TS at the bottom of the plot. If extended coordinates were not used then to trace this path

one would need to exit and re-enter at the middle of the plot. A disadvantage of using extended

coordinates is that every point on the actual PES appears twice in Figure 1. Not counting copies,

there are two minima: labelled "TC" (T-shaped C-in) and "TO" (T-shaped O-in) in the plot; and

two saddle points: labelled TS∗ and TS. Note that the top half of Figure 1 is equivalent to the

bottom half because of the symmetry of CO2. The minima of the C-in and O-in wells are at -
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TABLE I: Equilibrium and transition state geometries and energies for configurations shown in Figure 1

Absolute energies are relative to the asymptote. θ1, θ2, and φ2 are in degrees and r0 is in Angström. φ2 for

TC and TO is undefined.

Minima (θ1,θ2,φ2,r0) Ab initio (θ1,θ2,φ2,r0)
6 Eabs (cm−1) Erel (cm−1)

TC (180, 90, -, 3.868) (180, 90, -, 3.957) -398.3 0

TO (0, 90, -, 3.534) (0, 90, -, 3.610) -297.8 100.5

TS (90, 180, 0, 4.434) -180.0 218.3

X (90, 90, 90, 3.529) -150.1 248.2

TS* (92, 76, 0, 6.951) -97.5 300.8

398.273 cm−1 and -297.843 cm−1 respectively, both with respect to the dissociation energy of

the complex. Geared and anti-geared cycles are prominent on the PESs of many dimers.21,22,25,26

However, the cycle is different in the CO-CO2 case because the minima are not slipped parallel but

T-shaped. The geometries and energies relative to the dissociation energy of the minima are given

in Table I. Venayagamoorthy and Ford report that the energy difference between the two minima

is 99.65 cm−1, whereas our difference is 100.43 cm−1. The TS saddle point is 218.3 cm−1 higher

than TC. The states we can label (vide infra) are all localized in either the O-in well or the C-in

well. Because the TS* saddle point is 300.8 cm−1 higher than TC, the anti-geared path has no

influence on the low-lying levels.

There is also an out-of-plane path between TC and TO. It is evident in Figure 4 a, which shows

the PES as a function of θ1 and φ2, with θ2 fixed at its value at the bottom of the C-in well and r0

minimized, but restricted to be between the equilibrium values for both isomers. There is clearly

a low-lying path along φ2 = 90◦ from θ1 = ε to θ1 = 180◦ − ε , where ε is some small value.

At θ1 = 180◦ and θ1 = 0◦, φ2 is undefined. As θ1 approaches 180◦ and 0◦, the PES becomes

independent of φ2 and it is therefore easy to slip into an out-of-plane configuration from a T-

shaped geometry. The saddle point of this path is 248.2 cm −1 above TC. The same path is evident

in Figure 4 b, which shows the PES as a function of θ1 and θ2 with φ2 fixed at 90 and r0 minimized,

but restricted to be between the equilibrium values for both isomers. As that figure shows, when

φ2 = 90◦ there is little coupling between θ1 and θ2. When φ2 = 0◦, θ1 and θ2 are strongly coupled

and the natural motion is along the geared and anti-geared (Qa = θ1 −θ2) coordinates (see Figure

1). When the two monomers are in the same plane, θ1 and θ2 are coupled because the monomers
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FIG. 4: Two plots showing the out-of-plane path connecting the two isomers. a) PES as a function of θ1

and φ2, with θ2 = 90◦, and r0 equal to the value that minimises the energy, but with the restriction that

r0 must be between the equilibrium values for the isomers. X labels a shape where both isomers form a

"cross" shape, and P labels a configuration in which both isomers are in the same plane and parallel to each

other with θ1 = θ2 = 90◦. Due to the symmetry of CO2, the value of the potential is identical at φ2 and

360◦−φ2 and only the symmetrically unique part of the PES is shown. φ2 is undefined at TC and TO, but

when θ1 = 180◦− ε , or ε where ε is some small angle, the shape of the molecule is almost the same for all

φ2 values and TO and TC labels could therefore be put anywhere along the φ2 axis. We put the labels near

the ends of the path at about φ2 = 90◦. b) PES as a function of θ1 and θ2, with φ2 = 90◦, and r0 equal to the

value that minimises the energy, with the restriction that r0 must be between the equilibrium values for both

isomers.

push against each other. When the two monomers are not in the same plane, θ1 and θ2 are not

coupled because the monomers do not obstruct each other. Such an out-of-plane path between

T-shaped minima might also be important for other Van der Waals molecules. In CO-CO2, the fact

that φ2 is very floppy manifests itself in the wavefunctions, see Figure 5.

Figure 6 shows the potential as a function of r0 upon approach toward each of the stationary

points highlighted in Figure 1. The variation in those cuts gives some indication of the anisotropy

of the interactions. To ensure correct symmetry properties, the representation of the PES was

symmetrized to provide numerically exact permutation symmetry with respect to exchange of the
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FIG. 5: Probability density plots for the ground state and the first three out-of-plane states (1B-, 5A+ and

6B-) whose energies are 0.0000, 44.5664, 86.0042 and 123.3091 cm−1, from top to bottom. The left column

shows PD plots that are functions of θ1 and φ2, whereas the right column shows PD plots that are functions

of θ1 and θ2. Due to the symmetry of CO2, the value of the potential is identical at φ2 and 360◦−φ2 and

only the symmetrically unique part of the PES is shown.
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FIG. 6: Radial cuts through the PES for the stationary points labelled in Figure 1

two O-atoms in CO2. On the quadrature grid the largest difference between potential values that

should be identical is 0.0076904 cm−1.

III. SOLVING THE VIBRATIONAL SCHRÖDINGER EQUATION

We solve the Schrödinger equation retaining only the four inter-monomer coordinates by using

a ro-vibrational basis and the Lanczos method.25,27–29 The kinetic energy operator in the Jacobi

coordinates of Figure 2 is well known.29–31 For the rotational constants of CO and CO2, we use

1.9225125 cm−1 and 0.39021894 cm−1 respectively.22,32

We represent the Hamiltonian operator in a basis and compute eigenvalues. The basis functions

used are

fa0(r0)uJMP
l1l2m2K(θ1,θ2,φ2;α,β ,γ) (1)

where fa0 is a discrete variable representation (DVR) function33 and uJMP
l1l2m2K is a parity adapted

rovibrational function34,35. α,β ,γ are Euler angles and P = 0,1 correspond to even and odd pari-

ties. The DVR we use is a tri-diagonal Morse (TDM) DVR.36 A TDM basis has three parameters:

De, ω , and re. The value of De is the value obtained from the cut of the PES with θ1, θ2, and φ2

fixed at their values at the bottom of the C-in well. To determine ω , and re, we choose values that
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give energy levels less than 140 cm−1 that are all within .0001 cm−1 of the levels obtained with

a large sine DVR basis. ω and re are varied manually close to the values obtained from the cut

used to choose De. The sine DVR basis is defined in the range (5.0 bohr, 38.0 bohr) and has 150

functions. The levels below 140 cm−1 above the zero point energy computed with the sine DVR

basis have convergence errors smaller than .0001 cm−1. The final r0 basis has 20 tri-diagonal

Morse DVR functions with the parameters De = 398 cm−1, ω = 54.5 cm−1 and re = 6.85 bohr.

We use36 α = A− 2[A/2] = 0.606, with A = 4De/ωe, in the associated Laguerre polynomial, so

that all the bound states of the Morse Hamiltonian are exactly reproduced by the TDM basis.

uJMP
l1l2m2K are parity-adapted combinations of products of Wigner rotation functions, an associated

Legendre function, and a spherical harmonic. They have amplitude everywhere in the angular

configuration space and allow one to study large amplitude motion. For the angular basis, we used

lmax = mmax = 45. The J = 0 A+ basis has about 329,000 functions.

Energy levels are calculated with the Lanczos algorithm37–39 using the RV4 Code.27 The full

permutation-inversion (PI) group40 is G4. It has four irreducible representations: A+, A-, B+,

and B-, where A/B label states that are symmetric/anti-symmetric under permutation of the two O

atoms in CO2, and +/- label even/odd parity levels. The basis of Eq. (1) can be A/B symmetry-

adapted by restricting l2 to be even/odd, respectively. We therefore separately compute levels

within each of the four G4 symmetry blocks. To evaluate the matrix-vector products, sums are

done sequentially.33 Matrix elements of the kinetic energy operator are exact.27,29 Potential matrix

elements are written as sums over quadrature points.33,41 We use Nθ1 = Nθ2 = 46 Gauss-Legendre

quadrature points and Nφ2=92 equally spaced trapezoid points in the range [0,2π]. To reduce the

spectral range of the Hamiltonian matrix (and accelerate Lanczos convergence) we use a potential

ceiling41 of Vceil = 2098.4 cm−1.

IV. RESULTS

Vibrational levels for both O-in and C-in isomers are listed in Table II with their respective

quantum numbers as well as their symmetries. Energies are given with respect to the zero point

energy (ZPE) and, for states localised in the O-in well, we give in parenthesis energies with respect

to the ZPE of the lowest level localised in the O-in well. The energies in parenthesis can be directly

compared with experimental transition frequencies for the O-in isomer. One important result is

that the O-in ground state is 64.4973 cm−1 higher than the C-in ground state, although the O-in
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TABLE II: Energy levels for both the C-in and O-in isomers. Energies in parenthesis are with respect to

the O-in isomer’s ground state energy. The number in front of the symmetry label is a cardinal number.

A 2 before the quantum numbers indicates that the state is localized above the O-in well. vg, va vt , vs

represent the geared, anti-geared, CO libration and stretch quantum numbers respectively. All energies are

with respect to the zero point energy (ZPE), -286.90 cm−1. The ZPE of the O-in isomer is 111.383 cm−1

higher than the global minima, TC in Figure 1.

E (EO−in) [cm−1] n-sym (vg,va,vt ,vs)

0.0000 1A+ (0,0,0,0)

24.4546 1B+ (1,0,0,0)

44.5664 1B- (0,0,1,0)

47.3698 2A+ (2,0,0,0)

50.2140 3A+ (0,0,0,1)

64.4973 (0.0000) 4A+ 2(0,0,0,0)

68.2473 1A- (1,0,1,0)

68.8211 2B+ (3,0,0,0)

70.0601 3B+ (1,0,0,1)

79.1763 (14.6790) 4B+ 2(1,0,0,0)

86.0042 5A+ (0,0,2,0)

87.9203 6A+ (4,0,0,0)

88.6163 (24.12) 2B- 2(0,0,1,0)

89.5665 5B+ (0,1,0,0)

90.2245 3B- (2,0,1,0)

90.7751 7A+ (2,0,0,1)

92.3644 4B- (0,0,1,1)

E (EO−in) n-sym (vg,va,vt ,vs)

94.1768 (29.6795) 8A+ 2(2,0,0,0)

96.2892 9A+ (0,0,0,2)

104.5450 (40.0477) 2A- 2(1,0,1,0)

104.9504 6B+ (5,0,0,0)

107.7748 (43.2775) 10A+ 2(0,0,0,1)

107.9768 7B+

109.7627 3A- (3,0,1,0)

110.1747 (45.6774) 8B+ 2(3,0,0,0)

110.6554 9B+

111.7702 4A-

112.9367 10B+ (1,0,0,2)

113.3010 (48.8039) 11B+ 2(0,1,0,0)

114.0523 (49.5550) 11A+ 2(0,0,2,0)

114.2612 12A+

119.8673 13A+

120.6303 (56.1330) 5B-

123.3091 6B- (0,0,3,0)

isomer well is 100.5 cm−1 higher than the C-in isomer, as shown in Figure 1. This is due to the fact

that the ZPE of the C-in isomer is larger than the ZPE of the O-in isomer. Anti-geared vibrational

states have higher energies than their geared counterparts (24.4546 and 89.5665 cm−1 for the first

geared and anti-geared states for the C-in isomer respectively), because the wells are steeper in the

anti-geared direction.
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To make the vibrational assignments presented in Table II, we use 1-D and 2-D probability

distribution (PD) and wavefunction plots. To make a 2-D (1-D) PD plot we integrate over the

remaining 2 (3) coordinates. From the PD plots (not shown), it is clear that for the low-lying states,

coupling between the stretch and other coordinates is weak. Our basic tool for making assignments

is the nodal structure of wavefunction plots since they provide more information than PDs. PDs

are less useful because a PD includes contributions from sums of squares of wavefunctions for all

values of the other coordinates. For example, on the basis of the (θ1,θ2) PD plot in Figure 7 a (8

a) for the geared (anti-geared) bending state at 24.4546 cm−1 (89.5665 cm−1) one might conclude

that θ1 and θ2 are weakly coupled (the contour lines are parallel to the axes), but wavefunction

cuts in Figure 7 b (Figure 8 b ) reveal that at φ2 = 0 and φ2 = 180◦ the vibration occurs along the

geared (anti-geared) coordinate. Figures 7 c and 8 c show that when φ2 = 90◦ the character of the

vibrations changes so that in both cases vibration now occurs along θ2, this means that there is

important coupling between φ2 and (θ1,θ2).

To assign overtones and combinations, we use not only nodal structure of wavefunction plots,

but also the energies of the fundamentals, e.g. once a fundamental is assigned, we look for its

overtone near the energy that is about twice the energy of the fundamental. Finally, to confirm

assignments we use also symmetry by using product rules for the group C2v, e.g. if a state is

labeled as vg+vt , its symmetry should be the product of both symmetries, B+ and B-, so this

combination state should have an A- symmetry.

Figure 7 b and c (Figure 8 b and c) show that although the φ2 = 180◦ wavefunction cut of

the state we call the geared (anti-geared) fundamental has a node along the geared (anti-geared)

coordinate, the φ2 = 90◦ wavefunction cut has nodes along θ2. A sequence of such geared states

is shown in Figure 9. On the left, it is easy to recognize nodes along the geared coordinate; on

the right, the same states have nodes along θ2. In Van der Waals dimers, geared states are very

common (see for example Ref. 20), but this is the first time that geared states have been seen to

change their character when φ2 is changed from 0◦ to 180◦.

Figure 5 shows PD plots for CO-libration states. They have nodes along θ1. The amplitude of

the motion along φ2 is clearly large. The O-in isomer has a similar set of states. As a function of

φ2, the PD is largest close to φ2 = 90◦. This CO bending therefore occurs when the two monomers

are in a cross configuration.

In Table III we compare the measured intermolecular frequencies we calculate with those ob-

tained by Ford and coworkers.6 The harmonic frequency for the B- vibration of the O-in isomer is
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FIG. 7: Plots for the first geared state of the C-in isomer at 24.4546 cm−1 (B+). a) Probability density as

a function of θ1 and θ2; b) extended wavefunction cut as a function of θ1 and θ2; c) wavefunction cut as a

function of θ1 and θ2 at φ2 = 90◦.
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FIG. 8: Probability density plot, extended wavefunction cut and wavefunction cut at φ2 = 90◦ for the first

anti-geared state of the C-in isomer, with energy of 89.5665 cm−1 (5B+).

the furthest from the experimental value. The fully coupled result is much closer. It is sometimes

the case that higher wells are shallower and less harmonic. In previous papers2,3, the B+ state is

referred to as in-plane rock. In Table III, it is labelled as vg, where g represents geared. Recall that

wavefunction plots reveal that this state is geared when φ2 = 180◦ but a CO2 rock when φ2 = 90◦.

We have computed J = 1 energy levels and they are reported, with assignments, in Tables

IV and V. There are three closely spaced J = 1 levels associated with each vibrational state.

TABLE III: Calculated and observed fundamental frequencies, in cm−1

.

C-in isomer O-in isomer

Sym State Variational Harmonic6 Observed3 Variational Harmonic6 Observed3

B+ vg 24.4546 24.30 24.343 14.6790 15.45 14.194

va 89.5665 90.79 45.6774 51.62

B- vt 44.5664 42.81 43.958 24.1190 36.32 22.676

A+ vs 50.2140 56.39 43.2775 55.37
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FIG. 9: Wavefunction cuts for the ground state and the first 3 geared states for the C-in isomer whose

energies are 0.0000(1A+), 24.4546(1B+), 47.3698(2A+) and 68.8211(2B+) cm−1. The wavefunction cuts

on the left are in extended coordinates and show the in-plane behaviour of the molecule (both φ2 = 0 and

φ2 = 180◦); the plots on the right are with φ2 = 90◦. All plots have a fixed value of r = 7.31 bohr, the

equilibrium value for the C-in isomer. The contour interval for the φ2 = 90 wavefunction cuts is about half

the interval used in the extended plots, in order to show the θ2 nodal structure more clearly.
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TABLE IV: J=1 rotational levels and rotational constants (in cm−1) of the C-in isomer of CO-CO2 for the

fundamental vibrational states. Energies are relative to the ZPE of the C-in isomer.

J=0 level

(vg,va,vt ,vs)
101 (sym) 111 (sym) 110 (sym) A B C

0.0000 (0,0,0,0)(A+) 0.1165(A-) 0.4495(B-) 0.4584(B+) 0.3957 0.0627 0.0538

24.4546 (1,0,0,0)(B+) 24.5719(B-) 24.9044(A-) 24.9141(A+) 0.3960 0.0635 0.0538

44.5663 (0,0,1,0)(B-) 44.6838(B+) 45.0166(A+) 45.0250(A-) 0.3957 0.0630 0.0545

50.2140 (0,0,0,1)(A+) 50.3267(A-) 50.6631(B-) 50.6717(B+) 0.3971 0.0606 0.0521

89.5665 (0,1,0,0)(B+) 89.6798(B-) 89.9900(A-) 89.9984(A+) 0.3711 0.0609 0.0525

TABLE V: J=1 rotational levels and rotational constants (in cm−1) of the O-in isomer of CO-CO2 for the

fundamental vibrational states. Energies are relative to the ZPE of the O-in isomer.

J=0 level

(vg,va,vt ,vs)
101 (sym) 111 (sym) 110 (sym) A B C

0.0000 (0,0,0,0)(A+) 0.1374(A-) 0.4593(B-) 0.4719(B+) 0.3969 0.0750 0.0624

14.6790 (1,0,0,0)(B+) 14.8185(B-) 15.1059(A-) 15.1197(A+) 0.3640 0.0767 0.0629

24.1190 (0,0,1,0)(B-) 24.258(B+) 24.6124(A+) 24.6234(A-) 0.4297 0.0753 0.0637

43.2775 (0,0,0,1)(A+) 43.4130(A-) 43.7998(B-) 43.8117(B+) 0.4605 0.0737 0.0618

48.8038 (0,1,0,0)(B+) 48.9381(B-) 49.2716(A-) 49.2896(A+) 0.4096 0.0761 0.0581

Knowing that the molecule is close to a prolate top, we assign the three levels assuming that

101<111<110. Rotational constants are then obtained from the relations 101=B+C, 111=A+C and

110=A+B. The rotational constants obtained from both isomer’s ground states are compared to

previous experimental and ab initio results in Tables VI and VII, and as it can be seen our constants

agree well with previous experiments. The rotational constants obtained by assuming the molecule

is rigid are much farther from the experimental values.

V. CONCLUSION

An accurate PES has been constructed and used to compute the low-lying energy levels of CO-

CO2. Energy levels were computed using a large spherical harmonic type basis and the Lanczos
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TABLE VI: Rotational constants for the ground, first geared, and CO-libration states of the C-in isomer. All

values are in cm−1. Experimental values were obtained by Barclay et. al.3

Ground State vg vt

Variational Exp. Variational Exp. Variational Exp. Ab initio Equib.6

A 0.3957 0.3957 0.3960 0.3949 0.3957 0.3966 0.3850

B 0.0627 0.0628 0.0635 0.0633 0.0630 0.0629 0.0608

C 0.0538 0.0538 0.0538 0.0537 0.0545 0.0544 0.0525

TABLE VII: Rotational constants for the ground, first geared and CO-libration states of the O-in isomer.

All values are in cm−1. Experimental values were obtained by Sheybani-Deloui et. al.2

Ground State vg vt

Variational Exp. Variational Exp. Variational Exp. Ab initio Equib.6

A 0.3969 0.3972 0.364 0.3589 0.4297 0.4355 0.3850

B 0.075 0.0745 0.0767 0.0762 0.0753 0.0749 0.0727

C 0.0624 0.0621 0.0629 0.0626 0.0637 0.0634 0.0612

algorithm. Agreement with experimental band centers and rotation constants is excellent for both

isomers. Using PD and wavefunction plots, energy spacing, and symmetry labels, it is possible to

assign many states. We are able to confirm that the experimental frequency at 24.3 cm−1 is the

geared fundamental. Referring to it as geared is, however, a bit of an oversimplification because

although it is clearly geared when φ2 = 0◦, it is better described as a CO2 rock when φ2 = 90◦.

Additionally, the CO libration was correctly identified and labelled for both isomers.

We have found three low-lying paths between the two isomers. They will influence the dy-

namics of higher states. One of the three paths is geared. It plays a role for many Van der Waals

dimers. The second path is anti-geared. The third path is out-of-plane. Although TC is planar, any

small change in θ1 puts the molecule into a region of the PES in which it is almost independent of

φ2. Near φ2 = 90◦, it is feasible to change θ1 to convert the molecule from TC to TO. This may be

a common isomerization path between T-shaped isomers.
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