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Abstract 

The use of alternating current (AC) magnetometry to measure magnetic relaxation times is one of the 

most fundamental measurements for characterising single-molecule magnets (SMMs). These 

measurements, performed as a function of frequency, temperature and magnetic field, give vital 

information on the underlying magnetic relaxation process(es) occurring in the material. The magnetic 

relaxation times are usually fitted to model functions derived from spin-phonon coupling theories that 

allow characterisation of the mechanisms of magnetic relaxation. The parameters of these relaxation 

models are then often compared between different molecules in order to find trends with molecular 

structure that may guide the field to the next breakthrough. However, such meta-analyses of the 

model parameters are doomed to over-interpretation unless uncertainties in the model parameters 

can be quantified. Here we determine a method for obtaining uncertainty estimates in magnetic 

relaxation times from AC experiments, and provide a program called CC-FIT2 for fitting experimental 

AC data as well as the resulting relaxation times, to obtain relaxation parameters with accurate 

uncertainties. Applying our approach to three archetypal families of high-performance dysprosium(III) 

SMMs shows that accounting for uncertainties has a significant impact on the uncertainties of 

relaxation parameters, and that larger uncertainties appear to correlate with crystallographic disorder 

in the compounds studied. We suggest that this type of analysis should become routine in the 

community. 

 

Introduction 

Single-molecule magnets (SMMs) are superparamagnetic molecules with large energy barriers to the 

inversion of their magnetic moment, Ueff, such that their magnetic relaxation is slow enough to 

observe memory effects such as magnetic hysteresis.1 At high temperatures, molecules change spin 

state and overcome the Ueff barrier by exchanging energy with the phonon bath through first-order 

spin-phonon coupling (known as the Orbach process),2 but as the temperature is decreased this 

process becomes exponentially slower. At low temperatures, thermally-activated magnetic relaxation 

is more efficient via a second-order spin-phonon coupling process where pairs of phonons exchange 

their energy difference with molecules (known as the Raman process);3,4 at even lower temperatures 

a temperature-independent quantum tunnelling of the magnetisation (QTM) is often observed.5 

In the last few years, the Ueff barrier has become so large for dysprosium(III)-based SMMs6–9 that the 

over-barrier Orbach relaxation process does not dominate in the temperature range where hysteresis 

can be observed,4 and memory effects have more to do with the Raman relaxation process.10 Despite 

the characteristic power-law temperature dependence of the Raman process being known for several 

decades,2 high-performance SMMs display a range of Raman parameters that do not appear to 

conform with predictions from traditional theories.10 Furthermore, while the physical origin of Ueff is 

well accepted,4,11 there is as-yet no intuitive link between chemical structure and Raman relaxation 

and thus avenues for significant improvement cannot be predicted. To understand the physical origins 

of the Raman process, the behaviour of a wide range of different SMMs must be compared, ideally in 

families where structural parameters are changed systematically, but this can only be done when 



reliable uncertainties for the Raman parameters are known, to minimise possible correlations in the 

parameters and to exclude unreliable datasets. However, the largest uncertainties in model 

parameters rarely lie in the non-linear least-squares fitting of relaxation models, but rather in the 

underlying data – the magnetic relaxation times – which are frequently extracted from experiment 

using an empirical distribution model without comment on the associated uncertainties. 

Herein we examine the distribution of relaxation times implicit in the generalised Debye model, and 

determine expressions for 1𝜎 and 2𝜎 uncertainties in the extracted relaxation times (see Results). We 

then present a new program for fitting the data from AC susceptibility experiments, that not only 

obtains uncertainties in the relaxation times, but also allows an interactive fit of the extracted data to 

obtain model parameters with reliable uncertainties (see Implementation). Finally, we apply our 

analysis to three archetypal families of high-performance dysprosium(III) SMMs to show that 

accounting for uncertainties in relaxation times has significant implications for the uncertainties of 

relaxation parameters, and that larger uncertainties appear to correlate with crystallographic disorder 

(see Discussion). 

 

Results 

Upon application of an AC magnetic field, the magnetic moment of a sample will oscillate in-phase 

with the field if its magnetic relaxation time, 𝜏, is short. If its relaxation time is long compared to the 

timescale of the oscillating field, then the sample cannot keep up with the field and the out-of-phase 

magnetic susceptibility becomes non-zero. The general expression for the AC magnetic susceptibility 

is a complex-valued quantity, where the in-phase component 𝜒′ is the real part of Equation 1, and the 

out-of-phase component 𝜒′′ is the imaginary part; this is known as the Debye model.1 

 

𝜒𝐴𝐶(𝜔) = 𝜒𝑆 +
𝜒𝑇−𝜒𝑆

1+𝑖𝜔𝜏
  (1) 

 

Here, 𝜒𝑇  is the isothermal susceptibility, 𝜒𝑆 is the adiabatic susceptibility, and 𝜔 is the angular 

frequency of the AC field (note 𝜔 = 2𝜋𝜈, where 𝜈 is the linear frequency). In the low-frequency limit 

where 𝜔 ≪ 𝜏−1, the sample can maintain equilibrium in the AC field and 𝜒𝑇  is measured, but in the 

high-frequency limit 𝜔 ≫ 𝜏−1 then the magnetisation of the sample is fixed on the time-scale of 𝜔 

and 𝜒𝑆 is measured (Figure 1). When the frequency of the AC field is equal to the magnetic relaxation 

rate (i.e. 𝜔 = 𝜏−1) then the out-of-phase susceptibility peaks at a value of 𝜒′′ = |
1

2
(𝜒𝑆 − 𝜒𝑇)|, and 

the in-phase susceptibility changes from 𝜒𝑇  to 𝜒𝑆 (Figure 1). Thus, AC studies can measure magnetic 

relaxation times at a given temperature by varying the AC frequency. 

 

 



Figure 1 – In-phase AC susceptibility 𝜒′ (blue) and out-of-phase AC susceptibility 𝜒′′ (red) as a function 

of 𝜔. 𝜒𝑆 = 0.1, 𝜒𝑇 = 1 and 𝜏 = 1 𝑠. 

 

For most SMMs however, the peak value of the out-of-phase component does not reach  𝜒′′ =
1

2
|𝜒𝑆 − 𝜒𝑇|. This effect, usually ascribed to a distribution of relaxation times, can be emulated by using 

the generalised Debye model (Equation 2),1,12 where the parameter 𝛼 empirically models the 

distribution. When 𝛼 = 0 there is no distribution of relaxation times (i.e. the distribution in 𝜏 is a delta 

function and the original Debye model is recovered) and when 𝛼 = 1 there is an infinitely flat 

distribution of relaxation times and 𝜒′′ = 0. Thus, there is a monotonous but non-linear decrease in 

the peak value of 𝜒′′ as a function of 𝛼 (Equation 3 and Figure 2). 

 

𝜒𝐴𝐶(𝜔) = 𝜒𝑆 +
𝜒𝑇−𝜒𝑆

1+(𝑖𝜔𝜏)1−𝛼
 (2) 

 

 

𝜒′′𝑃𝑒𝑎𝑘(𝛼) = (𝜒𝑇 − 𝜒𝑆)
cos [

𝜋𝛼

2
]

2(1+sin [
𝜋𝛼

2
])

  (3) 

 

  
Figure 2 – (Left) Out-of-phase AC susceptibility 𝜒′′ as a function of 𝜔, for different values of 𝛼 from 

𝛼 = 0 (blue) to 𝛼 = 0.8 (purple) in steps of 0.1. (Right) Peak out-of-phase AC susceptibility 𝜒′′ at 𝜔 =

𝜏−1 as a function of 𝛼. 𝜒𝑆 = 0.1, 𝜒𝑇 = 1 and 𝜏 = 1 . 

 

Fuoss and Kirkwood13 have derived the distribution of relaxation times implied by the generalised 

Debye model (Equation 4), where 𝑠 = ln [
𝜏

𝜏𝜇
] with 𝜏𝜇 being the mean relaxation time. To determine 

uncertainties in 𝜏 for given values of 𝛼, we seek the symmetric integration region −𝐴 ≤ 𝑠 ≤ 𝐴 that 

contains a fraction of the distribution equal to that within one or two standard deviations either side 

of the mean in the normal distribution (Equation 5, where 𝑛  is either 1 or 2 for 1𝜎 and 2𝜎, 

respectively). There is no analytical solution to this problem, so we determine numerical solutions for 

a range of 𝛼 values (Figures 3 and S1); the form of these data are very well approximated by Equation 

6 (note that this is simply an interpolating function with the correct limiting behaviour and not a model 

directly derived from the distribution). The associated uncertainty ranges in 𝜏 are given in Table 1 

(note that the range for 2𝜎 is not simply double the range of 1𝜎). 

 

𝜌Fuoss−Kirkwood(𝑠, 𝛼) =
sin [𝛼𝜋]

2𝜋(cosh[(1−𝛼)𝑠]−cos [𝛼𝜋])
  (4) 



 

∫𝜌Fuoss−Kirkwood(𝑠, 𝛼) 𝑑𝑠

𝐴

−𝐴

=
1

√𝜋
∫ 𝑒−𝑥

2
 𝑑𝑥

𝑛

√2

−
𝑛

√2

 

(5) 

 

𝐴1𝜎 ≈
2.57 tan [

𝛼𝜋

2
]

𝛼0.096
 (6a)  𝐴2𝜎 ≈

5.52 tan[
𝛼𝜋

2
]

𝛼0.30
 (6b) 

 

 
Figure 3 – Range of ±𝐴 required to encapsulate 1𝜎 (left) and 2𝜎 (right) populations as a function of 𝛼 

from the Fuoss-Kirkwood distribution. Red lines are best fits with 𝐴1𝜎 ≈
2.57 tan [

𝛼𝜋

2
]

𝛼0.096
 (left), 𝐴2𝜎 ≈

5.52 tan[
𝛼𝜋

2
]

𝛼0.30
 (right). 

 

Table 1 – Uncertainty ranges for 𝜏 based on different models 

Model 𝟏𝝈 𝟐𝝈 

Fuoss-Kirkwood 
𝜏± = 𝜏𝜇𝑒

±
2.57 tan [

𝛼𝜋
2
]

𝛼0.096  𝜏± = 𝜏𝜇𝑒
±
5.52 tan[

𝛼𝜋
2
]

𝛼0.30  

log-normal 𝜏± = 𝜏𝜇𝑒
±
1.82 √𝛼
1−𝛼  𝜏± = 𝜏𝜇𝑒

±
3.64 √𝛼
1−𝛼  

 

Conversely, Yager considered how a normal distribution of relaxation times on a logarithmic scale (log-

normal distribution) could give rise to generalised Debye-like behaviour and tabulated values of the 

width parameter corresponding to certain values of 𝛼.14 However, those expressions result in the out-

of-phase peak position moving as a function of the width of the distribution. Hence, we redefine the 

log-normal distribution such that the observed mean relaxation time 𝜏𝜇 is invariant to the width of 

the distribution (Equations 7 and 8). The 𝛾 parameter controls the width of the distribution and there 

is the same population in the interval 𝜏𝜇𝑒
−𝑛𝛾 ≤ 𝜏 ≤ 𝜏𝜇𝑒

𝑛𝛾 as within 𝑛𝜎 for the normal distribution. 

By equating the peak value of 𝜒′′ between the log-normal distribution model and the generalised 

Debye model (Equation 3 and 8), we can find the correspondence between 𝛾 and 𝛼 (Figure 4). We 

observe that 𝛾 rises rapidly for small values of 𝛼 and becomes approximately linear for  𝛼 > 0.06, 

before rising quickly for 𝛼 > 0.7 when the distribution becomes infinitely broad as 𝛼 → 1. As before, 

there is no analytical solution to this problem, however the curve is very well approximated by 

Equation 9 (again, note that this is simply an interpolating function with the correct limiting behaviour 



and not derived from the distribution). Note that fitting the Fuoss-Kirkwood data with the form of 

Equation 9 is not as good as with Equation 6 (Figure S2 cf. Figures 3 and S1), and also that these log-

normal data are not as well replicated with the form of Equation 6 (Figure S3 cf. Figure 4). 

 

𝜌𝑙𝑜𝑔−𝑛𝑜𝑟𝑚𝑎𝑙(𝜏, 𝛾) =
1

𝜏𝛾√2𝜋
𝑒
−
1

2
(
ln[𝜏]−ln[𝜏𝜇]

𝛾
)
2

  (7) 

 

𝜒′′𝑃𝑒𝑎𝑘;𝑙𝑜𝑔−𝑛𝑜𝑟𝑚𝑎𝑙(𝛾) = ∫ 𝜌𝑙𝑜𝑔−𝑛𝑜𝑟𝑚𝑎𝑙(𝜏, 𝛾)

(

 
 
(𝜒𝑇 − 𝜒𝑆)

𝜏
𝜏𝜇

1 + (
𝜏
𝜏𝜇
)
2

)

 
 
𝑑𝜏

𝜏=∞

𝜏→0

 

(8) 

 

𝛾 ≈
1.82 √𝛼

1−𝛼
  (9) 

 

 
Figure 4 – Equivalence of 𝛾 as a function of 𝛼 on a linear y-scale (left) and a logarithmic y-scale (right). 

Red lines are a best fit with 𝛾 ≈
1.82 √𝛼

1−𝛼
. 

 

With this equivalence in hand we can compare the AC magnetic susceptibility for the log-normal 

distribution to the generalised Debye model; recall that the latter implies the Fuoss-Kirkwood 

distribution (Figure 5). For small values of 𝛼 the two models are practically indistinguishable, and as 𝛼 

increases we observe a slight compression at the extremities in the log-normal model. Comparing the 

parameter uncertainties, the two models suggest very similar ranges at the 1𝜎 level, while the Fuoss-

Kirkwood model suggests larger ranges at the 2𝜎 level (Figure S4). Given that the log-normal model 

shows excellent agreement with the generalised Debye model (Figure 5) and that it can be simply 

extended to arbitrary 𝑛𝜎 levels, we suggest that it is the best model for considering uncertainties in 

AC magnetometry. 

 



 

 

 
Figure 5 – Comparison of the AC magnetic susceptibility for the generalised Debye model (blue), and 

the log-normal distribution model (red). In-phase and out-of-phase AC magnetic susceptibility 𝜒 as a 

function of 𝜔 (left column), and out-of-phase AC magnetic susceptibility 𝜒′′ as a function of the in-

phase AC magnetic susceptibility 𝜒′ (right column), for 𝛼 = 0.05 (top row), 𝛼 = 0.2 (middle row) and 

𝛼 = 0.6 (bottom row). 𝜒𝑆 = 0.1, 𝜒𝑇 = 1 and 𝜏𝜇 = 1 𝑠. 

 

Implementation 

We have written a new program called CC-FIT2 for modelling AC susceptibility data with the 

generalised Debye model, that determines uncertainties in the magnetic relaxation times as described 

herein, and furthermore provides provision for fitting the relaxation data with those uncertainties 

included. CC-FIT2 is available for free at http://www.nfchilton.com/cc-fit, and can be run on Windows, 

MacOS and Linux. The program takes as input a Quantum Design MultiVu ac.dat file and automatically 

selects the datasets that show clear peaks in the out-of-phase susceptibility 𝜒′′ (i.e. with measurable 

relaxation times). The user is shown the data and prompted to select which model should be used to 

fit the data: the Debye, generalised Debye, or a combination of two generalised Debye models are 

available. When a model is chosen, the AC data are automatically fitted and the magnetic relaxation 

rates are displayed with 1𝜎 uncertainties derived from the log-normal distribution model (these data 

are also saved to disk). The user is then asked to choose a model for fitting the temperature 

dependence of the relaxation rates, from a combination of Orbach, Raman and QTM processes, and 

the relaxation rate data are fitted accounting for uncertainties with a variant of Equation 10 depending 

http://www.nfchilton.com/cc-fit


on the chosen model (note that 10𝐴 = 𝜏0, 10𝑅 = 𝐶 and 10𝑄 = 𝜏𝑄𝑇𝑀). In cases where 𝛼 → 0, the 

main uncertainty in 𝜏 does not come from a distribution of 𝜏, but from the uncertainty in fitting the 

model function (i.e. the generalised Debye model) to the AC data; we call this 𝜏𝑒𝑟𝑟. To accommodate 

this situation, we define the uncertainty in the fitting procedure with Equation 11. 

 

log10[𝜏
−1] = log10[10

−𝐴𝑒−𝑈𝑒𝑓𝑓 𝑇⁄ + 10𝑅𝑇𝑛 + 10−𝑄]  (10) 

 

𝜎𝜏 = max [
|log10[𝜏

−1] − log10 [𝜏𝜇𝑒
+
1.82 √𝛼
1−𝛼 ]| , |log10[𝜏

−1] − log10 [𝜏𝜇𝑒
−
1.82 √𝛼
1−𝛼 ]| ,

|log10[𝜏
−1] − log10[(𝜏 + 𝜏𝑒𝑟𝑟)

−1]|, |log10[𝜏
−1] − log10[(𝜏 − 𝜏𝑒𝑟𝑟)

−1]|

] 

(11) 

 

Discussion 

We are now in a position to interpret experimental 𝛼 values; here we examine a series of high-

performance SMMs with large Ueff barriers from the literature (Table 2; note that herein we employ 

the literature-reported 𝛼 values and have not re-fit the underlying AC data). Firstly we discuss 

[Dy(tBuO)2(py)5][B(Ph)4] and [Dy(tBuO)Cl(THF)5][B(Ph)4] (py = pyridine, THF = tetrahydrofuran).5,7 

These two molecules are structurally similar, both featuring a linear arrangement of formal charge 

along a single axis O- – Dy3+ – O-/Cl- and five neutral equatorial ligands. The linear arrangement of 

charge induces a large magnetic anisotropy for the central Dy(III) ion, stabilising the largest 𝑚𝐽 = ±
15

2
 

projections in the ground state and leading to a large Ueff barrier in both cases. The barrier is 

substantially larger for [Dy(tBuO)2(py)5][B(Ph)4] than for [Dy(tBuO)Cl(THF)5][B(Ph)4] due to the 

presence of two short Dy-O bonds and a pair of stronger donor atoms (O- > Cl-). None-the-less, the 

relaxation dynamics fitted using the generalised Debye model for the two samples give very different 

𝛼 values: for [Dy(tBuO)2(py)5][B(Ph)4] 𝛼 < 0.02 for all temperatures, while for 

[Dy(tBuO)Cl(THF)5][B(Ph)4] 𝛼 varies over an order of magnitude in the range  0.03 < 𝛼 < 0.3. 

Using the log-normal model described above we convert the 𝛼 values into uncertainty ranges for 𝜏 

(any 𝛼 values reported as ~ 0 are fixed at the arbitrarily small value of 0.001 so as not to over-bias the 

fit; CC-FIT2 does not apply any such criterion), and fit the data accounting for 1𝜎 uncertainties. Due 

to the small 𝛼 values for [Dy(tBuO)2(py)5][B(Ph)4], there is not a large change in the level of uncertainty 

in the relaxation parameters with and without consideration of the distribution in 𝜏 (Figure 6, left; 

Table 2). However, due to the substantially larger 𝛼 values for [Dy(tBuO)Cl(THF)5][B(Ph)4], the 

uncertainties in the relaxation parameters change significantly when a distribution in 𝜏 is accounted 

for (Figure 6, right; Table 2). For instance, Ueff is only defined within ±100 K, 𝜏0 covers two orders of 

magnitude, the Raman coefficient 𝐶 spans four orders of magnitude, and the Raman exponent 𝑛 varies 

from 2 to 6; clearly this has huge consequences for any comparison between this molecule and others, 

or to the underlying physics of the relaxation mechanisms. 

It also raises the question as to why, for two such chemically similar molecules, is there such a 

significant difference in the distributions of their magnetic relaxation times. In an attempt to answer 

this question, we have examined the single crystal X-ray diffraction (XRD) structures collected at 100 

K. We observe that the isotropic displacement parameters (Uiso) for the atoms in the first coordination 

sphere are slightly larger for [Dy(tBuO)Cl(THF)5][B(Ph)4] (Dy1 = 2.132(7), O1 = 3.60(9), Cl1 = 2.72(2), O2 

= 3.37(8), O3 = 3.48(8), O4 = 2.17(6), O5 = 2.78(7), O6 = 2.86(7); all 10-2 Å2) than for 



[Dy(tBuO)2(py)5][B(Ph)4] (Dy1 = 1.968(6), O1 = 2.56(5), O2 = 2.51(5), N1 = 2.26(6), N2 = 2.36(6), N3 = 

2.64(6), N4 = 2.55(6), N5 = 2.29(6); all 10-2 Å2); the anisotropic displacement parameters can be 

visualised as ellipsoids (Figure 6 bottom), clearly showing larger displacements for 

[Dy(tBuO)Cl(THF)5][B(Ph)4]. We acknowledge that bulk properties cannot necessarily be inferred from 

single crystal data, but these results may indeed point to an origin of the broader distribution for the 

latter molecule. 

 

 

 

 
Figure 6 – Comparison of the relaxation dynamics for [Dy(tBuO)2(py)5][B(Ph)4] (top left) and 

[Dy(tBuO)Cl(THF)5][B(Ph)4] (top right), and the crystal structures of the cationic complexes 

[Dy(tBuO)2(py)5]+ (bottom left) and [Dy(tBuO)Cl(THF)5]+ (bottom right). Error bars are calculated using 

the log-normal distribution model at the 1𝜎 level.  Red lines are fits to Equation 10 with the 1𝜎 level 

parameters given in Table 2. Ellipsoids shown with 50% probability at 100 K, hydrogen atoms omitted 

for clarity. 

 

Table 2 – Magnetic relaxation parameters accounting for distributions in the relaxation time. First row 

for each compound is without considering any uncertainty in the 𝜏 values (i.e.  

0𝜎). Numbers in parentheses are standard errors (i.e.  

1𝜎 parameter ranges). 

Compound Range 𝑼𝒆𝒇𝒇 (K) 𝑨 (log[s]) 𝑹 (log[s-1 K-n]) 𝒏 𝑸 (log[s]) 

[Dy(tBuO)2(py)5] 

[B(Ph)4]7 

0𝜎 1812(4) -11.92(2) -5.86(5) 3.70(3) - 

1𝜎 1800(20) -11.88(9) -5.8(2) 3.7(1) - 

[Dy(tBuO)Cl(THF)5] 

[B(Ph)4]5 

0𝜎 957(6) -11.54(5) -5.4(1) 4.32(8) -0.12(1) 

1𝜎 1000(100) -12(1) -6(2) 4(2) -0.1(4) 

[Dy(bbpen)Cl]6 a 0𝜎 920(10) -11.8(1) -2.97(2) 3.55(2) -0.358(6) 



1𝜎 900(200) -12(2) -3.0(6) 3.5(4) -0.4(4) 

[Dy(bbpen)Br]6 a 
0𝜎 1120(10) -12.04(9) -4.05(3) 3.71(2) - 

1𝜎 1110(80) -12.0(6) -4.1(3) 3.7(2) - 

[Dy{Cp(tBu)3}2] 

[B(C6F5)4]8 

0𝜎 1760(20) -10.7(1) - - - 

1𝜎 1780(40) -10.8(1) - - - 

[Dy{Cp(Me)5}{Cp(iPr)5}] 

[B(C6F5)4]9 

0𝜎 2250(10) -11.50(6) - - - 

1𝜎 2230(10) -11.45(5) - - - 

[Dy{Cp(iPr)4}2] 

[B(C6F5)4]16 

0𝜎 1870(20) -11.55(9) - - - 

1𝜎 1850(20) -11.47(9) - - - 

[Dy{Cp(iPr)4(Me)}2] 

[B(C6F5)4]16 

0𝜎 2050(20) -11.1(1) - - - 

1𝜎 2000(100) -11.0(6) - - - 

[Dy{Cp(iPr)4(Et)}2] 

[B(C6F5)4]16 

0𝜎 1950(20) -10.9(1) - - - 

1𝜎 2000(100) -11.0(7) - - - 

[Dy{Cp(iPr)5}2] 

[B(C6F5)4]16 

0𝜎 1890(20) -10.81(9) - - - 

1𝜎 1900(200) -10.8(7) - - - 
a H2bbpen = N,N′-bis(2-hydroxybenzyl)-N,N′-bis(2-methylpyridyl)ethylenediamine 

 

Examining another pair of high-performance SMMs from the literature that also feature pentagonal 

bipyramidal Dy(III) centres with short axial bonds, [Dy(bbpen)Cl] and [Dy(bbpen)Br] (H2bbpen = N,N′-

bis(2-hydroxybenzyl)-N,N′-bis(2-methylpyridyl)ethylenediamine),6 reveals that both show a steady 

increase in 𝛼 values upon decreasing temperature (Figure 7); 𝛼 < 0.1 for T > 20 K, but increases rapidly 

below 20 K to reach ca. 0.3 at 5 K for [Dy(bbpen)Cl] (Figure S5). The trend of 𝛼 with temperature is 

similar for both compounds, however the values for the Cl- analogue are around 3 – 5 times larger 

than those of the Br- analogue between 20 and 50 K (Figure S5). This has a significant impact on the 

uncertainties in the fitted relaxation parameters: the uncertainties for [Dy(bbpen)Cl] are 

approximately double those for [Dy(bbpen)Br]. We note that this is not due to the larger distributions 

of 𝜏 in the low temperature (QTM) region for [Dy(bbpen)Cl], because near-identical parameters and 

uncertainties are obtained when fitting only the Orbach and Raman regions (Figure S6; Table S1). 

Examination of the XRD data for the two compounds (collected at 150 K) again reveals that the Cl- 

compound with larger 𝛼 values also has larger Uiso values for the atoms in the first coordination sphere 

(Dy1 = 1.543(9), O1 = 2.11(9), Cl1 = 3.25(4), N1 = 1.80(11), N2 = 2.16(11); all 10-2 Å2) than for the Br- 

compound (Dy1 = 1.481(9), O1 = 1.96(7), Br1 = 2.811(15), N1 = 1.61(8), N2 = 2.14(8); all 10-2 Å2). 

 

 
Figure 7 – Comparison of the relaxation dynamics for [Dy(bbpen)Cl] (left) and [Dy(bbpen)Br] (right), 

note the log-log scale. Error bars are calculated using the log-normal distribution model at the 1𝜎 

level.  Red lines are fits to Equation 10 with the 1𝜎 level parameters given in Table 2. 



 

Turning our attention to the recent family of dysprosocenium cations,8,9,16 the compounds appear to 

fall into two categories: the original [Dy{Cp(tBu3}2][B(C6F5)4],8 the more recent tetra-substituted 

[Dy{Cp(iPr)4}2][B(C6F5)4],16 and the fully substituted [Dy{Cp(Me)5}{Cp(iPr)5}][B(C6F5)4],9 have very small 

𝛼 values of < 0.05 (originally fitted with fixed 𝛼 = 0 in ref. 8, we have re-fit the AC data here), < 0.04 

and < 0.03, respectively, however the remaining members of the [Dy{Cp(iPr)4R}2][B(C6F5)4] (R = Me, Et, 
iPr) series16 have significantly larger 𝛼 values with maximal values around 0.1 to 0.15. This means that 

the relaxation parameters are very well-defined for the former set of compounds (Figure 8 top row; 

Table 2), where Ueff varies by 10’s K and 𝜏0 varies within 1/10th an order of magnitude, however the 

uncertainties for the latter set are significantly larger such that the relaxation parameters for the three 

compounds cannot be distinguished within error (Figure 8 bottom row and Figure S7; Table 2). 

Examination of the XRD structures for these six compounds (data collected at 100 or 150 K) shows 

that there is substantial disorder and large displacement parameters for [Dy{Cp(iPr)4R}2][B(C6F5)4] (R = 

Me, Et, iPr; Figure 9 bottom row), while there is no disorder for [Dy{Cp(tBu3}2][B(C6F5)4] and 

Dy{Cp(iPr)4}2][B(C6F5)4], and minimal disorder for [Dy{Cp(Me)5}{Cp(iPr)5}][B(C6F5)4] (Figure 9 top row). 

 

 

 

  

 
Figure 8 – Comparison of the relaxation dynamics for [Dy{Cp(tBu)3}2][B(C6F5)4] (top left), 

[Dy{Cp(Me)5}{Cp(iPr)5}][B(C6F5)4] (top middle), [Dy{Cp(iPr)4}2][B(C6F5)4] (top right), 

[Dy{Cp(iPr)4Me}2][B(C6F5)4] (bottom left), [Dy{Cp(iPr)4Et}2][B(C6F5)4] (bottom middle) and 

[Dy{Cp(iPr)5}2][B(C6F5)4] (bottom right), note the log-log scale. Error bars are calculated using the log-

normal distribution model at the 1𝜎 level.  Red lines are fits to Equation 10 with the 1𝜎 level 

parameters given in Table 2. 

 



 

 
Figure 9 – Comparison of the crystal structures of the cationic complexes [Dy{Cp(tBu)3}2]+ (top left), 

[Dy{Cp(Me)5}{Cp(iPr)5}]+ (top middle), [Dy{Cp(iPr)4}2]+ (top right), [Dy{Cp(iPr)4Me}2]+ (bottom left), 

[Dy{Cp(iPr)4Et}2]+ (bottom middle) and [Dy{Cp(iPr)5}2]+ (bottom right). Ellipsoids shown with 50% 

probability at 150 K for Dy{Cp(tBu)3}2][B(C6F5)4] and [Dy{Cp(Me)5}{Cp(iPr)5}][B(C6F5)4], and 100 K for 

[Dy{Cp(iPr)4R}2][B(C6F5)4] (R = H, Me, Et, iPr). Structures with dotted lines show disorder conformers, 

hydrogen atoms omitted for clarity. 

 

Conclusions 

Herein we have derived expressions for the uncertainties in magnetic relaxation times in terms of 𝛼 

values when obtained from fitting AC susceptibility data with the generalised Debye model. We find 

that a log-normal distribution in 𝜏 gives AC data that are practically identical to the generalised Debye 

model, and that the 1𝜎 uncertainty ranges for this distribution are equivalent to the Fuoss-Kirkwood 

distribution which is directly derived from the generalised Debye model. Given these equivalences 

and the facile extension to arbitrary 𝑛𝜎 levels, we recommend use of the log-normal model. We have 

also presented a new freely available program CC-FIT2 for the fitting of AC susceptibility data, 

extraction of relaxation times with uncertainties, and modelling of relaxation data accounting for 

those uncertainties. Applying our approach to the magnetic relaxation data for a series of high-

performance Dy(III) SMMs, we find that 𝛼 values in the range of only 0.1 to 0.15 are large enough to 

result in uncertainties in Ueff values of 100’s of K, and significantly larger relative uncertainties are 

obtained for the Raman parameters when 𝛼 increases at lower temperatures. Interestingly, we 

observe markedly different 𝛼 values even for families of similar complexes. Notably, we find that the 

relaxation parameters for [Dy{Cp(iPr)4R}2][B(C6F5)4] (R = Me, Et, iPr) cannot be distinguished within 



error, while those for [Dy{Cp(tBu3}2][B(C6F5)4], [Dy{Cp(iPr)4}2][B(C6F5)4], and 

[Dy{Cp(Me)5}{Cp(iPr)5}][B(C6F5)4] are well-defined. Analysing the XRD data for the three families, we 

observe that larger 𝛼 values tend to correlate with larger displacement parameters and/or 

crystallographic disorder, suggesting a physical origin for the distributions of relaxation times. We 

suggest that the type of analyses herein should become routine in the molecular magnetism 

community such that we can compare and contrast the behaviour of different complexes in a 

statistically meaningful way. 
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