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We present a multitask, physics-infused deep learning model to accurately and efficiently predict
refractive indices (RIs) of organic molecules, and we apply it to a library of 1.5 million compounds.
We show that it outperforms earlier machine learning models by a significant margin, and that in-
corporating known physics into data-derived models provides valuable guardrails. Using a transfer
learning approach, we augment the model to reproduce results consistent with higher-level compu-
tational chemistry training data, but with a considerably reduced number of corresponding calcu-
lations. Prediction errors of machine learning models are typically smallest for commonly observed
target property values, consistent with the distribution of the training data. However, since our goal
is to identify candidates with unusually large RI values, we propose a strategy to boost the perfor-
mance of our model in the remoter areas of the RI distribution: We bias the model with respect
to the under-represented classes of molecules that have values in the high-RI regime. By adopting
a metric popular in web search engines, we evaluate our effectiveness in ranking top candidates.
We confirm that the models developed in this study can reliably predict the RIs of the top 1,000
compounds, and are thus able to capture their ranking. We believe that this is the first study to
develop a data-derived model that ensures the reliability of RI predictions by model augmentation
in the extrapolation region on such a large scale. These results underscore the tremendous potential
of machine learning in facilitating molecular (hyper)screening approaches on a massive scale and in
accelerating the discovery of new compounds and materials, such as organic molecules with high-RI
for applications in opto-electronics.

I. INTRODUCTION

In recent years, data-driven approaches leading to big
data scenarios are rapidly gaining momentum in the
chemical and materials domain [1]. A wealth of informa-
tion can be extracted from such data using a variety of
machine learning (ML) techniques. ML prediction mod-
els are increasingly being used as surrogates for physics-
based models and can reveal intricate and often hidden
structure-property relationships. These models are strik-
ingly faster than their physics-based counterparts with
little compromise in terms of accuracy [2, 3]. Thus, ML
models can be applied as a catalyst in the process of
virtual high-throughput screening to expedite the explo-
ration of molecular space (see, e.g., Refs. [4–11]). Cur-
rently, this strategy is presumed as the backbone for the
accelerated discovery of materials with tailored proper-
ties.

The optical properties of materials are of key impor-
tance for a range of optic and optoelectronic applications,
such as organic light-emitting diodes, photovoltaics, im-
age sensors [12, 13]. A high index of refraction (RI) is
often one desirable property, in particular for lens com-
ponents. In a previous study, we explored the utility of
organic compounds in this regard and presented a com-
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putational protocol to model their RI [14–17]. This pro-
tocol was cast to the virtual high-throughput screening
of thousands of organic molecules to collect data of asso-
ciated properties including static polarizability, number
density (or density) and RI values. We employ this data
set to develop ML models that efficiently and accurately
predict properties of unlabeled molecules.

There is a rich history of developing ML models to fa-
cilitate the prediction of RI values. These studies have
been applied to a wide range of materials from organic
aerosols and common organic compounds to different
classes of polymers [18–21]. However, a majority of these
models are either trained on a limited data set, or only
apply linear models, which often lack enough complexity
to capture the underlying characteristics of data. Thus,
we combine the recent developments in the data min-
ing area with the large data set from our computational
studies to advance the modeling in terms of the accu-
racy and reliability for the prediction of a significantly
larger molecular library. In addition, the top candidates
resulting from our study are validated by performing the
previously established computational protocol that was
used for generating the data [14].

In this paper, we first detail the generation of refer-
ence data (Sec. II). The data generation process in-
cludes molecular library generation, and application of
virtual high-throughput screening to compile correspond-
ing properties of the resulting library. Next, we describe
methods employed in our data-derived modeling, includ-
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ing feature representation (Sec. II B), standard and cus-
tomized neural network architectures and their training
details (Sec. II C), and transfer learning approach to
outsmart the ML models (Sec. II D). We also propose
a fine-tuning strategy to assure the reliability of predic-
tions for high-RI candidates (Sec. II E). Sec. III presents
outcomes of the modeling, and emphasizes the improved
extrapolation approach. We discuss most important ob-
servations or otherwise justify exceptions in Sec. IV. Our
findings are summarized in Sec. V.

II. BACKGROUND, METHODS, AND
COMPUTATIONAL DETAILS

A. Study of High-Refractive-Index Candidates

As described in a recent study [22], we gener-
ated a molecular library of 1.5 million small organic
molecules, using our combinatorial library generator
package, ChemLG [23, 24]. The library is constructed
from 15 molecular building blocks and is constrained
by molecular weight and number of ring-moieties per
molecule. In addition, we employ the Lorentz-Lorenz
equation to calculate the RI (nr) of the molecules as a
function of their polarizability (α) and number density
(N). The Lorentz-Lorenz equation is given by

nr =

√
1 + 2αN/3ε0
1 − αN/3ε0

.

We recently developed an accurate modeling protocol
[16, 22, 25] to compute α and N using the Kohn-Sham
density functional theory (DFT) [26, 27] and molecu-
lar dynamics (MD) simulation, respectively. Since these
computational studies of the entire library of 1.5 million
molecules is time- and resource-intensive, we limit the
screening to a random subset of 100,000 molecules. The
resulting data set serves as the ground-truth for our data
modeling to accelerate screening of the entire library by
predicting corresponding properties, i.e., nr, α, and N .

The DFT calculations for 100,000 molecules are car-
ried out using the PBE0 functional [28] and double-ζ
def2-SVP basis set [29] along with D3 dispersion correc-
tion. Due to the dependency of derived RI predictions
to the employed quantum computations for polarizabil-
ity values, we also perform calculations using the larger
basis set, triple-ζ def2-TZVP [29]. However, consider-
ing the computational cost of this extra calculations at
higher quantum chemistry approximations, we only use
the triple-ζ basis set for additional calculations of a ran-
dom subset of 10,000 molecules (out of 100,000). We use
this data set to augment our data-derived models with-
out performing an exhaustive calculations for 100,000
molecules (see Sec. II D). Note that the new polariz-
ability velues are used for the calculation of RI values us-
ing LL equation with the same density values from MD

simulation. In this paper, the def2-SVP and def2-TZVP
basis sets and corresponding data sets are abbreviated
as SVP and TZVP for convenience. The statistics for
both data sets are also provided in the Supplementary
Material (Tables S1 and S2).

B. Feature Representation

We use hand-crafted molecular descriptors to provide
numerical representation of molecules [30, 31]. Two fam-
ilies of descriptors that we use in this study are: (1)
topological and physicochemical features from Dragon
7 [32], and (2) molecular fingerprints (FP). All these
descriptors are based on a molecular graph, i.e., a 2-
dimensional representation that depends only on atom
types and connectivities. A SMILES representation [33]
of molecules provides adequate chemical information to
calculate these types of descriptors. The total number of
Dragon descriptors after pre-processing (e.g., removing
constant columns) reduces to 1893 features. In order to
represent molecules using FP, we encode molecules to bi-
nary vectors using three FP algorithms contained within
RDKit [34]. These are Morgan FP with circular radius 2
[35, 36], hashed topological torsion FP (HTT) [37], and
hashed atom pair FP (HAP) [38]. The length of all FP
vectors is set to 1024 bits.

C. Regression Models

In this study, we focus on deep neural networks (DNN)
for the regression task [39]. The choice of DNNs for mod-
eling is due to their promising performance and flexibil-
ity in the design of neural network architectures [40]. We
use standard fully-connected DNN (Fig. 1a) to train one
model for each of three properties using one of descriptor
sets (i.e., resulting in 12 single DNN models in total).
To account for the effects of hyperparameters that dic-
tate the traininig and architecture of models, e.g., num-
ber of hidden layers, number of neurons, learning rate,
regularization parameter, etc., a fully customizable ge-
netic algorithm (GA) [41] code is developed whereby we
efficiently navigate through the hyperparameter space to
optimize the training models. We perform this ML work
using ChemML [23, 42, 43], our program package for ma-
chine learning and informatics in chemical and materials
research.

The data set is divided randomly into training and test
sets with a 9:1 ratio. We use the training data to fit mod-
els and tune hyperparameters based on their evaluation
on a 10% hold-out validation set. In addition to unbiased
data set splits, we apply early stopping, dropout, and
l2 regularization parameter to avoid overfitting [44, 45].
The best set of hyperparameters is used to define the fi-
nal models. To assess the dependency of these models
to the size of training set, we train each model on incre-
mentally increasing ratios from 5% to 100% and evaluate
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FIG. 1: Schematic of the models to predicting density (ρ), polarizability (α), and refractive index (nr) of organic
molecules. We first develop (a) standard deep neural networks (DNN)) for each property and representation (12

models in total). Based upon the insights from standard models, (b) we design a multitask physics-infused DNN to
utilize the combination of dense (real values), and sparse (binary bits) feature representations. The top hidden layers
of the multitask model can also be used in the transfer learning approach to leverage training on small size data sets.

them on the hold-out test set. We compare predictions of
these models with calculated properties using following
metrics: mean absolute error (MAE), root mean squared
error (RMSE), mean absolute percentage error (MAPE),
and regression correlation coefficient (R2).

Based on the results of standard DNNs trained on each
of the descriptors, we design a new model that improves
the prediction performance by: (1) multitask learning
[46], i.e., learning all three properties using one model,
(2) utilizing all the calculated feature sets, and (3) im-
itating the Lorentz-Lorenz equation in the architecture
of the DNNs. The overall model structure (Fig. 1b) is
designed to first independently transform all four input
feature sets to the latent space provided by multilayer
DNN structure. This step facilitates merging the dense
Dragon features with sparse FP features [47]. Next, we
concatenate and linearly map the corresponding latent
space to the α and N . This way we make sure that the
transformed features, as latent space, are tuned to repro-
duce the two essential properties for calculation of nr.
The key to the design of this model is that each descrip-
tor shows a different performance for the prediction of
available properties. Therefore, for the final prediction
of the nr, we first multiply the elements of the latent lay-
ers by each other to imitate the product of α and N in
the Lorentz-Lorenz equation. We finalize the prediction
with one last fully-connected network to learn the nr.

D. Transfer Learning

It is generally accepted that additional training data
often improves the performance of ML predictive mod-
els, unless they are saturated in which case they exhibit
a constant performance. Therefore, one would expect
that predictive models trained on 100,000 training data
at double-ζ-quality (SVP basis set) have a higher accu-
racy as compared to those trained on the smaller but
more accurate 10,000 data points at the triple-ζ-quality
(TZVP basis set). In order to replicate the accuracy ob-
served in quantum chemistry in ML models, one solution
is based on the idea of transfer learning (TL) for DNN
models [48]. TL suggests that tuned parameters from
a high-quality ML model (e.g., trained on a large data
set) can be reused in the structure of a new ML model to
learn the essence of the high-quality but small data sets
[49]. Thus, we use the TL approach to obtain desired
prediction accuracy on the TZVP data.

For the purpose of TL, we transfer tuned parameters
from the initial layers of the best predictive model for
the SVP data set (see Fig. 1.b) to a same model with
randomly initialized parameters. These parameters will
be set and frozen at the equivalent layer of the new DNN
structure for the training of the TZVP data set. We
further optimize number of transformed hidden layers as
one of the hyperparameters in the model selection task.
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E. Extrapolation to 1.5 Million Molecules

In addition to the development of accurate ML mod-
els to predict RI values, we further study if the overall
prediction error is applicable to the entire range of RI
values in the training set. For instance, we analyze the
MAE of the predictions at the tail of the RI histogram,
i.e., the desired remoter areas in the RI distribution.
If the prediction error in those regions of the molecular
candidates is worse than the average, we fine-tune predic-
tive models so that they are able to capture the essence
of those desired underrepresented class of molecules [50].
To perform fine-tuning (FT), we carefully retrain the best
model on the data points that are close to the tail of the
RI distribution, i.e., those that most probably deviate
from their predicted values more than the overall MAE.
Note that for this study, a significantly smaller learn-
ing rate is required to avoid causing disturbance to the
model.

In order to assess our FT strategy, and to find out
which modeling approach provides the best ranking of the
top candidates, we employ discounted cumulative gain
(DCG) ranking metric [51, 52]. The DCG has its roots
in the ranking of results from web search engines. It is a
measure of the ranking quality for the ordered elements of
the list based on a reference relevance value. We compute
the DCG as

DCGp =

p∑
i=1

reli
log2(i+ 1)

,

where p is the rank position of the molecules based
on their RI predictions, and rel is the relevance scale of
the molecules. We select top 1,000 molecules (out of 1.5
million) based on the predictions of all three modeling ap-
proaches, i.e., multitask model trained on SVP data, TL
model trained on TZVP data, and FT model trained on
SVP data. The derived RI values in the SVP and TZVP
data sets serve as a scoring measure to compute the rel.
We use the reverse ranking of the top 1,000 molecules
based on their reference RI values from data sets as our
graded relevance scores. Using the DCG measure, we
compare the ranking quality of predictions against the
ground-truth LL calculations for this study.

III. RESULTS

The learning curves of the standard DNN models (Fig.
1 a) for each descriptor set, and the multitask Lorentz-
Lorenz-equiation-infused model (Fig. 1b) are displayed in
the Fig. 2 for three properties of the SVP data set. The
learning curves show the MAE as a function of the train-
ing set size evenly spaced from 5% to 100% ratio. The
best results at 100% ratio are shown in Table I. In addi-
tion, We report the performance of best models in terms
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FIG. 2: The learning curves show the dependency of the
mean absolute error (MAE) to the training set ratio for
each model. The legend corresponds to the descriptor

used for the training of the single-output standard deep
neural network (DNN) models, and the new multitask

physics-infused DNN model, which is trained on all four
descriptor sets. All models are trained and validated on

the training set from 100,000 data points (SVP data
set).

of other metrics in Supplementary Material (Tables S8-
S10). We note that the MAE for the Dragon model is
the best among the standard DNN models with respect
to all three properties. However, the models that are de-
rived from the FP descriptor sets outperform at least one
of the other FP models for the prediction of one of the
properties. In other words, Morgan and HTT models are
the best FP model for the prediction of RI and polariz-
ability, respectively. The HAP model also outperforms
Morgan for the prediction of densities.

The new multitask model offers a substantial improve-
ment in terms of prediction accuracy for all three proper-
ties. In particular, the lowest MAE for the RI predictions
becomes 0.006 with the correlation coefficient, r2 = 0.99.
This is 20% improvement compared to the best standard
DNN model. Most importantly, we find that the DNN
prediction errors for RI values are significantly smaller
than the calculation errors (by a factor of 2 to 3) re-
ported in our previous benchmark studies [14].

Fig. 3 shows the learning curves for the TL approach.
The curves for the SVP model is same as the multitask
model trained on the SVP data set. Note that here we
increase the number of training set sizes at smaller pro-
portion of the training data to match the smaller size
of the training data available via TZVP data set. If we
do not utilize the TL and train a multitask network on
the 10,000 TZVP data set, the prediction errors are very
similar to the SVP model. However, due to the small size
of data the performance is relatively poor compared to
the best model trained on the SVP data set. When TL
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FIG. 3: The improvement in terms of reduced mean
absolute error (MAE) as a function of training set ratio,

by applying transfer learning (TL) approach to the
multitask models. The SVP refers to the 100,000

training data with double-ζ quality. The TZVP refers
to the 10,000 training data with triple-ζ quality. The
green learning curves on all plots (zoomed on bottom

row) show the performance of the multitask model
trained with TL approach.

is applied, the MAE for the same training set ratios are
significantly decreased. The transferred models are able
to reproduce the TZVP results by approximately 45%
improvement for all properties.

The histogram and distribution of the calculated RI
values in the hold-out test set of the SVP data is shown
in Fig. 4. The majority of molecules have RI values be-
tween 1.5 and 1.7 with an average of 1.62. If we segment
and sort the absolute prediction errors of SVP model, the
resulting histogram shows exponential increase in the un-
certainty of the model at the remoter areas. The MAE for
the farthest segments associated with highest RI values,
is approximately 5 times bigger than the overall MAE of
the model. After fine-tuning, top candidates can be ap-
proximated two times more accurately than the original
model. We also note that the prediction errors in the dis-
tribution peak is slightly increasing, but it is insignificant
to cause any change to the ranking of molecules with RI

TABLE I: Overall prediction error of models in terms of
mean absolute error (MAE). The table summarizes Fig.

2 at 100% training set ratio.

model nr α (Bohr3) ρ (kg/m3)
Morgan 0.0087 3.65 8.53
HTT 0.0098 3.12 7.15
HAP 0.0105 3.51 7.61
Dragon 0.0076 2.12 4.54
Multitask 0.0063 1.83 4.27
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FIG. 4: The range and distribution (right y-axis) of the
RI values in the hold-out test set. The mean absolute

error (MAE) of predictions is shown for the evenly
spaced segments of the histogram. Using the fine-tuning

(FT) approach, we are able to improve the prediction
error for the underrepresented molecules close to tails of

the distribution. Both models are trained on the
100,000 data at double-ζ-quality (SVP).

greater than 1.8.
The results of the DCG metric is shown in Fig. 5.

Higher values demonstrate a better compatibility be-
tween the rankings by reference calculations and those
by the predictive models. The DCG for fine-tuned model
has the greatest value among all of the models. The rank-
ing of top candidates based on the referenced RI values in
SVP data is closest to the FT SVP model, original mul-
titask SVP model, and TL TZVP model, sequentially. If
we consider the TZVP data as reference, the FT SVP
model still aligns better compared to the other two mod-
els. However, the ranking by TL TZVP model is slightly
better correlated with the reference ranking, which is ex-
pected due to the same level of data quality.

IV. DISCUSSION

The benefit of utilizing 2D descriptors in this study is
the computational efficiency of their extraction. Thereby,
we can avoid the time-intensive geometry optimization
for the molecules. Moreover, we take advantage of flexi-
bility in the design of standard DNNs to infuse the avail-
able prior knowledge into the model. The architecture
design enables the interpretability, in addition to im-
provement in the overall performance of the model. How-
ever, the down side of working with DNNs is the exorbi-
tant number of hyperparameters, i.e., non-trainable pa-
rameters that are required to define a model. We tackle
this challenge by using our in-house evolutionary algo-
rithms for the model selection task. We note that the
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FIG. 5: The discounted cumulative gain (DCG)
measures the ranking quality of the

high-refractive-index candidates (i.e., top 1000
molecules) based on the predictions of data-derived

models. In this regard, the rank of molecules based on
original multitask model, fine-tuned model (FT), and

transferred model (TL) are compared against the
ranking based on polarizability calculations at double-ζ
basis set (SVP) and triple-ζ basis set (TZVP) quality.

process of hyperparameter optimization plays a nontriv-
ial role in the final model’s performance. We report the
best set of hyperparameters in the Supplementary Mate-
rial (Table S3-S7).

The performance of the single-output standard DNNs
show that each of the descriptors helps to capture struc-
ture property relationships to a certain degree, which
highly depends on the target property as well. This ob-
servation motivates the idea to take advantage of a com-
bination of features for the development of ML models.
However, two challenges involved with this task are: (1)
curse of dimensionality, and (2) different levels of spar-
sity between feature sets. We overcome both of these
challenges by utilizing the deep structure of neural net-
works as the feature transformation step. Taking into
account the availability of the essential properties for the
RI calculations, the rest of the network is processing the
transformed features to simultaneously learn all the prop-
erties similar to the RI calculation via the Lorentz-Lorenz
equation. We also conduct principal component analy-
sis (PCA) on the final hidden layers of each model before
they are mapped to the target properties (see Supplemen-
tary Material Fig. S1). The differentiability of the target
properties by PCA components clearly explains the role
of different stages of the multitask model in learning cor-
responding properties. Note that using our GA code we
also optimize the architecture of the models. Thereby,
all the models can have same number of trainable pa-
rameters. Eventually, the multitask model is not a sig-
nificantly bigger model compared to the standard DNN

models. Therefore, the 20% improvement in the predic-
tion accuracy of the multitask model is explainable based
on these new advancements that we consider in its design.

Similar data mining efforts in literature have recorded
an R2 of 0.91 with a multi-linear regression model for
126 organic compounds with 5 descriptors [21], and a
mean absolute error of 0.01 for another multi-linear re-
gression model for 111 secondary organic aerosols [18].
Trained on a much larger data set, our best model, on
the other hand, has a significantly better accuracy than
that achieved by previously reported ML approaches.

The design of the multitask model also allows us to uti-
lize hidden layers of tuned models (i.e., the latent space)
for application in TL. Based on the learning curves of
the transferred models, we understand that even half of
the size of the TZVP data set is sufficient to achieve the
best performance of the model. Using the TL approach,
we can potentially save 90% of the calculations at triple-
ζ-quality to match the prediction errors of the trained
model on larger SVP data set. This amount for RI is
approximately 45%. The difference can be due to error
propagation in the Lorentz-Lorenz model. Accounting
for the computational cost of the higher quality DFT
models, this amount of reduction in the calculations is
a significant improvement, specifically for the virtual-
high-throughput screening that requires cost-effective ap-
proaches. Note that the density values are independent
of the DFT calculations, and the little improvement in
their performance is in the order of the standard devia-
tion of their predictions.

By training on thousands of molecules covering a broad
range of combinatorial structures, the multitask model is
expected to make informed predictions of the entire range
of target properties. However, we observe that common
RI values are easier to predict due to the pervasiveness of
building blocks (or specific pairs of building blocks) in the
top 10% candidates. We previously studied [16] the Z-
scores of the building block combinations and the results
clearly prove the over/under-representation of particular
substructures in both tails of the RI distribution.

Based on the DCG scores, we observe that the ranking
quality of the top 1,000 candidates is best along with the
fine-tuned model refer to both of the reference calcula-
tions by two different bases sets, i.e., def2-SVP and def2-
TZVP. Thus, we confirm that the fine-tuning method is a
very effective method to assess the properties of high-RI
candidate molecules. We also note that the TZVP (TL)
model provides more relevant predictions than the orig-
inal SVP model to the TZVP reference, and vice verse.
Therefore, it is important that what level of theory is con-
sidered to best estimate the real-world properties (i.e.,
ideal ranking) and thus it should be used for the training
of the data-derived models.

We should also mention that the DCG scores for all
the models are very close to each other, i.e., their ratio
is close to one. This means that these models are essen-
tially at the same level of prediction accuracy. However,
further optimization of the original model (e.g., via fine-
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using developed predictive models in this study.

tuning or TL) helps to accurately shortlist the top can-
didates to a limited number of molecules (e.g., less than
five molecules). This way we can provide top candidates
for the expensive and time-consuming experimental syn-
thesis. Lastly, we show the number of molecules with
an ambitious filter of nr greater than 1.8 in the entire
1.5 million molecular library (Fig. 6). The RI values are
predicted using the three ML models developed in this
study. The total number of molecules counted in this fig-
ure is close to 30,000, which covers only 2% of the entire
screening library of 1.5 million small organic molecules.
The SMILES representation of the top 100 candidates
based on the TZVP calculations with their corresponding
predictions are available in the Supplementary Material.

V. CONCLUSIONS

In the work presented here, we designed a DNN model
that incorporates the underlying physics of the given
problem (i.e., the prediction of RI values via the Lorentz-
Lorenz equation) in its architecture and merges different
descriptor spaces that each have distinct benefits. We
demonstrated that our model is able to reproduce all tar-
get properties (i.e., nr, α, ρ) of the molecules in the given
data set with high accuracy, and significantly outper-
forms the existing state-of-the-art approaches for similar
problems. Next, we utilized a TL approach to further in-
crease the model’s accuracy using only a relatively small
amount of high-quality data (i.e., associated with only
modest additional cost). TL allows us to obtain high-
level models with only a fraction of the high-level data
needed for direct ML, which can thus dramatically reduce
the bottleneck of the associated training data generation.
Although TL has caused excitement in the ML commu-

nity, it has (to the best of our knowledge) never been
employed to improve the ranking of unlabeled molecules
as shown in this study. We found that the transferred
model is slightly better than the original in capturing
the order of top-candidates. In addition to pursuing ex-
cellent overall performance, we also addressed the relia-
bility of the model for the prediction of high-RI values
(i.e., properties of top candidates at the edges of the
model’s applicability domain). The proposed fine-tuning
approach recognizes the under-representation of training
data in the extreme value range, allows the model to learn
from top candidates, and thus balances the oversampling
of the majority compound classes. Our fine-tuning strat-
egy employs DCG scoring to rank molecules at all levels
of theory. We conclude that the fine-tuning of ML mod-
els with data from extreme value regions is necessary to
ensure a successful screening of molecular space for com-
pounds with exceptional properties.

SUPPLEMENTARY MATERIAL

Electronic supplementary material accompanies this
paper and is available through the journal website. It
provides statistical analysis of all data sets that are used
in this study (Table S1-S2), and tuned hyperparameter
values for trained models (Table S3-S7). We also give
detailed definitions of all statistical metrics used in this
work along with their associated values (Table S8-S10).
The principal component analysis of the final hidden lay-
ers of the trained models are also illustrated in Fig. S1.
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