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Abstract 

ChemBioServer 2.0 is the advanced sequel of a web-server for filtering, clustering and 

networking of chemical compound libraries facilitating both drug discovery and repurposing. It 

provides researchers the ability to (i) browse and visualize compounds along with their 

physicochemical and toxicity properties, (ii) perform property-based filtering of chemical 

compounds, (iii) explore compound libraries for lead optimization based on perfect match 

substructure search, (iv) re-rank virtual screening results to achieve selectivity for a protein of 

interest against different protein members of the same family, selecting only those compounds 

that score high for the protein of interest, (v) perform clustering among the compounds based on 

their physicochemical properties providing representative compounds for each cluster, (vi) 

construct and visualize a structural similarity network of compounds providing a set of network 

analysis metrics, (vii) combine a given set of compounds with a reference set of compounds into 

a single structural similarity network providing the opportunity to infer drug repurposing due to 

transitivity, (viii) remove compounds from a network based on their similarity with unwanted 

substances (e.g. failed drugs) and (ix) build custom compound mining pipelines. The updated 

web server is available in the URL: http://chembioserver.vi-seem.eu/  
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Introduction 

Despite the improvements in available technologies to the pharmaceutical sector, the cost of 

commercializing a new drug doubles every 9 years (Scannell, et al., 2012). Designing novel 

organic compounds in a systematic fashion is a daunting task as it has been estimated that there 

can be up to 1060 molecules with drug-like properties (Polishchuk, et al., 2013). One of the initial 

stages in drug development is to explore this chemical space using libraries that attempt to 

capture its vastness with a small subset of very diverse molecules. Generating these libraries 

through exploration of this space is a challenge in itself, and several researchers have tackled the 

problem through different computational approaches, such as exhaustive search (Gómez-

Bombarelli, et al., 2016), genetic algorithms (Virshup, et al., 2013) and very recently, deep 

neural networks (Gómez-Bombarelli, et al., 2018). Once a sufficiently large and diverse library 

of compounds is obtained (typically thousands of molecules), its components are virtually 

screened against a desired target to predict their energy and site of interaction (Lionta, et al., 

2014). This initial prediction is of paramount importance in order to save both time and money, 

as the initial library is narrowed down to only the best scoring molecules that are selected for 

further screening using more detailed computational models and experimental assays. 

One issue related to drug discovery is the problem of specificity. The complexity of a cell is still 

far beyond the reach of current simulation capabilities, and the real targets of drugs are never in 

isolation. Therefore, a compound that shows a strong affinity for a target could also have many 

off-target interactions, leading to undesired secondary effects. This is very often the case for 

protein families: groups of evolutionarily related proteins that share structural similarities. 

On the other hand, already existing drugs might prove useful against a disease outside their 

initial target spectrum. Drugs with high structural similarity imply similar mode of action against 



similar targets. As it is highlighted in the study of Zhang et al., drug similarity analytics, 

including chemical structure similarity, aim to find drugs, which display similar pharmacological 

characteristics to the drug of interest (Zhang, et al., 2014). Drug repurposing studies and tools 

based on drug structural similarity have been already made (Gottlieb, et al., 2011; Li and Lu, 

2012). A drug-drug network with nodes linked by their pairwise structural similarities shows 

direct association of compounds allowing the researcher to either choose or filter-out compounds 

based on these relations, as an additional virtual screening method. 

ChemBioServer (Athanasiadis, et al., 2012) is a very successful application that has been 

continuously supported by our Groups and is gaining attention from the scientific community 

(for the last 11 months it has an average of 8749 hits per month). We have updated the initial 

version of this server with (a) a functionality that re-ranks virtual screening results based on 

screening the same compound library against different protein members of the same family, 

selecting only those compounds that score high for the protein of interest, (b) a group of 

networking tools in order to allow researchers to create networks of compounds and provide 

useful network metrics, (c) a functionality that infers potential drug repurposing based on 

structural similarity, (d) a filtering functionality to filter out compounds that are similar to 

unwanted substances (e.g. failed drugs).  

Application 

Filtering  

The “Filtering” section of ChemBioServer allows researchers to browse and filter compounds 

based on intra-ligand steric clashes, unwanted toxicophores, and desirable or undesirable 

chemical moieties or physicochemical properties. In this update, the functionality “Docking Re-

ranking” has been added to this group of actions. Very often users need to select compounds that 



rank high for their target of interest but low for evolutionarily related proteins with similar 

binding sites (e.g. in a set of protein kinases) in order to avoid potential side effects. Thus, they 

employ cross-docking virtual screening in multiple receptor structures to identify compounds 

that will be predicted to bind only to the receptor of interest and not to receptors of the same 

protein family. ChemBioServer 2.0 can post-process cross-docking results and automatically re-

rank virtual screening output to reveal compounds that rank high for the protein of interest in 

seconds. First, the user uploads virtual screening results for the target(s) of interest using the 

“Upload target file(s)”.  Multiple file upload is allowed as users may choose to dock a chemical 

library in multiple conformations of a given protein. Next, the user uploads virtual screening 

results of the same chemical library that has been performed in protein structures users want to 

filter against. Again, multiple file upload is allowed. ChemBioServer 2.0 then re-ranks 

compounds and outputs to the user those compounds that rank high for the target of interest and 

low for undesired targets (based on the provided docking scores).  

The re-ranking algorithm is equipped with three methods to define compound selectivity for the 

target protein: automatic, manual or based on minimum desired docking score difference of the 

compound set. In all three methods, the user has to specify the minimum number of compounds 

that should be retrieved from the re-ranking procedure. The automatic method detects high-

scoring docked compounds for the target of interest that have a low docking score for the 

undesired protein targets. It thus starts by defining low and high docking score cutoffs as the top 

1% best scoring compounds for the target(s) and the top 1% worst scoring compounds for the 

rest of the proteins, respectively. These cutoffs are iteratively relaxed using 1% increments until 

the minimum number of compounds desired by the user meets the filter conditions. The manual 

method provides more flexibility, as the user manually specifies the low and high docking scores 



as cutoffs and a direct search is performed. The third method provides an alternative way to 

define compound specificity for a given protein target. Often, the absolute values of docking 

scores as cutoffs might not be as important as the actual predicted free energy difference 

(docking score) between the compounds for each protein. The larger this difference, the more 

selective the compounds will be. Therefore, with the “Score Difference” selection from the 

Method Selection tab the user can specify a desired level of energy difference, and the program 

will proceed in a similar fashion to the automatic procedure. It will start by defining the top 1% 

lowest scoring compounds for the target protein and the second cutoff will be set above by given 

score difference. While the number of compounds that pass this filter is below the minimum 

number of compounds specified, the low energy cutoff will be gradually increased by 1% steps, 

and the high energy cutoff will always be at least above the set score difference (in kcal/mol). 

These two last methods are not guaranteed to succeed, as there might be no compounds that meet 

the selection criteria defined by the user. In such a case, the program falls back to the automatic 

method. After the filtered compounds are obtained in a data frame, they are written to an Excel 

file, which is available for download. This format was chosen to make it more accessible to a 

general scientific user base with no knowledge of programming. The algorithm uses the Pandas 

Python package API7, conveniently allowing for data processing. The linchpin of this library is 

the Data Frame object, which is used to store data in memory by reading CSV files. These 

objects support Boolean indexing and have multiple methods implemented in C, which are faster 

than conventional Python ‘for’ loops. One of the three methods can be chosen and corresponding 

input boxes appear dynamically using JavaScript. The input files are stored in the server and 

analyzed by calling a Python script through PHP. The results are stored for 24 hours and a link to 

download them is displayed after successful finishing of the analysis. 



 

Clustering 

ChemBioServer 2.0 still features the two clustering methods that were initially included under 

the “Clustering” labeled section; hierarchical and affinity propagation clustering. Both methods 

return structural clusters of the input compounds to the users together with their distance matrix 

as well as a graphical visualization. The affinity propagation clustering also returns exemplar 

compounds for each cluster.  

Networking  

The “Networking” section of ChemBioServer features all similarity-based network-related 

actions that have been added to this update. Similarity networks present a visualization of the 

strongest connections between substances based on their structural similarity. Nodes that are 

close to each other imply similar mode of action in a pharmaceutical setting. Apart from the 

holistic type of visualization, network analysis offers insights regarding the neighborhood of 

each node and the topology of the network reveals nodes that may connect distinct subnetworks 

of compounds, inferring multiple modes of action for some compounds. Moreover, key drug 

players can be highlighted based on network properties such as degree, strength or betweenness, 

as structural representatives of a highly connected group of compounds. Usually, researchers 

need to discover new uses for existing drugs against diseases, hence lowering the cost of new 

drug creation (i.e. drug repositioning). Structural drug repurposing is a form of drug 

repositioning where predicted drugs target the same proteins as drugs structurally similar to 

them. For this reason, fast screening of drug lists is important in order to bring together test 

molecules with seemingly suitable substances based on their similarity. On the other hand, 

chemical substances might be deemed inappropriate for further studies based on structural 



criteria such as similarity to toxic substances or previously failed drugs from clinical trials. The 

similarity edge lists derived from ChemBioServer’s networking actions can be further explored 

via network analytics applications. Five networking functionalities are implemented and labeled 

“Structural Similarity Network Visualization”, “Structural Similarity Network Analysis”, 

“Combine two sdf files in a Network”, “Attach similar-only nodes to Network” and “Remove 

nodes from Network, based on similarity” realise the aforementioned needs.  In “Structural 

Similarity Network Visualization” the user uploads an sdf file and after choosing a similarity 

metric between “Tanimoto”, “Euclidean”, “Cosine”, “Dice” and “Hamming” and a value cutoff 

threshold for the edges (based on similarity values) can visualize the network and download the 

similarity matrix between all input compounds. This matrix is returned through the call of the 

function calcDrugFPSim from the Rcpi package which calculates the drug molecules' similarity 

derived from their molecular fingerprints. The graph is drawn in the user interface via the 

javascript library vis.js. “Structural Similarity Network Analysis” uses the same type of input 

values and the calculated similarity matrix is used as an adjacency matrix in order to create a 

graph using the igraph package in R. Node metrics “Degree”, “Betweenness” and “Strength” are 

then presented in a sortable table after execution.  

The “Combine two sdf files in a Network” action allows the user to test an sdf file against 

another reference sdf set and paints the two groups of compounds in different colors, as well as 

allows the user to download the initial similarity matrix between the compounds of both input 

sets. In the "Attach similar-only nodes to Network" tab, a main network is created for the 

reference set with a given edge threshold and then compounds from the test set are attached to 

the main network via another edge threshold (e.g. stricter connections). Then the user can 

download the upper triangular adjacency matrix of the whole network, as well as the edge list of 



the reference - test edges. Finally, in the "Remove nodes from Network, based on similarity" tab, 

a main network is created for the reference set with a given edge threshold and then compounds 

similar to ones from the test set (second edge threshold input) are removed, together with their 

edges, from the network. Once again, the user can download the upper triangular adjacency 

matrix of the new network, as well as the edge list of the reference - test edges that accounted for 

the removal of the reference nodes. 
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