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Abstract 

A mixed-integer nonlinear programming (MINLP) formulation for symbolic regression was 

proposed to identify physical models from noisy experimental data. The formulation was tested 

using numerical models and was found to be more efficient than the previous literature example 

with respect to the number of predictor variables and training data points. The globally optimal 

search was extended to identify physical models and to cope with noise in the experimental 

data predictor variable. The methodology was coupled with the collection of experimental data 

in an automated fashion, and was proven to be successful in identifying the correct physical 

models describing the relationship between the shear stress and shear rate for both Newtonian 

and non-Newtonian fluids, and simple kinetic laws of reactions. Future work will focus on 

addressing the limitations of the formulation presented in this work, by extending it to be able 

to address larger complex physical models. 
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1. Introduction  

Today we experience rapid development of a new field of chemical science – digital molecular 

technology (DMT). It is evident by the increasing number of publications in which synthetic 

and computational chemistry, or materials development are mixed with machine learning 

(ML), robotics and artificial intelligence (AI), for example in Refs. [1–6]. DMT is promising 
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to significantly expand the accessible chemical space and to reduce the price of access to new 

functional molecules and materials. These are to be achieved through enhanced capabilities in 

molecules and reactions discovery, and in process development and optimization. The key 

component of the new DMT methods is the increased volume and quality of chemical data 

obtained both through data mining, computational chemistry tools and robotic experiments, as 

lack of data renders ML and AI methods inaccurate and not very useful [7]. Here we ask a 

question, is it possible to make use of the increased availability of experimental data to enhance 

our capability in inferring physical knowledge from data by means of algorithmic research? 

This is driven by the desire to develop predictive models of complex chemical processes, which 

could be used in optimal control. The approach that we seek to develop should not be based on 

selecting functional forms from a pre-defined set. This has already been demonstrated within 

DMT, for example, in selecting suitable kinetic expressions within an automated self-

optimization system [8]. Our own interest is in the methods that are inherently not restricted to 

only the known functional forms and are, therefore, potentially capable of discovering new 

phenomena. 

 

Automation of chemical research has recently emerged as a highly promising broad 

methodology [9]. Significant benefits of automated systems include the precise control of the 

operating conditions, and the ability of generating large, reliable and reproducible datasets [10]. 

Thanks to the advances in computational power, automated systems have been combined with  

machine learning (ML) techniques and applied in discovery of novel materials [11] and 

reactions [12], process development [13] and optimization [8]. Automated systems mainly 

consist of three components: a decision-making algorithm, a physical platform capable of 

undertaking the desired class of experiments autonomously and an automated inline/online 

analytical setup [14]. As the ‘brain’ of automated platforms, the decision algorithm plays a 

vital role. On this basis, ML algorithms based on statistical surrogate modelling approaches 

have become increasingly popular, having been shown that they provide accurate models for 

predictions [15].  

 

On the contrary, the data-driven development of interpretable physical models resisted 

automation for long [16]. The possibility of building data-driven interpretable and 

generalizable models for complex and not well understood physical systems is important as 

these models share the similar structure to those based on first principles and can be transferred 

to analogous systems, whereas surrogate models cannot be easily generalized [17]. This, in the 
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longer term, can improve the time and resource efficiency for the product discovery and process 

optimization, especially for the manufacturability and the scale-up, for which a mechanistic 

understanding is often crucial [18–20].  

 

The field of algorithmic search for physical models is relatively new, but has seen a number of 

important advances. Recently, Brunton et al. introduced a sparse regression approach to 

discover equations governing the physics in a chaotic Lorenz system, and in a fluid vortex 

dynamic system [21]. However, this technique is restricted to a pre-defined algebraic model 

structure, as selected basis functions are linearly combined. Allowing free-form analytical 

equations, Bongard and Lipson [22] developed a criterion to find meaningful and complex 

mathematically invariant models by means of the ML method of symbolic regression (SR). 

Recent application of SR for physical models can be found in civil engineering [23] and 

material science [24]. Although successfully proven, the proposed SR was based on a heuristic 

search that could terminate the optimization in local minima solutions, producing potentially 

less suitable models than possible. Additionally, as the structure of a model reflects the actual 

mechanistic interactions within the system studied, these approximate solutions cannot be used 

reliably to infer any mechanistic information about the system, i.e. to use it to identify chemical 

reactions mechanisms with certainty. Acknowledging this disadvantage, SR is formulated as a 

mixed-integer nonlinear programming (MINLP) in Ref. [25,26] and solved to global optimum. 

However, the method remained in the mathematical domain and has yet to be applied to 

physical models and noisy experimental data.  

 

This paper aims to advance the method of globally optimal symbolic regression towards 

automated, data-driven identification of physical models, and its applications to chemical 

engineering case studies. Compared to additive models in conventional regression and heuristic 

searches in SR, the globally optimal data-driven modelling technique, without any previously 

imposed model structure, is expected to discover true underlying relationships more reliably. 

To accomplish this, a modified optimization formulation of SR is developed and implemented 

in combination with a framework for physical model selection. As a proof of concept, several 

case studies were investigated in the areas of rheology and reaction engineering. The purpose 

is to illustrate an automated research pipeline deriving interpretable and generalizable models 

and thereby providing access to physical knowledge from data generated in robotic 

experiments. Within this big picture, closing the loop of utilizing the obtained physical models 
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in further experimentation and generation of physical knowledge by (automated) interpretation 

remains for future research, as shown in Figure 1. 

 
Figure 1. Schematic diagram for automated physical model identification. 

 

2. Materials and Methods 

2.1. MINLP formulation 

Use will be made of the Directed Acyclic Graph (DAG) description of algebraic functions 

throughout this work [27]. The MINLP formulation is based on a balanced binary tree 

superstructure for the representation of the equations describing a physical model. The overall 

goal is to enable the assembly of free-form algebraic functions by connecting predictor 

variables and operators, such that the resulting function predicts the dependent variable values 

accurately. As an example, the structure with nodes in a four-layer balanced binary tree is 

shown in Figure 2a. 
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Figure 2. An example of a directed acyclic graph. (a) Binary rooted tree, (b) MINLP set-up in 

connection with the expression tree. 

 

The formulation presented here is based on Ref [26], but follows a different concept in the set-

up of the binary tree in order to reduce the number of binary variables in the global 

optimization. These modifications are addressed in Section 2.2.   

 

An expression tree consists of 𝑁 = 2$% − 1	nodes, where 	𝑁𝐿 defines the number of layers. 

All nodes that have a connection with nodes on a lower level, their children nodes, are called 

branch-nodes (𝒩+) or non-leaf nodes and house a mathematical operator. The nodes on the 

lowest layer in the tree, referred to as leaf-nodes	(𝒩.), are assigned to a predictor variable 𝑥0,2  

or a constant 𝜖4. In the following sections, we will refer to the total number of activated nodes 

in the tree as “complexity” of the model (except the ones with an identity operator). Each given 

data point deployed in the SR is described by two parameters: the value of the predictor 

variables 𝑥0,2 and the dependent variable value 𝑦2, which is predicted by the model for each 

training data point j. As shown in Figure 2b, the input variables are assigned for selection only 

at the leaf-nodes, while the dependent variable values are used at the root node (𝑛 = 1) for 

comparison with the model prediction.  

 

Each node has a value for each data point 𝑉4,2 , which is computed to be used as operator 

arguments on the layer above. The nodal values at the bottom of the tree are determined by the 

selection of an input variable or a constant. On branch node layers, nodal values are specified 

by the selected operator in combination with the node values of their children. The allocation 

of the input predictor variables 𝑥0,2 is implemented by the binary variables  𝜁4,0. Continuous 

decision variables 𝜖4 with bounds 𝜖4.9 and 𝜖4
:; are designated for constants at every even leaf-

node. To decide between a variable input and the selection of a constant at the even leaf-nodes, 

further binaries variables 𝜅4 are assigned. With regard to the branch-nodes, there are binary 

variables 𝛿4,> assigned for operator selection, where an operator is active at node n if 𝛿4,> = 1 

and inactive if 𝛿4,> = 0. If active, each binary operator is applied using both children nodes 

while a unary operator uses only the value of the left node 𝑉@4,2 . Five binary operators 

(addition, subtraction, multiplication, division and power law) and three unary operators 

(identity, exponential and square root) were implemented. It should be noted that the list of 
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operators can be extended further, such as cubic, square or logarithm operations as proven in 

Ref. [26]. 

 

Table 1. MINLP Notation: Set 

Description  Index  Set  Value  

Nodes  N 𝒩 {1, … , 𝑁}  

  Branch-nodes  𝒩+ {1, … , 2$%DE − 1}  

  Leaf-nodes  𝒩. {2$%DE, … , 𝑁}  

  Even leaf-nodes  𝒩.
∗ {2$%DE, 2$%DE + 2… ,𝑁}  

Algebraic 

Operators 

K ℱ {+,−,…	}  

Predictor 

Variables 

I 𝒳 {1, … , 𝑁𝑋}  

Input Data Points J 𝒥 {1, … , 𝑁𝐸}  

 

Table 2. MINLP notation: Parameters. 

Description Parameter  

Input variable values 𝑥0,2 𝑖 ∈ 𝒳, 𝑗 ∈ 𝒥  

Dependent variable values 𝑦2 𝑗 ∈ 𝒥  

 

Table 3. MINLP notation: Decision variables. 

Applicability  Description  Variable  Bounds  

General  Nodal values 𝑉4,2 𝑛 ∈ 𝒩+, 𝑗 ∈ 𝒥 P𝑉4,2.9 , 𝑉4,2
:;Q ∈

ℝ  

Leaf-nodes Variable selection  𝜁4,0 𝑛 ∈ 𝒩., 𝑖 ∈ 𝒳 {0,1}  

 Constant selection  𝜅4 𝑛 ∈ 𝒩.
∗  {0,1}  

 Value of constants 𝜖4 𝑛 ∈ 𝒩.
∗  P𝜖4,2.9 , 𝜖4,2

:;Q ∈ ℝ  

 Operator selection  𝛿4,> 𝑛 ∈ 𝒩+, 𝑘 ∈ ℱ {0,1}  

 

Consequently, by using the tree structure and the index assignment given (Tables 1-3), the 

optimization problem was formulated with the objective to minimize the sum of squared errors 
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(SSE) between the values computed by the model and the experimental data, Eq. 1, according 

to Ref. [26]. 

minWX𝑦0 − 𝑉E,2Y
@

$Z

2[E

 
(1) 

Eqs. 2-4 enable the operator selection at branch-nodes with a big-M approach, as proposed in 

Refs. [26] and [28]. The idea of the big-M facilitates the transformation of the disjunctive 

choice between the operators into linear constraints [28]. If no operator is selected, its nodal 

value is set to zero by constraints 5-6. Additionally, either none or one operator can be selected 

at the branch-nodes. Hence, the sum of operator binaries must be less or equal to one, which is 

constrained by Eq. 7.  

 

In contrast to the branch-node values, the values at the leaf-nodes are determined by equality 

constraints including the binary selection of predictor variables or constants, Eqs. 8-9. Also, 

Eqs. 10-11 make sure that either no operand, one variable or one constant can be assigned. 

Overall, the model should include at least one predictor variable, which is ensured by Eq. 12. 

For the purpose of completeness, Eqs. 13-17 depict the bounds on decision variables of the 

MINLP [26]. 

𝑓>X𝑉4,2, 𝑉@4,2, 𝑉@4]E,2Y ≤ 𝑀4,2,>
:; X1 − 𝛿4,>Y , 𝑛 ∈ 𝒩+, 𝑘 ∈ ℱ, 𝑗 ∈ 𝒯 (2) 

𝑓>X𝑉4,2, 𝑉@4,2, 𝑉@4]E,2Y ≥ 𝑀4,2,>
.9 X1 − 𝛿4,>Y , 𝑛 ∈ 𝒩+, 𝑘 ∈ ℱ, 𝑗 ∈ 𝒯 (3) 

𝑔>X𝑉4,2, 𝑉@4,2, 𝑉@4]E,2Y ≤ 𝐺4,2,>
:; X1 − 𝛿4,>Y , 𝑛 ∈ 𝒩+, 𝑘 ∈ ℱ, 𝑗 ∈ 𝒯 (4) 

𝑉4,2 ≤ 𝑉4,2
:; ∑ 𝛿4,>>∈ℱ  , 𝑛 ∈ 𝒩+, 𝑗 ∈ 𝒯 (5) 

𝑉4,2 ≥ 𝑉4,2.9 ∑ 𝛿4,>>∈ℱ  , 𝑛 ∈ 𝒩+, 𝑗 ∈ 𝒯 (6) 

∑ 𝛿4,>>∈ℱ ≤ 1 ,  𝑛 ∈ 𝒩+ (7) 

𝑉4,2 = 	∑ 𝜁4,0	𝑥0,20∈𝒳 + 𝜅4𝜖4 , 𝑛 ∈ 𝒩.
∗, 𝑗 ∈ 𝒯 (8) 

𝑉4,2 = 	∑ 𝜁4,0	𝑥0,20∈𝒳  , 𝑛 ∈ 𝒩.\𝒩.
∗, 𝑗 ∈ 𝒯 (9) 

∑ 𝜁4,0	0∈𝒳 +	κg ≤ 1, 𝑛 ∈ 𝒩.
∗ (10) 

	∑ 𝜁4,0	0∈𝒳 ≤ 1, 𝑛 ∈ 𝒩.\𝒩.
∗ (11) 

∑ ∑ 𝜁4,0	0∈𝒳4∈𝒩h ≥ 1  (12) 

𝛿4,> ∈ {0,1}, 𝑛 ∈ 𝒩+, 𝑘 ∈ ℱ (13) 

𝜁4,0 ∈ {0,1}, 𝑛 ∈ 𝒩., 𝑖 ∈ 𝒳 (14) 

𝜅4 ∈ {0,1}, 𝑛 ∈ 𝒩.
∗ (15) 
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𝑉4,2 ∈ [𝑉4,2.9 , 𝑉4,2
:;] , 𝑛 ∈ 𝒩 (16) 

𝜖4,2 ∈ [𝜖4,2.9 , 𝜖4,2
:;] , 𝑛 ∈ 𝒩.

∗ (17) 

 

Due to the binary architecture and the commutative nature of addition and multiplication, the 

expression tree contains many mathematically invariant models (symmetries). The design of 

the formulation should therefore impede redundancies. Eqs. 18-19 resemble cuts in the tree 

such that, if a unary operator is selected, the unused part towards the right children node is set 

to zero [26]. The Eqs. 20-23 assure that if an operator is selected on a lower layer of the 

expression tree, there is an operator attached to the parental node [26]. Likewise, it ensures that 

the children of a node with value zero also have no operator or variables attached.  

 

Additionally, symmetry breaking cuts (SC) to remove redundant solutions, which are caused 

by the commutative nature of addition and multiplication, were implemented. Eq. 24 is 

sufficient for one data point j = 	j′ to impose an order on the values of the children nodes [26]. 

The symmetry breaking cuts also posed as big-M constraints where Mg
∗  is set using interval 

arithmetic on the bounds of the two children node values [28].  

∑ 𝛿4,> ≤ 1 − ∑ 𝛿@4]E,>>∈ℱ>∈ℱnopqr , 𝑛 ∈ {1,… , 2$%D@ − 1} (18) 

∑ 𝛿4,> ≤ 1 − ∑ 𝜁@4]E,00∈𝒳>∈ℱnopqr , 𝑛 ∈ {2$%D@, … , 2$%DE − 1} (19) 

∑ 𝛿4,>>∈ℱ ≥ ∑ 𝛿@4,>>∈ℱ , 𝑛 ∈ {1,… , 2$%D@ − 1} (20) 

∑ 𝛿4,>>∈ℱ ≥ ∑ 𝛿@4]E,>>∈ℱ , 𝑛 ∈ {1,… , 2$%D@ − 1} (21) 

∑ 𝛿4,> ≥>∈ℱ ∑ 𝜁@4,00∈𝒳 + 𝜅4, 𝑛 ∈ {2$%D@, … , 2$%DE − 1} (22) 

∑ 𝛿4,> ≥ ∑ 𝜁@4]E,00∈𝒳>∈ℱ , 𝑛 ∈ {2$%D@, … , 2$%DE − 1} (23) 

V@g,tu − V@g]E,tu ≥ Mg,tu
vw (1 − ∑ δg,yy[{],	∗} ), n ∈ 𝒩z, ∃j| ∈ 𝒥 (24) 

 

Without a doubt and from experience with big-M formulations in the Mathematical 

Programming community, this will lead to rather loose lower bounding in the associated 

Branch-and-Bound (B&B) traditionally used to solve Mixed-Integer Linear (MILP) and 

Mixed-Integer Nonlinear Programming (MINLP) problems. Indeed, such were the 

observations reported later in the computational results of this work, and hence the serious 

limitations that is a challenge for future development of this rigorous methodology. 

 

2.2. Details of Modifications of the Formulation  
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The previously reported MINLP formulation [26] was modified in order to reduce the number 

of required binary variables. This is expected to advance the overall efficiency in solving the 

MINLP as less decision variables have to be determined in the global optimization. The main 

difference is that in the presented formulation the tree is always fully constructed for a given 

number of pre-defined tree layers NL. The predictor variables and constants can only be 

assigned to the lowest layer. The inclusion of an identity function allows to pass up the values 

without any change to a higher layer in the expression trees.  

 

In comparison to that, in Ref. [26] predictor variables and constants are available for selection 

at every node in the expression tree superseding an identity function. If those leaf-node 

operands are selected on a higher layer, their children nodes as well as the other subsequent 

lower levels are discarded. Hence, the tree is not set up necessarily to the maximum of allowed 

layers. By introducing an identity function in the modified version of the MINLP, as was 

proposed with the theoretical formulation of problem in the first recorded publication in the 

open literature on the topic in chemical engineering [25],  the binaries on branch nodes for 𝑥0,2 

and 𝜀4 can be spared. The significance in the reduction is increasing with the number of layers 

and the number of overall considered input variables. Furthermore, the full construction of the 

tree allowed to replace big-M constraints at the leaf-nodes by equality constraints due to 

linearity in the binary variables. Another main difference is the asymmetric supply of 

continuous variables as constants. This design further reduces the number of required binaries 

as well as the symmetries in the superstructure set-up. In case of a four-layer tree this would 

reduce their number by four.  

 

2.3. Solver 

For the aims of this work, the choice of solvers is limited to those that can deterministically 

solve MINLPs to global optimum. According to Ref. [29], the general list of feasible non-

convex global MINLP solvers contains ANTIGONE [30], BARON [31], Couenne [32], 

LindoGlobal [33], and SCIP [34]. According to the results of the comparative solver study 

[26]. BARON solves more SR problems and converges faster than all other solvers. Hence, 

BARON (version 18.5.9) as commercial general-purpose solver in deterministic global 

optimization was selected in combination with IBM CPLEX as sub-solver. Upon solver 

completion, the optimization results are analyzed within Pyomo allowing to translate the 

optimal decision variable values into the corresponding algebraic equation. This model can 
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then be evaluated at different inputs for prediction as well. For further simplification, Python’s 

library for symbolic mathematics SymPy was used. 

 

2.4. Physical Model Selection 

The SR is to be performed with experimental systems data and it is to be acknowledged that 

all measurements have an error. Following a globally optimal approach targeting exclusively 

model accuracy (Eq. 1), errors are represented in the final model what is also known as 

overfitting. Hence, methodological measures have to be included to restrict the influence of 

errors on the final model and assure generalisation capabilities with low errors to unseen data. 

In case of SR, the errors in the training data are propagated through the expression tree and the 

selected operators apply to the data including errors. The limited robustness to noise is 

especially prevalent among SR due to its maximal flexibility in constructing free-form models 

[35].  

 

To only extract the relevant terms describing the main signal and to preferably exclude the 

errors, the complexity of the final model is penalized. Model complexity is restricted to a 

threshold C. The identity function does not add to the complexity of a model. Consequently, 

the true complexity must be discounted by nodes with an identity function assigned. This 

complexity criterion is included as additional constraint in the MINLP (Eq. 25).  

W W 𝛿4,>
>∈ℱ{~�]4∈𝒩�

+ W W𝜁4,0
~∈𝒳4∈𝒩h

+ W 𝜅4
4∈𝒩h

∗

	≤ 𝐶 (25) 

 

By limiting the flexibility allowed, overfitting can be reduced and sparse models found. This 

also increases interpretability. Furthermore, this constraint filters mathematical invariants 

including more terms from the search space.  

 

Next, it is proposed to identify a portfolio of the most accurate models with varying complexity 

C by solving multiple MINLPs in parallel to global optimality. Among the results, one model 

is selected that is as sparse as possible to allow interpretation and knowledge extraction but is 

also as complex as necessary to describe the underlying physical system without overfitting. 

Hence, the portfolio models are to be compared with regard to validation error. Due to the 

growing flexibility, the training error is assumed to be the lowest for the model with the highest 

allowed complexity. Without requiring assumptions about the underlying true model, these can 
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be compared quantitatively by a data set for validation to check for overfitting. With the 

purpose of also comparing extrapolation capabilities of the models, the validation data set is 

created by extracting the data points at extrema of the predictor variables. Finally, the model 

selection can be based on lowest validation error which also determines the required model 

complexity. The framework is illustrated in Figure 3.  

 
Figure 3. Framework for the Automated Identification and Selection of Physical Models via 

Symbolic Regression. 
 

2.5. Materials  

All chemicals (glycerol ≥ 99.5%, isopropyl alcohol ≥ 99.5%, carboxymethyl cellulose, 4-

nitrophenyl acetate (esterase substrate), 4-nitrophenol ≥ 99 %, potassium chloride ≥ 99.0%, 

sodium hydroxide ≥ 98.0 %, methanol ≥ 99.9 %) were purchased from Sigma Aldrich and used 

as received. Water was obtained using a Maxima (USF) Milli-Q system. Viscosity experiments 

on a Newtonian fluid were carried out using a commercially available emulsion. 

 

2.6. Experimental Procedures  

Automated viscosity measurement 

Samples of aqueous solutions were prepared as a batch of 14 samples in an automated fashion 

by means of two R-Series pumping modules (Vapourtec Ltd.) coupled with a Gilson fraction 

collector, and controlled by a custom-written algorithm. Carboxymethyl cellulose was pre-

diluted in water.  
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The viscosities of aqueous glycerol and carboxymethyl cellulose solutions were measured by 

means of the custom-built automated capillary viscometer shown schematically in Figure 4. 

 
Figure. 4. Schematic diagram of the custom-built capillary viscometer. Solvent withdrawal 

and waste disposal for cleaning are indicated by dashed line. Vials are displaced axially for 

waste disposal. 

 

To automatically control the system, a user interface was implemented in LabView 2014 (SP1), 

that allowed to visualize, analyse, and save the acquired signals. For the non-Newtonian 

solutions, a special mode was established to test multiple predefined flow rates in an automated 

sequence. A syringe pump (CETONI neMESYS 290N) was selected to ensure accurate and 

constant flows free from pulsation, and equipped with a 10 mL glass syringe (CETONI, ID 

14.57 mm). The pump was connected to an automated three-ports valve (CETONI valve, max. 

pressure 3 bar) to empty and re-fill the syringe using different routes of fluid flow. When the 

syringe was emptied, the valve directed the fluid through the stainless-steel tube (L = 0.5 m, 

ID = 1.02 mm, OD = 1.59 mm), placed horizontally at the same height as the syringe. The 

pressure drop relative to ambient pressure was measured using a microfluidic sensor (P1, 

Elveflow MPS3) with a range of 2 bar and accuracy of ±4 mbar. The pressure sensor signal 

was acquired via a voltage and current input module (National Instruments NI-9207). The 

temperature of the samples was constantly recorded by a resistance temperature detector (T1, 

Bearing Sensor Platinum, 100 Ω) and was found to be always in the range 21 ± 0.8 °C. The 

inlet line was automatically switched from the samples to the solvent, 2-propanol, and waste 

reservoirs for the cleaning and drying routines to prevent cross-contamination with the next 
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sample. Each measurement was carried out in triplicate. The acquired time series data were 

processed to derive time-independent data series. This was done using an algorithmic scheme 

in Python to average only the steady-state pressure-drop signal values. The obtained flow rate 

(Q) – pressure drop (Δ𝑝) data can be used to calculate viscosity according to Hagen-Poiseuille 

law for Newtonian fluids (Eq. 25), and the Weissenberg-Rabinowitsch equation for non-

Newtonian solutions (Eq. 26).  

𝜂 =
𝜋𝑅�Δ𝑝
8	𝑄	𝐿  

(25) 

𝜂 = 	
𝜋𝑅�Δ𝑝
2	𝑄	𝐿 �3 +

𝑑 ln𝑄
𝑑 ln Δ𝑝�

DE

 
(26) 

 

where 𝑅 and	𝐿 are the radius and the length of the adopted tubing, respectively.  

 

Before taking advantage of the automated set-up a calibration procedure was conducted to 

reduce the systematic measurements errors. This consisted of: (i) a pressure sensor calibration 

carried out using a digital pressure indicator (Druck, DPI 600/IS) applying a static pressure 

with air, and (ii) a full set-up calibration with aqueous glycerol solutions at known 

concentrations. In the latter case viscosity of the same samples was also measured by a 

commercial rotational viscometer (Rheometric Scientific, ARES G2) in order to rule out the 

systematic error introduced by the automated set-up. Additional information is provided in the 

Electronic Supplementary Information (ESI).  

 

Reaction kinetic experiments 

Reaction kinetic data was collected for hydrolysis of 4-nitrophenyl acetate (PNPA) under basic 

conditions as a case study. For each experimental run, three stock solutions were prepared 

consisting of PNPA (at the desired concentration) in 3.0 % (v/v) aqueous methanol, 3 mol·L-1 

KCl, and an aqueous NaOH solution at a fixed pH. The adopted conditions for each kinetic 

experiment are provided in the ESI. The 1 mL of each solution was directly mixed in a 

spectrophotometric agitated disposable cuvette. Absorption spectra (300-500 nm) were 

collected at fixed time intervals (Agilent, Cary 60). Absorption data at 400 nm were converted 

to PNP concentration. Calibration was carried out using different aqueous solutions at a known 

concentration of PNP at the same methanol and KCl concentrations and pH of the tested 

solutions. PNPA concentrations were calculated as its initial concentration minus the 
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concentration of the formed product according to the literature [36,37], since no by-products 

formation was reported under the adopted conditions.  

 

3. Results and Discussion 

3.1. Proof of concept 

In the first instance, the methodology described in Section 2.1. was applied to data without 

errors to assess global optimization in SR, gaining a deeper understanding of its performance. 

For reasons of simplicity a function with the same structure of Arrhenius law was considered, 

but without units and physically relevant parameters (Eq. 27). Arrhenius law is applicable in 

rheology as well as in reaction kinetics. 

𝑦 = 3exp	 �
8
𝑥� (27) 

 

Ten data points were randomly sampled in the 𝑥  interval (10, 40). The calculations were 

performed on an Intel® Core™ i5-3337U CPU @ 1.80 GHz processor. A schematic 

representation of a four-layers tree for Arrhenius law identification is shown in Figure 5. 

 
Figure 5. Binary expression tree for Arrhenius equation. 

 

The resulting MINLP consisted of 54 binary and 154 continuous variables as well as 1174 

constraints. The included operators were ℱ = {𝑖𝑑, +, −, ∙, /, 𝑒𝑥𝑝} . The globally optimal 

model (Eq. 28) was found within 29 s.  It is a mathematically invariant model of the true one 

as there is an unconstrained functional search space for symbolic regression.    
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𝑦 =
exp	(1.099)

exp	(−8.0𝑥 )
= 3.0	exp	 �

8.0
𝑥 � 

(28) 

 

In the second instance, the function shown in Eq. 29 was adopted to evaluate the impact of the 

modifications in the MINLP formulation (Section 2.2) in terms of CPU time until convergence. 

 

𝑦 =
2𝑥E
5 − 𝑥@

 (29) 

 

In comparison to the previously reported formulation,[26] the influence of the number of 

included operators (𝑁𝐹), data points (𝑁𝐸), predictor variables (𝑁𝑋), and tree layers (𝑁𝐿) is 

studied. Figure 6 summarises the obtained results. 

 
Figure 6. Scalability of the proposed methodology: (a) Scalability in the number of included 

operators (b) Scalability in the number of data points (c) Scalability in the number of 

prediction variables (d) Scalability in the number of expression tree layers. 

 

The scale-up with regard to an increasing number of potential operators was studied first 

(Figure 6a). A comparison with the published format [26] is not provided as, for algebraic 

operators, there is neither a conceptual nor a mathematical difference in the two formulations. 
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Since the number of binary variables and big-M constraints increase linearly with the number 

of operators, a growth in the computational time is expected. The results obtained for 𝑁𝐸 = 30 

and 𝑁𝐸 = 50 did not prove a consistent growth in CPU time. An overall linear trend became 

apparent when using an increasing number of data points. 

 

The number of data points in the training set affects the number of nodal values and constraints 

in a linear fashion. The results obtained at different 𝑁𝐸  are summarised in Figure 6b and 

compared with the previously reported formulation [26]. For both formulations an increase in 

CPU time was observed, and in all cases, our adapted formulation showed improved scalability 

in the number of data points.  

 

As described in Section 2.2, the conceptual difference in the modified formulation allows to 

reduce the number of binary variables which are required to allocate the predictor variables in 

the tree. As a result, a difference in performance should be observed when increasing the 

number of predictor variables. The expected improvements became evident at higher quantities 

of potential predictors and are shown in Figure 6c. 

 

As the last parameter, the influence of the number of allowed layers in the expression tree was 

considered. By growing the tree in terms of the number of layers, an exponentially increasing 

number of nodes is added. Accordingly, the number of variables and constraints increases 

exponentially. As a result, the increase in CPU time is also exponential, as shown in Figure 6d. 

In the case of layer-scalability, the previous MINLP formulation is superior. The new proposed 

formulation timed out after a few hours for a number of layers greater than four. For the 

function under study a three-layered tree was sufficient and the ability to discard sub-layers is 

in favour over constructing the whole tree with identity functions. This advantage might 

diminish if more complex functions are sought within higher layered trees. Applicable to both 

formulations, this result confirms the high computational expense of SR due to the 

combinatorial search space. The exponential scale-up behaviour in tree layers could strongly 

limit the method’s ability to identify more complex models. 

 

3.2. Newton’s Law of Viscosity 
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The data collected from a commercially available emulsion sample by means of the automated 

capillary viscometer were used to identify the simple linear relationship between shear stress 

(𝜏�) and shear rate (𝛾̇�) at the wall of the tubing (Eq. 30). 

𝜏� = 	𝜂	𝛾̇�	 (30) 

where  

𝜏� = 	
Δ𝑝	𝑅
2	𝐿  (31) 

𝛾̇� =
4	𝑄
𝜋	𝑅� (32) 

 

For the parameter identification an expression tree with three layers, including the shear rate 

(𝛾̇�) as the only predictor variable, and ten experimental data points were used. Two data points 

were not included in the training set and used for the calculation of the extrapolation error. The 

set of operators included the basic operators and a power law	ℱ = {𝑖𝑑, +, −, ∙, /, ^}. The 

resulting MINLP consisted of 28 binary and 58 continuous variables and 434 constraints. Five 

different instances were solved in parallel of different complexities	𝐶 = {3,4,5,6,7}.  

 

The obtained portfolio of models, Table 4, initially consisted of five models. As the complexity 

is constrained by an upper bound (inequality), similar models with the same complexity are 

identified. These, together with invariant models at higher complexities, were neglected.  

 

Table 4. Physical model identification: Newton’s law of viscosity. 

Model 

Complexity 

Identified model Training 

error  

Extrapolation 

error 

Computational Time 

(s) 

3 𝜏 = 0.106𝛾̇ 0.622 0.060 112 

5 𝜏 = 0.099𝛾̇E.¢@� 0.478 0.252 2926 

7 𝜏 = 𝛾̇¢.@E�£̇¤.¥¦¦ 0.339 2.540 1139 

 

To choose the best model among the identified ones, the prediction of the models was plotted 

together with the experimental data, see Figure 7, and the training and extrapolation errors were 

compared. As expected, the training error decreases with complexity of the model as there is 

more flexibility allowed to SR. However, the comparison of the extrapolation errors shows the 

superiority of Newton’s law model (𝐶 = 3), whereas the other identified models suffer from 

overfitting. Overall, the Newton’s law model can be selected as the sparsest model with the 
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highest generalisation capability, and can be easily interpreted to generate knowledge about 

the physics of the system under investigation.  

 

 
Figure 7. Physical model selection for Newtonian power law: (a) measured shear stress and 

shear rate: data used for model training (b) errors in training and extrapolation data set for 

model identification 

 

The model identification was conducted with only ten data points, highlighting the sparsity of 

required data points of the presented method compared to other data-driven methods. This is 

especially beneficial in chemistry, where data points can be expensive to generate.  

 

3.3. Non-Newtonian Power Law 

Identification of a non-Newtonian power law was used to prove that the model selection 

framework favours higher complexity models where required. Eleven experimental data points 

were collected using 1% w/w aqueous carboxymethyl cellulose at different flow rates. As for 

the Newton’s law identification, an expression three with three layers was used, including the 

shear rate ( 𝛾̇�)  as the only predictor variable. Five MINLP instances were solved 𝐶 =

{3,4,5,6,7} in parallel. The resulting MINLPs have 24 binary and 65 continuous variables and 

486 constraints. The data were pre-processed scaling down the apparent shear rate (Eq. 32) by 

a factor of 10 before training. Especially when including power law operations, this allowed to 

keep the variable bounds and big-M values calculated by interval arithmetic low, reducing the 

overall search space of the solver.  

 



 19 

With the afore-mentioned settings, the portfolio of six models, Table 5, was obtained within 

13 min. The mathematically invariant and similar models were discarded. It is worth 

mentioning that the same power law was found for 𝐶 = {5,6,7}.	The resulting portfolio consists 

of three different models of different complexity. 

 

Table 5. Physical model identification: non-Newtonian power law. 

Model Complexity Identified model 

3 𝜏 = 0.1𝛾̇ 

4 𝜏 = 4.448 + 0.1𝛾̇ 

5 𝜏 = 0.712𝛾̇¢.§¨E 

 

It is noteworthy that all the computed models can be physically interpreted as the ones 

describing Newtonian fluids, Bingham fluids and non-Newtonian (power law) fluids. The 

model selection was carried out comparing their training and validation errors. Once again, two 

experimental data points at the edges of the investigated range of shear rates were taken aside 

and used to evaluate the extrapolation performance of the obtained models. The three candidate 

models together with their performance on the training and validation data are shown in Figure 

8. In this case, both the training and the extrapolation error decrease with the complexity 

indicating that the most complex power law is the most appropriate for the description of the 

experimental data.  

 

 
Figure 8. Physical model selection for non-Newtonian power law: (a) measured shear stress 

and shear rate: data used for model training (b) errors in training and extrapolation data set 

for model identification. 
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3.4. First-order Kinetic Law 

Previous examples show the potential of the adopted methodology to discover sparse and 

interpretable models to describe the viscous behaviour of different fluids with a limited amount 

of experimental data. Moreover, a simple procedure was proven to be effective to select the 

most appropriate model within the obtained portfolio. In the following the same procedure was 

applied to learn a kinetic model of a simple test reaction for which a large amount of 

experimental data was available.  

 

According to literature [38], hydrolysis of carboxylic acid esters can be described by first order 

kinetic law, Eq. 33.  

 

𝑟 = 𝑘ª[𝑃𝑁𝑃𝐴] (33) 

  

where [𝑃𝑁𝑃𝐴]  is the molar concentration of the investigated compound (4-nitrophenyl 

acetate) and the kinetic constant 𝑘ª can be expressed as shown in Eq. 34. 

 

𝑘ª = 𝑘$ + 𝑘­[𝐻]] + 𝑘¯[𝑂𝐻D] (34) 

 

Under the adopted experimental conditions (pH > 10.52) the terms 𝑘$  and 𝑘­[𝐻]]  are 

negligible and the overall kinetic law is given in Eq. 35. 

 

𝑟 = 𝑘¯[𝑂𝐻D]	[𝑃𝑁𝑃𝐴] (35) 

 

In the first attempt, experimental data were collected at a fixed pH of 10.52, at different PNPA 

concentrations. Concentrations vs time data series were pre-processed to obtained an 

approximation of the reaction rate over time using the centered difference approximation.  

 

For this example, a three-layer tree structure was allowed, including [𝑃𝑁𝑃𝐴] as the only 

predictor variable. Due to the relatively low values of the measured reaction rates (10-7 – 10-9 

mol·L-1·s-1), they were expressed as mmol·L-1·h-1.  
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Five MINLP instances were solved 𝐶 = {3,4,5,6,7} in parallel. The resulting MINLPs have 21 

binary and 219 continuous variables and 1354 constraints. 31 experimental data points were 

split into 25 training examples and 6 validation data points in the range [𝑃𝑁𝑃𝐴] ∈ (1.11·10-3 

– 4.63·10-2 mmol·L-1). The validation points were chosen at the lower/upper end of the dataset 

in order to test the extrapolation ability of the model.  

 

The model portfolio without doubling is summarized in Table 6. The identified model with the 

lower extrapolation error is the true underlying first-order kinetic law governing the physics of 

the chemical system.  

 

Table 6. Physical model identification: First order kinetic law. 

Model 

Complexity 

Identified model Training 

error 

Extrapolation 

error 

Computational 

Time (s) 

3 𝑟 = 8.49[𝑃𝑁𝑃𝐴] 3.10·10-4 2.4·10-3 62.6 

5 𝑟 = 8.42[𝑃𝑁𝑃𝐴] + 0.00133 2.80·10-4 2.7·10-3 84.3 

  

 

3.5. First-order Kinetic Law: dependence on pH 

In the second attempt experimental data collected at different pH were included in the training 

algorithm to identify the dependence of the kinetic constant on the [𝑂𝐻D] concentration. The 

training data set consisted of 80 experimental data obtained varying  [𝑃𝑁𝑃𝐴] and [𝑂𝐻D] in the 

ranges 5.04·10-4 – 4.55·10-2 mmol·L-1 and 3.33·10-1 – 4.33 mmol·L-1, respectively.  

 

An expression tree with three layers was used again. The set of operators included the basic 

operators and a power law 	ℱ = {𝑖𝑑, +, −, ∙, /, ^} . The resulting MINLP consisted of 25 

binary and 450 continuous variables, and 2973 constraints. Five different instances were solved 

in parallel of different complexities	𝐶 = {3,4,5,6,7}. 80 experimental data points were split 

into 80 % training examples and 20 % validation data in the ranges [𝑃𝑁𝑃𝐴] ∈ (5.00·10-4 – 

4.63·10-2 mmol·L-1) and [𝑂𝐻] ∈  (3.33·10-1 – 4.33·10-2 mmol·L-1). Reaction rates were 

expressed as mmol·L-1·h-1. 

 

According to the examples reported in Sections 3.4, invariant models were obtained for 𝐶 = 4 

and 6, and discarded. The obtained portfolio of models is summarized in Table 7. 
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Table 7. Physical model identification: kinetics dependence on pH. 

Model 

Complexity 

Identified model Training 

error 

Extrapolation 

error 

Computational 

Time (s) 

3 𝑟 = 33.2[𝑃𝑁𝑃𝐴] 6.70 4.59 241 

5 𝑟 = 26.6[𝑃𝑁𝑃𝐴][𝑂𝐻D] 0.03 0.002 226 

7 𝑟 = (24.7 + [𝑂𝐻D])[𝑃𝑁𝑃𝐴][𝑂𝐻D] 0.022 0.003 4287 

 

As shown, both errors are of 2 or 3 orders of magnitude higher when 𝐶 = 3, whereas similar 

training errors were obtained when  𝐶 = 5 and 𝐶 = 7. However, the lowest extrapolation error 

suggests that the model with complexity 𝐶 = 5 is the most suitable one for the description of 

the kinetic behaviour of the system.  

 

4. Conclusions 

Based on a MINLP formulation for global SR reported in the mathematical domain, a different 

approach in setting up the superstructure was introduced to reduce the number of binary 

variables involved in globally optimal SR. In addition, this formulation is complemented with 

a framework to enable the automated identification of physical models from crude data.  

 

The new approach was found to outperform the previously proposed ones in term of 

computational time when increasing the number of included operators, predictor variable and 

experimental data. As examples, the developed method allowed to correctly identify the models 

underlying the rheological behaviour of Newtonian and non-Newtonian fluids, as well as 

simple kinetic laws, also in the case of sparse data sets, which is a common scenario in chemical 

process development.  

 

A significant limitation of the methodology was found in the exponential scale-up of the 

computational time for (a) an increasing number of adopted layers in the tree necessary to 

represent complex algebraic structures of analytical function type models, and (b) an increasing 

number of data points.    

 

This serious issue of computational efficiency enhancement cannot be resolved by 

parallelization. This, at present, limits the identification of more complex models for which a 
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larger number of algebraic operators is often needed. Work is currently underway on alternative 

approaches using rigorous mathematical programming, such as the one presented in this work, 

as well as complementary methodologies to derive globally optimal fitted model structures. 
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Viscometer Automation and Calibration  

Figure S1. shows the developed graphical user interphase in LabView. It implements all the 

main functions including the manual and automated control of the syringe pump, data 

acquisition and saving into a comma delimited file. The collected data of temperature, pressure 

and volumetric flow rate are acquired at a frequency of 1500 Hz with the described National 

Instruments modules and is then averaged to reduce random errors. For calibration purposes, 

the Hagen-Poiseuille law for Newtonian liquids and the empirical viscosity models for the 

viscosity of glycerol-water mixtures at varying weight contents were implemented. Moreover, 

the functionalities to measure the viscosity at different shear rates automatically and the drying 

procedure after the cleaning with isopropanol were designated in the interface [1,2]. 

 

                                                             
1 Corresponding author. A. Lapkin email: aal35@cam.ac.uk 
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Figure S1. LabView front Panel – Graphical User Interface for the Automated Operation of 
the capillary viscometer. 

 

Before the whole set-up was calibrated with the glycerol-water mixtures, the pressure sensor 

(Elveflow MPS3) was calibrated in combination with the NI-9702 module. This was necessary 

as the supplier calibration is based on their own Elveflow amplification and data acquisition 

system which was not available for the set-up. The sensor was calibrated with a static air 

pressure by closing the sensor outlet and applying a known pressure with the DRUCK digital 

pressure indicator. The voltage signals were then acquired in LabView for one to two minutes 

for each constant pressure within the interval (0,2] bar with steps of 0.1 bar. Based on the 

arithmetic mean for each, the calibration curve was plotted in Figure S2. The resulting linear 

fit was implemented in the LabView program, to convert the voltage signals into measured 

pressure.  
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Figure S2. Calibration of the Pressure Sensor Elveflow MPS3 (0-2bar) with DRUCK DPI 

600/IS.  

Condition adopted for the kinetic experiments  

The initial conditions for all the carried-out kinetic experiments are summarized in Table S1. 

All the reaction mixtures contain 1 M KCl and 1% (v/v) MeOH. 

Table S1. Initial conditions for the kinetic study of 4-nitrophenyl acetate (PNPA) hydrolysis 
reaction. 

Run [PNPA]0 (mM) pH 
1 3.43·10-2 10.52 
2 5.76·10-2 10.52 
3 1.95·10-2 10.52 
4 1.28·10-2 10.52 
5 1.30·10-2 11.07 
6 2.86·10-2 11.30 
7 3.36·10-2 11.37 
8 3.70·10-2 11.07 
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