Supporting information

A Short Synthesis of (+)-Brefeldin C via Enantioselective Radical Hydroalkynylation

Lars Gnägi, Severin Vital Martz, Daniel Meyer, Robin Marc Schärer, and Philippe Renaud*

philippe.renaud@dcb.unibe.ch

1.	Ger	ieral information	3
	1.1.	Techniques	ł
	1.2.	Materials	ł
	1.3.	Instrumentation	;
2.	Syn	thesis	4
	2.1.	Preparation of reagents	ŀ
		(+)-Isopinocampheylborane-TMEDA complex4	ŀ
		(+)-Monoisopinocampheylborane4	ŀ
		Di- <i>tert</i> -butylhyponitrite (DTBHN)5	;
		Di- <i>tert</i> -butyl peroxyoxalate (DTBPO)6)
		Trimethyl(2-phenylsulfanylethynyl)silane	>
		Trimethyl((phenylsulfonyl)ethynyl)silane6	>
		Trimethyl(2-phenylsulfanylethynyl)silane7	,
		Triisopropyl((phenylsulfonyl)ethynyl)silane7	,
	2.2.	Enantioselective hydroboration	\$
		2-(Cyclopent-1-en-1-yl)furan (1)8	}
		(±)-trans-2-(2-Furanyl)cyclopentanol9)
		(1R,2R)-2-(Furan-2-yl)cyclopentan-1-ol9)
	2.3.	Enantioselective hydroalkynylation10)
		(±)- <i>trans</i> -2-(2-Ethynylcyclopentyl)furan (3) ^[13] 10)
		(((1R,2R)-2-(Furan-2-yl)cyclopentyl)ethynyl)triisopropylsilane (2b)11	-
		2-((1R,2R)-2-Ethynylcyclopentyl)furan (3)12	

	2.4.	Model study for the oxidative furan opening13
		2-Cyclopentylfuran
		(E)-4-Cyclopentyl-4-oxobut-2-enal
		(E)-4-Cyclopentyl-4-oxobut-2-enoic acid14
	2.5.	Synthesis of (+)-brefeldin C15
		(S)-Pent-4-en-2-ol
		(S)-1-Methoxy-4-((pent-4-en-2-yloxy)methyl)benzene (4)16
		2-((1 <i>R</i> ,2 <i>S</i>)-2-((<i>S</i> , <i>E</i>)-6-((4-methoxybenzyl)oxy)hept-1-en-1-yl)cyclopentyl)furan (7)
		(<i>S,E</i>)-7-((1 <i>S</i> ,2 <i>R</i>)-2-(Furan-2-yl)cyclopentyl)hept-6-en-2-ol (8)
		(<i>E</i>)-4-((1 <i>R</i> ,2 <i>S</i>)-2-((<i>S</i> , <i>E</i>)-6-Hydroxyhept-1-en-1-yl)cyclopentyl)-4-oxobut-2-enoic acid (10)18
		4-Dehydro-brefeldin C (11)
		(+)-Brefeldin C19
3.	X-F	Ray crystal structure report of (+)-brefeldin C20
4.	Ref	ferences
5.	Spe	ectra

1. General information

1.1. Techniques

All reactions requiring anhydrous conditions were performed in heat-gun, oven or flame dried glassware under an argon atmosphere. An ice bath was used to obtain a temperature of 0 °C. To obtain a temperature of -78 °C, a bath of acetone was cooled with dry ice. To obtain temperatures of -40 °C and -15 °C, a bath of isopropanol or acetonitrile was cooled to the desired temperature using dry ice. Silica gel 60 Å (40–63 µm) from Silicycle was used for flash column chromatography. Thin layer chromatography (TLC) was performed on Silicycle silica gel 60 F254 plates, visualization under UV light (254 nm) and/or by dipping in a solution of (NH4)2MoO4 (15.0 g), Ce(SO4)2 (0.5 g), H2O (90 mL), conc. H2SO4 (10 mL); or KMnO4 (3 g), K2CO3 (20 g) and NaOH 5% (3 mL) in H2O (300 mL) and subsequent heating. Anhydrous sodium sulfate was used as drying reagent.

1.2. Materials

Commercial reagents were used without further purification unless otherwise stated. Dry solvents for reactions were filtered over columns of dried alumina under a positive pressure of argon. Solvents for extractions (Et₂O, *n*-pentane, CH₂Cl₂, EtOAc) and flash column chromatography were of technical grade and distilled prior to use. Commercial dry DMF was used without further purification.

1.3. Instrumentation

¹H and ¹³C NMR spectra were recorded on a Bruker Avance IIIHD-300 spectrometer operating at 300 MHz for ¹H and 75 MHz for ¹³C at rt (24-25°C) unless otherwise stated. Some ¹H and ¹³C NMR spectra were recorded on a Bruker Avance IIIHD-400 or a Bruker Avance II-400 spectrometer (¹H: 400 MHz; ¹³C: 75 MHz). Chemical shifts (δ) are reported in parts per million (ppm) using the residual solvent or Si(CH₃)₄ (δ = 0.00 for ¹H NMR spectra) as an internal standard. Multiplicities are given as s (singlet), d (doublet), t (triplet), q (quadruplet), m (multiplet), and br (broad). Coupling constant (*J*) is reported in Hz. In ¹³C-NMR spectra, the peak positions are reported on one decimal unless the difference in chemical shift between two signals is small and required two decimals.Infrared spectra were recorded on a Jasco FT-IR-460 plus spectrometer equipped with a Specac MKII Golden Gate Single Reflection Diamond ATR system and are reported in wave numbers (cm⁻¹). At maximum, the ten most prominent peaks are reported.

Low resolution mass spectra were recorded on a Waters Micromass Autospec Q mass spectrometer in EI mode at 70 eV or were taken from GC-MS analyses performed on a Finnigan Trace GC-MS (quadrupole mass analyzer using EI mode at 70 eV) fitted with a Macherey-Nagel Optima delta-3-0.25 µm capillary column (20 m, 0.25 mm); gas carrier: He 1.4 mL/min; injector: 220 °C split mode.

HRMS analyses and accurate mass determinations were performed on a Thermo Scientific LTQ Orbitrap XL mass spectrometer using ESI mode (positive ion mode). Melting points were measured on a Büchi B-545 apparatus and are corrected. Syringe filters with polytetrafluoroethylene membrane were used with a pore size of 0.45µm from Machery-Nagel (CHROMAFIL[®]Xtra PTFE 0.45).

2. Synthesis

2.1. Preparation of reagents

(+)-Isopinocampheylborane-TMEDA complex

Borane-dimethylsulfide (15.0 mL, 150 mmol) was dissolved in dry Et₂O (85 mL) and (+)- α -pinene (54.8 mL, 345 mmol) was added dropwise in such a rate that the reaction mixture refluxed gently. The mixture was refluxed for 1 h. TMEDA (11.3 mL, 75 mmol) was added to the reaction mixture and the mixture was refluxed for 1 h. Seedlings of TMEDA·2BH₂Ipc were added, so that the product started to crystallize. A thick white suspension was formed which was then stored in the freezer overnight. The suspension was filtered and washed with pentane. The crude product was dried under high vacuum which afforded the title compound (21.2 g, 68%).

Colorless crystals; $[\alpha]_D^{23} = +67.6$ (c = 9.3, THF) (lit.^[1] $[\alpha]_D^{23} = +69.03$ (c = 9.33, THF)); ¹H-NMR (300 MHz, CDCl₃): δ 3.31 – 3.06 (m, 4H), 2.63 (s, 6H), 2.59 (s, 6H), 2.20 (ddt, J = 8.2, 6.1, 3.1 Hz, 2H), 2.12 – 2.04 (m, 2H), 1.85 (td, J = 5.9, 3.4 Hz, 4H), 1.73 (td, J = 5.8, 2.0 Hz, 2H), 1.61 – 1.53 (m, 2H), 1.16 (s, 6H), 1.09 (s, 6H), 1.00 (d, J = 7.0 Hz, 6H), 0.78 (d, J = 8.9 Hz, 2H), 0.66 (s, 2H); ¹³C-NMR (75 MHz, CDCl₃): δ 57.4, 51.1, 51.0, 48.8, 43.1, 42.4, 39.1, 38.2, 34.3, 28.6, 25.8, 23.0, 22.8; ¹¹B-NMR (96 MHz, CDCl₃): δ 1.2 (s). Physical and spectral data are in accordance with literature data.^[1,2]

(+)-Monoisopinocampheylborane

To a suspension of TMEDA·2BH₂Ipc (10.41 g, 25 mmol) in dry Et₂O (34 mL) was dropwise added BF₃·Et₂O (6.2 mL, 49.0 mmol). The mixture was stirred at rt for 3 h. By using a thick needle, the suspension was then transferred to a filter chamber under Argon atmosphere. The solid TMEDA·2BF₃ complex was washed with dry Et₂O until a total volume of 62 mL of the filtrate containing (+)-IpcBH₂ (49 mmol, 98%) was obtained.

Colorless transparent solution; $[\alpha]_D^{23} = +52.9$ (c=11.6, Et₂O) (lit.^[3] $[\alpha]_D^{23} = +39.93$ (c=11.6, Et₂O)); ¹¹B-NMR (96 MHz, CDCl₃): δ 22.6 (s). Physical and spectral data are in accordance with literature data.^[3,2] The concentration of the solution was determined by hydrolysis of (+)-IpcBH₂ in a 1:1:1 mixture of water/THF/ethylene glycol (30 mL) and subsequent gas-

volumetric analysis using the setup depicted below:

Note: To generate stable values of H_2 , it is recommended to perform a blank injection of Et_2O (1.8 mL) prior to injecting (+)-IpcBH₂ solution.

Volume of (+)-IpcBH ₂ solution in Et ₂ O, V_{IpcBH_2} :	1.8 mL
V_{H_2} ; measurement 1:	75.8 mL
V_{H_2} ; measurement 2:	75.8 mL
V_{H_2} ; measurement 3:	75.8 mL
Average volume H ₂ formed:	75.8 mL
Standard atmospheric pressure, p:	1013 mbar
Ambient pressure, p_a :	955 mbar
Vapor pressure of water at 296 K, p_{ν} :	28 mbar
Temperature, $t_{0^{\circ}C}$:	273 K
Temperature, $t_{24^{\circ}C}$:	297 K

$$n(H_2) = \frac{(p_a - p_v) \times t_{0^\circ C} \times (V_{H_2} - V_{IpcBH_2})}{p \times t_{24^\circ C} \times 22.4 \times V_{IpcBH_2}}$$
$$n(H_2) = \frac{(955 \, mbar - 28 \, mbar) \times 273 \, K \times (75.8 \, ml - 1.8 \, ml)}{1013 \, mbar \times 297 \, K \times 22.4 \, \frac{L}{mol} \times 1.8 \, ml}$$
$$n((+)IpcBH_2) = 0.770 \, \frac{mol}{L}$$

Di-tert-butylhyponitrite (DTBHN)

HO_N[×]N_{OH}
$$\frac{4.0 \text{ equiv } t\text{-BuBr}}{1.2 \text{ equiv } ZnCl_2}$$
Et₂O, -5 °C to rt, 1.5 h

Under high vacuum, sodium *trans*-hyponitrite hydrate was dried for 3 days to a constant weight. The dry sodium *trans*-hyponitrite (5.37 g, 50.7 mmol) was added to *tert*-butyl bromide (45.5 mL, 405 mmol) followed by the addition of dry Et₂O (25 mL). The mixture was cooled to -5 °C. A suspension of ZnCl₂ (2 M in Et₂O, 30.4 mL, 60.8 mmol) was cannulated to the reaction mixture at 0 °C. The suspension was allowed to stir at rt for 1.5 h and was then filtered. The filtrate was extracted with water (100 mL) and the aqueous layer was extracted with Et₂O (50 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, and concentrated at rt. Recrystallisation from pentane afforded di-*tert*-butylhyponitrite (4.56 g, 52%).

Colorless crystals; ¹H-NMR (300 MHz, CDCl₃): δ 1.39 (s, 9H); ¹³C-NMR (75 MHz, CDCl₃): δ 81.2, 27.8. Physical and spectral data are in accordance with literature data.^[4,5]

DTBPO is sensitive to heat and shock and therefore a potent explosive. This compound should only be handled with extreme care and appropriate safety precautions (small scale, avoid scratching, use of a blast shield and cut protection gloves).

A solution of freshly opened oxalyl chloride (0.86 mL, 10.0 mmol) in dry hexane (10 mL) was added to a stirred solution of pyridine (1.61 mL, 20.0 mmol) and *tert*-butyl hydroperoxide (3.64 mL, 5.5 mol/L in decane, 20.0 mmol) in dry hexane (20 mL) at -5 °C. The mixture was allowed to warm up to 15 °C, filtered and washed with pentane. The filtrate was cooled to -78 °C and the liquid was removed with a syringe. The solid residue was diluted with pentane (20 mL), cooled to -78 °C, and decantated. This process was repeated twice. The residue was crystallized from pentane at -25 °C overnight. The liquid was removed with a needle and the crystals were dried under high vacuum at 0 °C which afforded di-*tert*-butyl peroxyoxalate (2.14 g, 91%).

Colorless crystals; ¹H-NMR (300 MHz, CDCl₃): δ 1.38 (s, 18H); ¹³C-NMR (75 MHz, CDCl₃): δ 154.3 (very weak signal), 85.9, 26.1. Physical and spectral data are in accordance with literature data.^[6]

Trimethyl(2-phenylsulfanylethynyl)silane

TMS
$$\longrightarrow$$
 H $\xrightarrow{0.83 \text{ equiv } n\text{-BuLi, THF, }-78 \text{ °C, }30 \text{ min}}$ TMS $\xrightarrow{}$ TMS $\xrightarrow{}$ TMS $\xrightarrow{}$ 86%

Ethynyl(trimethyl)silane (12.2 mL, 88.0 mmol) in dry THF (80 mL) was cooled to -78 °C. *n*-BuLi (2.5 M in hexane, 29.0 mL, 72.5 mmol) was added dropwise. The mixture was stirred at -78 °C for 30 min. Diphenyldisulfide (17.5 g, 80.2 mmol) in dry THF (40 mL) was added at -78 °C. After being stirred at -78 °C for 30 min, the reaction mixture was allowed to warm up to rt and stirred for 5 h. The reaction mixture was cooled to 0 °C and dist. water (40 mL) and Et₂O (80 mL) were added. The mixture was washed with a solution of NaOH (0.1 M in H₂O, 3x 40 mL) and dist. water (3 x 10 mL). The organic phase was dried over Na₂SO₄ and concentrated. FC (heptanes) afforded trimethyl(2-phenylsulfanylethynyl)silane (14.3 g, 86%). Yellowish liquid; R_f 0.58 (heptanes); ¹H-NMR (300 MHz, CDCl₃): δ 7.45 – 7.37 (m, 2H), 7.33 (ddd, *J* = 7.9, 5.8, 1.9 Hz, 2H), 7.25 – 7.18 (m, 1H), 0.25 (s, 9H); ¹³C-NMR (75 MHz, CDCl₃): δ 132.4, 129.3, 126.6, 126.2, 106.4, 90.2, 0.0. Physical and spectral data are in accordance with literature data.^[7,8]

Trimethyl((phenylsulfonyl)ethynyl)silane

To a stirred solution of trimethyl(2-phenylsulfanylethynyl)silane (14.3 mL, 69.3 mmol) in CH₂Cl₂ (80 mL) was added dropwise a solution of *m*-CPBA (77.0%, 32.6 g, 145 mmol) in CH₂Cl₂ (400 mL). After being stirred at rt for 1 h, the reaction mixture was cooled to 0 °C and a sat. NaHCO₃ solution (300 mL) was added. The reaction mixture was stirred at rt for 15 min and was extracted with CH₂Cl₂ (50 mL), once more washed with a cold sat. aq. NaHCO₃ solution (100 mL), and washed with dist. water (2 x 100 mL). The organic phase was dried over Na₂SO₄ and concentrated. The product was repeatedly precipitated from Et₂O at -25 °C, filtered off and dried under high vacuum affording trimethyl((phenylsulfonyl)ethynyl)silane (13.5 g, 81%).

White solid; R_f 0.70 (heptanes); ¹H-NMR (300 MHz, CDCl₃) δ 8.06 – 7.95 (m, 2H), 7.67 (d, *J* = 7.4 Hz, 1H), 7.63 – 7.53 (m, 2H), 0.22 (s, 9H); ¹³C-NMR (75 MHz, CDCl₃): δ 141.9, 134.8, 129.9, 128.0, 102.7, 98.6, -0.6. Physical and spectral data are in accordance with literature data.^[7]

Trimethyl(2-phenylsulfanylethynyl)silane

(Triisopropylsilyl)acetylene (30 mL, 134 mmol) was dissolved in dry THF (100 mL) and the solution was cooled to -78 °C. *n*-BuLi (2.5 M in hexane, 50.6 mL, 126 mmol) was added dropwise and the mixture was stirred for 30 min at this temperature. Diphenyldisulfide (27.6 g, 126 mmol) in dry THF (44 mL) was slowly added at -78 °C. After being stirred at -78 °C for 30 min, the reaction mixture was allowed to warm up to rt and stirred overnight. The reaction mixture was cooled to 0 °C, stirred for further 10 min and subsequently treated with dist. water (60 mL). The reaction mixture was diluted with Et₂O (50 mL). The phases were separated and the aqueous phase was extracted twice with Et₂O (50 mL). The combined organic phase was washed with aq. NaOH (0.1 M, 2 x 100 mL), dist. water (3 x 50 mL) and brine (50 mL). The organic phase was dried over Na₂SO₄, concentrated and the obtained oil was dried under high vacuum. Trimethyl(2-phenylsulfanylethynyl)silane was obtained after FC (heptanes) (36 g, quantitative).

Yellowish oil; $R_f 0.75$ (heptanes); ¹H-NMR (300 MHz, CDCl₃): δ 7.45 – 7.37 (m, 2H), 7.33 (ddd, J = 7.9, 5.8, 1.9 Hz, 2H), 7.25 – 7.18 (m, 1H), 0.25 (s, 9H); ¹³C-NMR (75 MHz, CDCl₃): δ 132.4, 129.3, 126.6, 126.2, 106.4, 90.2, 0.0. Physical and spectral data are in accordance with literature data.^[9,8,10]

Triisopropyl((phenylsulfonyl)ethynyl)silane

To a stirred solution of the crude trimethyl(2-phenylsulfanylethynyl)silane in dry CH_2Cl_2 was added drop wise a solution of *m*-CPBA (77%, 60 g, 265 mmol) in dry CH_2Cl_2 at rt over 2 h using a dropping funnel. The white suspension was stirred for 2 h until complete consumption of the thioether. The reaction was cooled to 0 °C and transferred into a beaker flask. Sat. NaHCO₃ (250 ml) was added and the mixture was stirred vigorously for 20 min at rt to give a white suspension. The organic phase was separated and the aqueous phase was extracted twice with CH_2Cl_2 . The combined organic phases were washed with sat. NaHCO₃, water and brine, dried over Na₂SO₄ and concentrated. FC (Et₂O/pentane 1:9) afforded triisopropyl((phenylsulfonyl)ethynyl)silane (39.8 g, 98%).

Colorless, viscous oil; $R_f 0.63$ (Et₂O/pentane 1:9); ¹H-NMR (300 MHz, CDCl₃): $\delta 8.06 - 7.95$ (m, 2H), 7.67 (d, J = 7.4 Hz, 1H), 7.63 - 7.53 (m, 2H), 0.22 (s, 9H); ¹³C-NMR (75 MHz, CDCl₃): $\delta 141.9$, 134.8, 129.9, 128.0, 102.7, 98.6, -0.6. Physical and spectral data are in accordance with literature data.^[10]

2.2. Enantioselective hydroboration

2-(Cyclopent-1-en-1-yl)furan (1)

To a solution of freshly distilled furan (25.0 mL, 344 mmol) in dry Et₂O (250 mL) was added dropwise *n*-BuLi (2.5 M in hexane, 120 mL, 300 mmol) at 0 °C. After being stirred at 0 °C for 1 h, a white suspension was observed to which freshly distilled cyclopentanone (20.0 mL, 225 mmol) in dry Et₂O (100 mL) was added at 0 °C. The mixture was stirred at this temperature for 1 h, then allowed to warm to rt and stirred overnight. The mixture was treated with dist. water (30 mL) and was then filtered over Celite®, dried over Na₂SO₄, and concentrated. The crude 1-(furan-2-yl)cyclopentane-1-ol^[11] was dissolved in dry benzene (400 mL) and *p*-toluenesulfonic acid (4.3 g, 22.5 mmol) was added at rt. The mixture was stirred at 40 °C for 30 min. The mixture was diluted with water (100 mL) and the organic layer was separated. The benzene layer was concentrated and the residue was re-dissolved in EtOAc. The above aqueous layer was extracted with EtOAc (3 x 100ml). All combined organic layers were washed twice with sat. aq. NaHCO₃, dried over Na₂SO₄ and concentrated in vacuo. The residue was filtered through a pad of silica which was then thoroughly washed with pentane. The filtrate was concentrated in vacuo. Distillation (50 °C, 2 mbar) afforded 1 (20.3 g, 67%).

Colorless liquid; $R_f 0.61$ (pentane); ¹H-NMR (300 MHz, CDCl₃): δ 7.36 (d, J = 1.5 Hz, 1H), 6.37 (dd, J = 3.3, 1.8 Hz, 1H), 6.17 (d, J = 3.3 Hz, 1H), 6.11 – 6.07 (m, 1H), 2.67 – 2.48 (m, 4H), 2.05 – 1.94 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃): δ 152.7, 141.6, 133.0, 125.0, 111.1, 106.0, 33.3, 32.6, 23.4. Physical and spectral data are in accordance with literature data.^[2]

(±)-trans-2-(2-Furanyl)cyclopentanol

To a solution of 2-(cyclopent-1-en-1-yl)furan (134 mg, 1.0 mmol) in dry Et₂O (2 mL) was added dropwise BH₃·DMS (0.10 mL, 1.0 mmol) at 0 °C. The reaction was allowed to warm to rt and stirred for 2 h. The reaction mixture was cooled to 0 °C and treated with EtOH (2 mL), a solution of aq. NaOH (3 M, 2 mL), and a solution of H₂O₂ (30% in H₂O, 2 mL). The reaction mixture was allowed to stir at rt for 4 h. The mixture was diluted with dist. water (20 mL) and extracted with Et₂O (20 and 10 mL). The organic layers were washed with dist. water (2 x 10 mL), dried over Na₂SO₄, and concentrated. FC (pentane/Et₂O 6:4) afforded *trans*-2-(2-furanyl)cyclopentanol (96 mg, 63%).

Colorless liquid; $R_f 0.30$ (pentane/Et₂O 6:4); ¹H-NMR (300 MHz, CDCl₃): δ 7.33 (d, J = 1.2 Hz, 1H), 6.29 (dd, J = 3.1, 1.9 Hz, 1H), 6.05 (d, J = 3.2 Hz, 1H), 4.24 (q, J = 6.5 Hz, 1H), 2.99 (q, J = 7.9 Hz, 1H), 2.22 – 1.97 (m, 3H), 1.92 – 1.58 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 157.2, 141.3, 110.1, 104.5, 78.1, 47.5, 33.8, 28.8, 21.7. Physical and spectral data are in accordance with literature data.^[2]

(1R,2R)-2-(Furan-2-yl)cyclopentan-1-ol

To a solution of (+)-IpcBH₂ (0.77 M Et₂O, 1.2 mmol) was added the 2-(cyclopent-1-en-1-yl)furan (134 mg, 1.0 mmol) at -78 °C. The mixture was stored in the freezer at -25 °C overnight. The reaction was treated with EtOH (2 mL) at -25 °C and allowed to warm up to 0 °C. Then, aq. NaOH (3 M, 2 mL) and H₂O₂ (30% in H₂O, 2 mL) were added. The mixture was stirred at rt for 4 h, diluted with water (20 mL), and extracted with Et₂O (20/10 mL). The organic layers were washed with water (2 x 10 mL), dried over Na₂SO₄, and concentrated. FC (CH₂Cl₂/Et₂O 92:8) afforded the title compound (140 mg, 92%).

Colorless liquid; $R_f 0.55$ (CH₂Cl₂/Et₂O 92:8); ¹H-NMR (300 MHz, CDCl₃): δ 7.40–7.28 (m, 1H), 6.29 (dd, J = 3.2, 1.9 Hz, 1H), 6.05 (d, J = 3.2 Hz, 1H), 4.24 (q, J = 6.5 Hz, 1H), 2.99 (dd, J = 14.9, 7.9 Hz, 1H), 2.21–1.97 (m, 2H), 2.04 (s, 1H), 1.90–1.58 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 157.2, 141,3, 110.1, 104.5, 78.1, 47.5, 33.8, 28.8, 21.7 Er 94:6. Physical and spectral data are in accordance with literature data.^[2,12]

HPLC trace of (1R,2R)-2-(furan-2-yl)cyclopentan-1-ol (CHIRALPAK IC-3; hexane/iPrOH 98:2; 1 mL

2.3. Enantioselective hydroalkynylation

(±)-*trans*-2-(2-Ethynylcyclopentyl)furan (3)^[13]

To a solution of 2-(cyclopenten-1-yl)furan (134 mg, 1.00 mmol) and dry N,N-dimethylacetamide (DMA) (14 μ L, 0.15 mmol) in dry CH₂Cl₂ (1 mL) was added dropwise catecholborane (235 μ L, 2.2 mmol) at 0 °C.

The reaction mixture was allowed to stir at rt for 16 h. The reaction mixture was treated with *t*BuOH (0.124 mL, 1.3 mmol) at 0 °C and stirred at rt for 15 min. Then, 2-(benzenesulfonyl)ethynyl-trimethylsilane (713 mg, 3.0 mmol) was added portionwise. The solution was heated to reflux and DTBHN (8 mg, 0.46 mmol) was added every hour. After being stirred for a total of 3 h (three additions of initiator) t pentane (20 mL) was added and the mixture was washed with water (3 x 10 mL). The organic phases were dried over Na₂SO₄ and concentrated. FC (pentane) afforded the unstable TMS-protected alkyne (*unstable*; 30 mg, 13%) which was rapidly dissolved in dry THF (2 mL) and treated with TBAF (1M in THF, 0.4 mL, 1.38 mmol). After stirring for 1.5 h, the reaction mixture was diluted with pentane (30 mL) and washed with water (3 x 20 mL). The solution was dried by passing through a pad of Na₂SO₄ and concentrated. FC (pentane) afforded the unstable appendix of mL) and washed with water (3 x 20 mL). The solution was dried by passing through a pad of Na₂SO₄ and concentrated. FC (pentane) afforded through a pad of Na₂SO₄ and concentrated. FC (pentane) afforded (\pm)-**3** (15 mg, 9%) as a single diastereomer.

Colorless liquid; R_f 0.52 (pentane); ¹H-NMR (300 MHz, CDCl₃): δ 7.33 (dd, J = 1.7, 0.7 Hz, 1H), 6.29 (dd, J = 3.1, 1.9 Hz, 1H), 6.11 (d, J = 3.2 Hz, 1H), 3.15 (d, J = 8.2 Hz, 1H), 2.78 (s, 1H), 2.20 – 2.05 (m, 3H), 1.79 (tt, J = 6.0, 3.4 Hz, 4H); ¹³C-NMR (75 MHz, CDCl₃): δ 156.9, 141.2, 110.0, 104.6, 87.2, 68.8, 46.1, 36.0, 33.4, 31.2, 24.0; IR (cm⁻¹): 3312, 2942, 2865, 1463, 1260, 1010, 883, 798, 728, 676. Physical and spectral data are in accordance with literature data.^[13]

To a stirred solution of (+)-IpcBH₂ (0.77 M in Et₂O, 6.0 mmol) at -78 °C was added 2-(cyclopenten-1yl)furan (671mg, 5.0 mmol). After 30 min, the mixture was stored in the freezer at -25°C for 3 nights. The mixture was cooled to -40 °C and acetaldehyde (1.7 mL, 30.0 mmol) was added dropwise. The cooling bath was exchanged with an ice bath after 20 min and the reaction mixture was stirred at this temperature for 30 min and then allowed to warm up to rt. After stirring at rt for 8 h, the reaction mixture was cooled to 0 °C before catechol (720 mg, 6.5 mmol) was added and the solution was stirred at rt overnight. The volatiles were carefully removed under vacuum and to the residues were quickly added dry CH₂Cl₂ (19 mL), triisopropyl((phenylsulfonyl)ethynyl)silane (4.8 g, 15.0 mmol) and a solution of DTBPO (290 mg, 1.25 mmo) in dry CH₂Cl₂ (3 mL). The reaction mixture was immediately put in a preheated oil bath at 60 °C for 40 min. After cooling, the reaction mixture was diluted with pentane (20 mL) and dist. water (20 mL). The mixture was extracted with pentane (3 x 20 mL) and the combined organic phases were dried over Na₂SO₄, filtered and concentrated. FC (pentane) afforded **2b** (1.11 g, 70%) as a single *trans* diastereomer. Note: Enantioselective hydroboration can be performed equally well in one night. The radical reaction however appears to be scale-dependent. 10 mmol scale: 38%; 5 mmol: 70%; 0.7 mmol: 85%

Colorless liquid; R_f 0.74 (heptanes/EtOAc 5:5); $[\alpha]_D^{23} = -127.5$ (c = 1, CHCl₃); ¹H-NMR (300 MHz,

CDCl₃): δ 7.30 (dd, J = 1.8, 0.8 Hz, 1H), 6.27 (dd, J = 3.1, 1.9 Hz, 1H), 6.08 (d, J = 3.2 Hz, 1H), 3.13 (s, 1H), 2.80 (s, 1H), 2.16 – 2.05 (m, 2H), 1.80 (dd, J = 3.9, 2.3 Hz, 4H), 1.03 (s, 21H); ¹³C-NMR (75 MHz, CDCl₃): δ 157.2, 141.0, 111.8, 109.9, 104.6, 80.5, 46.7, 37.5, 33.6, 30.9, 23.9, 18.6, 18.5, 11.3; IR (cm⁻¹): 2941, 2891, 2864, 2166, 1506, 1463, 1383, 1236, 1150, 1071, 1010, 918, 882, 796, 727, 673; HRMS calc. for C₂₀H₃₃O₃Si [M+H]⁺: 317.2301, found: 317.2300; Er determined after conversion to **3** (see below)

2-((1*R*,2*R*)-2-Ethynylcyclopentyl)furan (3)

To a solution of (1R,2R)-**2b** (316 mg, 1.0 mmol) in dry THF (2.5 mL) was added TBAF (1M in THF, 3 mL) and the mixture was stirred at rt overnight. Water (10 mL) was added and the mixture was extracted with pentane (3 x 10 mL). The organic phase was washed with dist. water (3 x 30 mL), dried over Na₂SO₄, and concentrated. FC (pentane) afforded (1*R*,2*R*)-**3** (160 mg, quantitative).

Colorless liquid; $R_f 0.28$ (heptanes); er 95:5; $[\alpha]_D^{23} = -11.3$ (c = 1, THF); ¹H-NMR (300 MHz, CDCl₃): δ 7.33 (dd, J = 1.7, 0.7 Hz, 1H), 6.29 (dd, J = 3.1, 1.9 Hz, 1H), 6.11 (d, J = 3.2 Hz, 1H), 3.15 (d, J = 8.2 Hz, 1H), 2.78 (s, 1H), 2.20 – 2.05 (m, 3H), 1.79 (tt, J = 6.0, 3.4 Hz, 4H); ¹³C-NMR (75 MHz, CDCl₃): δ 156.9, 141.2, 110.0, 104.6, 87.2, 68.8, 46.1, 36.0, 33.4, 31.2, 24.0.

HPLC trace of *trans*-(\pm)-3 (CHIRALPAK IC-3; hexane; 1 mL min⁻¹, $\lambda = 210$ nm).

2.4. Model study for the oxidative furan opening

2-Cyclopentylfuran

The procedure was adapted from literature.^[14]

To a stirred suspension of active charcoal (25.6 mg) and 2-(cyclopent-1-en-1-yl)furan (1.5 g, 11.2 mmol) in dry MeOH was added a $Pd(OAc)_2$ solution (1 mL, 0.011 mmol) prepared in advance by dissolving $Pd(OAc)_2$ (25.6 mg, 0.112 mmol) in dry THF (10 mL) under inert atmosphere. The suspension was stirred for 10 min and then a balloon of H₂ was mounted. Via a small needle, H₂ was continuously bubbled through the mixture for 1 h. The mixture was filtered through a pad of Celite[®], washed with pentane and concentrated. FC (pentane) afforded 2-cyclopentylfuran (1.23 g, 81%).

Colorless liquid; R_f 0.78 (pentane); ¹H-NMR (300 MHz, CDCl₃): δ 7.32 – 7.27 (m, 1H), 6.26 (dd, *J* = 3.0, 1.9 Hz, 1H), 5.97 (d, *J* = 3.1 Hz, 1H), 3.07 (s, 1H), 2.00 (dd, *J* = 7.3, 4.7 Hz, 2H), 1.78 – 1.58 (m, 6H); ¹³C-NMR (75 MHz, CDCl₃): δ 160.1, 140.6, 109.9, 103.1, 38.7, 31.8, 25.2. Physical and spectral data are in accordance with literature data.^[15]

(E)-4-Cyclopentyl-4-oxobut-2-enal

The procedure was adapted from literature.^[16]

To a suspension of 2-cyclopentylfuran (100 mg, 0.73 mmol) and NaHCO₃ (123 mg, 1.47 mmol) in 3.8 mL

of solvent (acetone/water 10:1) was added NBS (144 mg, 0.81 mmol) at -15 °C. The yellow suspension was stirred for 1 h before addition of pyridine (0.12 mL, 1.54 mmol). The mixture was stirred for 30 min, warmed up to rt and then stirred for 1.5 h. The mixture was then directly loaded on column without workup or concentration. FC (heptanes/EtOAc 7:3) afforded (*E*)-4-cyclopentyl-4-oxobut-2-enal (0.4 mmol, 55%). Note: The compound is sensitive to acid and thermally labile (partial decomposition occurs already during

¹³C-NMR measurement). The nature (acidity) of the used silica gel is important.

Yellow oil; R_f 0.74 (heptanes/EtOAc 5:5); ¹H-NMR (300 MHz, CDCl₃): δ 9.78 (d, J = 7.2 Hz, 1H), 6.84 (d, J = 16.2 Hz, 1H), 6.86 (d, J = 7.2 Hz, 1H), 3.27 – 3.14 (m, 1H), 1.94 – 1.77 (m, 4H), 1.75 – 1.60 (m, 4H); ¹³C-NMR (75 MHz, CDCl₃): δ 202.0, 193.4, 144.9, 137.6, 50.0, 29.0, 26.2; IR (cm⁻¹): 2956, 2923, 2870, 2853, 1694, 1452, 1118, 981, 908, 730; HRMS calc. for C₉H₁₃O₂ [M+H]⁺: 153.0910, found: 153.0908.

(E)-4-Cyclopentyl-4-oxobut-2-enoic acid

The procedure was adapted from literature.^[16]

To a mixture of crude (*E*)-4-cyclopentyl-4-oxobut-2-enal (65 mg, 0.43 mmol), 2-methyl-2-butene (0.45 mL, 4.27 mmol), *t*BuOH (0.96 mL) and a pH 3.6 phosphate buffer (0.48 mL) [prepared in advance of by dissolving Na₂HPO₄·H₂O (1.73 g) and citric acid monohydrate in H₂O (Milli-Q water, 98.6 g)] was added a solution of NaClO₂ (53.1 mg, 0.47 mmol) in H₂O (Milli-Q water, 0.14 mL). The mixture was stirred at rt for 2 h. The liquids were removed under high vacuum and the residue was dissolved in EtOAc and brine was added. The clear phases were separated and the aqueous phase was acidified to pH 4 with a few drops of aq. HCl. The now turbid suspension was extracted 3 x with EtOAc. The combined organic phases were dried over Na₂SO₄, filtered and concentrated. FC (heptanes/EtOAc/formic acid 60:40:1) afforded (*E*)-4-cyclopentyl-4-oxobut-2-enoic acid (50 mg, 69% over two steps).

White solid; $R_f 0.42$ (heptanes/EtOAc/formic acid 60:40:1); m.p. 104-107 °C; ¹H-NMR (300 MHz, CDCl₃): δ 7.22 (d, J = 15.9 Hz, 1H), 6.71 (d, J = 15.9 Hz, 1H), 3.14 (ddd, J = 15.7, 8.4, 7.2 Hz, 1H), 1.92 – 1.76 (m, 4H), 1.72 – 1.60 (m, 4H); ¹³C-NMR (75 MHz, CDCl₃): δ 201.4, 170.3, 140.9, 129.6, 50.4, 28.7, 26.1; IR (cm⁻¹): 3064, 2963, 2869, 1683, 1661, 1429, 1278, 1195, 1009, 642; HRMS: calc. for C₉H₁₃O₃ [M+H]⁺: 169.0865; found 169.0856. Procedure 2

The procedure was adapted from literature.^[17]

To a stirred solution of 2-cyclopentylfuran (140 mg, 1.03 mmol) in a solution of $tBuOH/H_2O$ (5:1, 5 mL) was added NaH₂PO₄·H₂O (207 mg, 1.50 mmol) and NaClO₂ (80%, 340 mg, 3.09 mmol) at rt. The reaction mixture was stirred for 3 h and the reaction mixture was extracted with Et₂O (3 x 10 mL), washed with brine (2 x 15 mL), dried over Na₂SO₄ and concentrated. The crude product was dissolved in THF/acetone/H₂O (5:4:1, 4 mL) and dry pyridine (10 µl, 0.12 mmol) was added at rt. The reaction mixture was stirred for 2.5 h and the reaction mixture was extracted with Et₂O (3 x 10 mL), washed with aq. NaHSO₄ (5%, 20 mL) and water (20 mL). The organic layers were dried over Na₂SO₄ and concentrated. MPLC (pentane/Et₂O 6:3 to 0:10) afforded (*E*)-4-cyclopentyl-4-oxobut-2-enoic acid (129 mg, 74%).

2.5. Synthesis of (+)-brefeldin C

(S)-Pent-4-en-2-ol

CuI (5.34 g, 28 mmol) was added to a round bottomed flask and dried by heating under vacuum. Dry THF (108 mL) was added and the solution was cooled to -20 °C using a cryostat under constant stirring. Vinylmagnesium bromide (1 M in THF, 542 mL, 542 mmol) was added *via* cannula over 1 h. *S*-(–)- propylene oxide (19 mL, 271 mmol) dissolved in dry THF (10 mL) was added in portions of 1 mL over 3 h. *Note: delayed exothermic behavior*. The reaction mixture was stirred at -20 °C for 18 h, allowed to warm up to rt and was transferred to a sat. aq. NH₄Cl solution (250 mL) *via* cannula. The phases were separated and the blue aqueous phase was extracted 3 x with Et₂O. The combined organic phases were washed with brine, dried over Na₂SO₄, and concentrated. Distillation (70 °C, 150 mbar) afforded (*S*)-pent-4-en-2-ol (12.5 g, 55%).

Colorless crystals; $R_f 0.28$ (Et₂O/pentane 2:8); $[\alpha]_D^{23} = +4.0$ (c = 1, CHCl₃) (lit.^[18] $[\alpha]_D^{23} = +10.86$ (c = 3.2, Et₂O)); ¹H-NMR (300 MHz, CDCl₃): δ 5.89 – 5.73 (m, 1H), 5.14 (dhept, *J* = 4.2, 1.0 Hz, 1H), 5.09 (dt, *J* = 2.1, 1.1 Hz, 1H), 3.90 – 3.77 (m, 1H), 2.30 – 2.10 (m, 2H), 1.78 (d, *J* = 6.9 Hz, 1H), 1.19 (dd, *J* = 6.2, 0.8 Hz, 3H); ¹³C-NMR (75 MHz, CDCl₃): δ 36.2, 119.4, 68.3, 45.1, 24.1. Physical and spectral data are in accordance with literature data.^[18]

(S)-1-Methoxy-4-((pent-4-en-2-yloxy)methyl)benzene (4)

To a stirred suspension of NaH (60 % in mineral oil, 4.75 g, 124 mmol) in dry DMF (100 mL) was added dropwise a solution of (*S*)-pent-4-en-2-ol (1.78 g, 20.7 mmol) and *p*-methoxybenzoyl chloride (5.8 mL, 41.3 mmol) in dry THF (20 mL) at 0 °C. The suspension was stirred at 40 °C for 5 h. The reaction mixture was cooled to 0 °C and sat. aq. NH₄Cl (30 mL) was slowly added. The mixture extracted with Et₂O (3 x 100 mL) and the combined organic phases were washed with brine (2 x 30 mL), dried over Na₂SO₄ and concentrated. FC (heptanes/EtOAc 95:5) afforded **4** (4.07 g, 96%).

Colorless liquid; R_f 0.21 (heptanes/EtOAc 95:5); $[\alpha]_D^{23} = +8.7$ (c = 1, CHCl₃) (lit.^[19] $[\alpha]_D^{20} = +10.1$ (c = 1, MeOH)); ¹H-NMR (300 MHz, CDCl₃): δ 7.27 (d, J = 8.3 Hz, 2H), 6.90 – 6.82 (m, 2H), 5.83 (d, J = 7.1 Hz, 1H), 5.12 – 5.01 (m, 2H), 4.46 (q, J = 11.4 Hz, 2H), 3.80 (s, 3H), 3.56 (dd, J = 12.2, 6.1 Hz, 1H), 2.43 – 2.15 (m, 2H), 1.18 (d, J = 6.2 Hz, 3H); ¹³C-NMR (75 MHz, CDCl₃): δ 159.1, 135.1, 131.1, 129.1, 116.8, 113.8, 74.1, 70.0, 55.3, 40.9, 19.5. Physical and spectral data are in accordance with literature data.^[19]

2-((1*R*,2*S*)-2-((*S*,*E*)-6-((4-methoxybenzyl)oxy)hept-1-en-1-yl)cyclopentyl)furan (7)

Preparation of 3

To a solution of **2b** (636 mg, 2.0 mmol) in dry THF (5 mL) was added TBAF (1M in THF, 5 mL, 6 mmol) and the mixture was stirred at rt overnight. Water (10 mL) was added and the mixture was extracted with pentane (3 x 10 mL). The organic phase was washed with dist. water (3 x 30 mL), dried over Na₂SO₄, and concentrated to afford the crude terminal alkyne **3**.

Preparation of 6

The crude **3** was dissolved in dry THF (20 mL) and added to a solution of Schwartz' reagent (1.14 g, 4.4 mmol) in dry THF (12 mL). After stirring for 15 min at rt, a solution of I_2 (1.12 g, 4.4 mmol) in dry THF (5.9 mL) was added to the bright yellow mixture, which results in a sharp change of colour to black. After 15 min of stirring at rt, the reaction was treated with water (10 mL). The reaction mixture was extracted with Et₂O (3 x 50 mL), washed several times with 10% aq. Na₂S₂O₃ until the solution became colorless.

The organic phase was dried over Na_2SO_4 and quickly concentrated. The crude iodide 6 was only rapidly purified by FC (pentane; $R_f 0.43$) and then dissolved in dry DMF (24 mL) for the next step.

Preparation of 5

A stirred solution of (*S*)-4 (920 mg, 4.2 mmol) in dry THF (22 mL) was treated with a solution of 9-BBN (0.5 M in THF, 16.4 mL, 8.2 mmol) and kept at 30 °C for 3 h. This crude solution of **5** was used as it stands for the next step.

Preparation of 7

A degassed 3 M solution of Cs_2CO_3 (2.2 g, 6.8 mmol) in water (2.2 mL) was added to the solution of **5** (see above) followed by the crude vinyl iodide **6** solution (see above) and Pd(dppf)Cl₂·CH₂Cl₂ (260 mg, 0.32 mmol). The dark solution was stirred overnight at 30 °C and treated with a sat. aq. NH₄Cl (20 mL). The mixture was extracted with Et₂O (3 x 10 mL) and the combined organic phases were dried over Na₂SO₄, filtered and concentrated. FC (pentane/Et₂O 95:5) afforded **7** (623 mg, 53%).

Colorless oil; $R_f 0.35$ (pentane / Et₂O 95:5); $[\alpha]_D^{23} = -8.2$ (c = 0.4, CHCl₃); ¹H-NMR (300 MHz, CDCl₃): δ 7.22 - 7.16 (m, 3H), 6.83 - 6.74 (m, 2H), 6.18 (dd, J = 3.1, 1.9 Hz, 1H), 5.90 (d, J = 3.1 Hz, 1H), 5.36 - 5.18 (m, 2H), 4.34 (d, J = 20.6 Hz, 2H), 3.72 (s, 3H), 3.44 - 3.33 (m, 1H), 2.68 (q, J = 8.8 Hz, 1H), 2.53 - 2.38 (m, 1H), 2.05 - 1.93 (m, 1H), 1.92 - 1.79 (m, 3H), 1.78 - 1.59 (m, 3H), 1.51 - 1.17 (m, 5H), 1.08 (d, J = 6.1 Hz, 3H); ¹³C-NMR (75 MHz, CDCl₃): δ 159.1, 140.8, 133.3, 131.4, 130.1, 129.3, 113.8, 110.0, 104.1, 74.5, 70.0, 55.4, 48.9, 45.5, 36.0, 33.1, 32.6, 31.9, 25.5, 23.9, 19.8; IR (cm⁻¹): 2934, 2862, 1612, 1587, 1512, 1454, 1372, 1337, 1301, 1245, 1172, 1133, 1110, 1070, 1036, 1009, 965, 909, 884, 821, 728, 648; HRMS calc. for C₂₄H₃₃O₃ [M+H]⁺: 369.2424, found: 369.2427.

(S,E)-7-((1S,2R)-2-(Furan-2-yl)cyclopentyl)hept-6-en-2-ol (8)

To a solution of 7 (100 mg, 0.27 mmol) in MeOH (7 mL) was added aq. HCl (4 M, 5 mL) at rt. The white suspension was stirred at 60 °C for 2 h (the reaction mixture turned dark) and sat. aq. NaHCO₃ was added until the pH was neutral. The mixture was extracted with CH_2Cl_2 and the organic phase was dried over Na₂SO₄, filtered and concentrated. FC (heptanes/EtOAc 8:2) afforded **8** (60 mg, 89%).

Note: Yield is generally lower on larger scale. It is recommended to split a larger batch up for parallel deprotection.

Colorless oil; R_f 0.22 (heptanes/EtOAc 8:2); $[\alpha]_D^{23} = -67.4$ (c = 1, CHCl₃); ¹H-NMR (300 MHz, CDCl₃): δ 7.29 (dd, J = 1.9, 0.8 Hz, 1H), 6.26 (dd, J = 3.2, 1.9 Hz, 1H), 5.98 (dt, J = 3.2, 0.8 Hz, 1H), 5.45 – 5.27 (m, 2H), 3.76 (q, J = 5.8 Hz, 1H), 2.76 (q, J = 8.8 Hz, 1H), 2.53 (tt, J = 9.7, 6.9 Hz, 1H), 2.11 – 1.88 (m, 4H), 1.75 (dddd, J = 16.3, 10.3, 8.0, 3.9 Hz, 3H), 1.53 – 1.21 (m, 6H), 1.16 (d, J = 6.2 Hz, 3H); ¹³C-NMR (75 MHz, CDCl₃): δ 158.7, 140.8, 133.6, 129.9, 110.0, 104.1, 68.2, 49.0, 45.6, 38.8, 38.8, 33.1, 32.5, 32.0, 25.7, 25.7, 23.9, 23.6, 23.6 IR (cm⁻¹): 3341, 2929, 2871, 1595, 1506, 1452, 1373, 1009, 964, 726; HRMS calc.

for $C_{16}H_{25}O_2$ [M+H]⁺: 249.1849, found: 249.1844

(E)-4-((1R,2S)-2-((S,E)-6-Hydroxyhept-1-en-1-yl)cyclopentyl)-4-oxobut-2-enoic acid (10)

To a stirred solution of NaHCO₃ (20 mg, 0.24 mmol) and **8** (30 mg, 0.12 mmol) in acetone/water (10:1, 0.63 mL) at -15 °C was added NBS (26 mg, 0.15 mmol). The yellow solution was stirred at this temperature for 1 h. Then, pyridine (21 µL, 0.25 mmol) was added, the mixture was stirred for 30 min and allowed to warm up to rt and the orange solution was stirred for 2 h. The reaction mixture was directly loaded on a silica gel column without workup nor concentration. Rapid purification by FC (heptanes/EtOAc 5:5) afforded the intermediate enal **9** as yellowish oil which was used without further purification in the next step.

Note: The compound is very sensitive to acid.^[20] Partial decomposition was observed in presence of silica gel.

To a mixture of crude **9** (33 mg), 2-methyl-2-butene (0.13 mL, 1.25 mmol), *t*BuOH (0.28 mL) and the phosphate buffer (0.14 mL) was added a solution of NaClO₂ (15.5 mg, 0.14 mmol) in Milli-Q water (40 μ L). The mixture was stirred at rt for 2 h. The liquids were removed under high vacuum and the residue was dissolved in EtOAc and brine. The clear phases were separated and the aq. phase was acidified to pH 4 with a few drops of aq. HCl. The turbid suspension was extracted 3 x with EtOAc. The combined organic phase was dried over Na₂SO₄, filtered and concentrated. FC (heptanes/EtOAc/formic acid 50:50:1) afforded **10** (29 mg, 85% over two steps).

Note: It is recommended to use the crude acid directly for the lactonization step without purification by column.

Yellow sticky residue; R_f 0.36 (heptanes/EtOAc/formic acid 50:50:1); $[\alpha]_D^{23} = -20.7$ (c = 1 CHCl₃); ¹H-NMR (300 MHz, CDCl₃): δ 7.19 (d, J = 15.8 Hz, 1H), 6.66 (d, J = 15.8 Hz, 1H), 5.49 – 5.34 (m, 2H), 3.90 – 3.75 (m, 1H), 2.89 (td, J = 8.8, 7.2 Hz, 1H), 2.55 (p, J = 8.9 Hz, 1H), 2.03 (ddt, J = 11.4, 7.8, 4.5 Hz, 3H), 1.91 (tdd, J = 13.5, 8.6, 5.2 Hz, 2H), 1.86 – 1.55 (m, 4H), 1.54 – 1.31 (m, 6H), 1.18 (d, J = 6.2 Hz, 3H); ¹³C-NMR (75 MHz, CDCl₃): δ 201.32, 168.51, 141.12, 133.46, 131.29, 129.85, 77.48, 77.16, 76.84, 68.71, 57.07, 48.31, 38.49, 34.86, 32.41, 28.19, 25.77, 25.27, 23.02; IR (cm⁻¹): 3429, 2922, 2856, 1679, 1406, 1288, 1212, 1091, 996, 968; HRMS calc. for C₁₆H₂₃O₄ [M–H⁺]⁻: 279.1602, found: 279.1610

4-Dehydro-brefeldin C (11)

To a solution of **10** (62mg, 0.22 mmol) in dry THF (12.8 mL) were added dropwise Et₃N (43 μ L, 0.31 mmol) and 2,4,6-trichlorobenzoyl chloride (40 μ L, 0.26 mmol). After 8 h of stirring at rt, the reaction mixture was diluted with dry toluene (28.5 mL). This solution was transferred slowly via cannula to a refluxing solution of DMAP (190 mg, 1.55 mmol) in dry toluene (28.5 mL). The cannula was rinsed with dry toluene (5 mL). The mixture was heated under reflux overnight. The reaction mixture was cooled down to rt and filtered through 1 cm of Celite[®]. The Celite[®] cake was thoroughly washed with dry toluene. The clear orange filtrate was concentrated affording a brown slurry. FC (pentane/Et₂O 9:1) afforded **11** (40.5 mg, 70%).

Colorless residue; $R_f 0.34$ (pentane/Et₂O 9:1); $[\alpha]_D^{23} = +3.0$ (c = 0.22 CHCl₃); ¹H-NMR (300 MHz, CDCl₃): δ 7.81 (d, J = 15.9 Hz, 1H), 6.41 (d, J = 15.9 Hz, 1H), 5.90 (ddd, J = 15.0, 10.8, 4.1 Hz, 1H), 5.46 (ddd, J = 15.0, 9.4, 1.5 Hz, 1H), 4.67 (dqd, J = 10.3, 6.1, 2.5 Hz, 1H), 2.66 – 2.45 (m, 2H), 2.27 – 2.09 (m, 2H), 2.06 – 1.39 (m, 12H), 1.33 (d, J = 6.2 Hz, 3H), 1.29 – 1.11 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃): δ 201.3, 166.4, 140.7, 135.9, 132.9, 128.14, 73.7, 58.3, 48.7, 35.3, 34.4, 32.5, 25.9, 25.3, 20.5; IR (cm⁻¹): 2956, 2925, 2855, 1720, 1455, 1378, 1267, 1119, 1073, 1039; HRMS calc. for C₁₆H₂₃O₃ [M+H]⁺: 263.1642, found: 263.1649. Physical and spectral data are in accordance with literature data.^[21]

(+)-Brefeldin C

The procedure was adapted from literature.^[22]

To a solution of **11** (15 mg, 0.06 mmol) in MeOH (2 mL) at -78 °C was added NaBH₄ (3 mg, 0.06 mmol). The mixture was stirred at -78 °C for 45 min. After warming up to rt, a sat. aq. NaHCO₃ solution (4 mL) was added. The white suspension was extracted with CH₂Cl₂ (3 x 10 mL) and the organic phases were dried over Na₂SO₄, filtered and concentrated. FC (heptanes/EtOAc 7:3) afforded (+)-brefeldin C (13 mg, 90%). White solid; R_f 0.38 (heptanes/EtOAc 7:3); m.p. 155–162 °C (lit.^[23] m.p. 160–161 °C); $[\alpha]_D^{23} = +23.9$ (c = 0.42 CHCl₃) (lit. $[\alpha]_D^{23} = +121$ (c = 0.07, MeOH)^[19] and $[\alpha]_D^{23} = +119.8$ (c = 1, CHCl₃)^[24]); ¹H-NMR (300 MHz, CDCl₃): δ 7.37 (dd, *J* = 15.7, 3.1 Hz, 1H), 5.90 (dd, *J* = 15.7, 2.0 Hz, 1H), 5.72 (ddd, *J* = 15.0, 10.2, 4.7 Hz, 1H), 5.19 (dd, *J* = 15.2, 9.5 Hz, 1H), 4.86 (dqd, *J* = 11.0, 6.3, 1.8 Hz, 1H), 4.09 (dt, *J* = 9.6, 2.5 Hz, 1H), 4.86 (dqd, *J* = 11.0, 6.3, 1.8 Hz, 1H), 4.09 (dt, *J* = 9.6, 2.5 Hz, 1H).

1H), 2.25 (p, J = 8.7 Hz, 1H), 2.01 (tdd, J = 13.0, 6.1, 3.3 Hz, 2H), 1.91 – 1.78 (m, 2H), 1.78 – 1.32 (m, 9H), 1.26 (d, J = 6.2 Hz, 3H), 1.00 – 0.89 (m, 1H); ¹³C-NMR (75 MHz, CDCl₃): δ 166.4, 152.0, 136.5, 130.5, 117.5, 76.2, 71.8, 54.2, 47.1, 35.3, 34.3, 32.1, 32.0, 26.9, 25.4, 21.0; IR (cm⁻¹): 3435, 2954, 2922, 2848, 1686, 1641, 1447, 1266, 1118, 978; HRMS calc. for C₁₆H₂₄O₃ [M+H]⁺: 265.1798, found: 265.1806. Physical and spectral data are in accordance with literature data, except for the amplitude of the optical rotation. The structure of (+)-brefeldin C synthesized by us was confirmed by single crystal X-ray crystallography. Suitable crystals were obtained upon evaporation of a solution of (+)-brefeldin C in heptanes/EtOAc under vacuum.

3. X-Ray crystal structure report of (+)-brefeldin C^[25]

Crystal-Structure Determination. A crystal of $C_{16}H_{24}O_3$ was mounted in air at ambient conditions. All measurements were made on a *RIGAKU Synergy S* area-detector diffractometer^[26] using mirror optics monochromated Cu *K* α radiation ($\lambda = 1.54184$ Å).^[27] The unit cell constants and an orientation matrix for data collection were obtained from a least-squares refinement of the setting angles of reflections in the range $9.988^{\circ} < 2\theta < 144.482^{\circ}$. A total of 562 frames were collected using ω scans, with 0.05 seconds exposure time, a rotation angle of 0.5° per frame, a crystal-detector distance of 31.0 mm, at T = 173(2) K.

Data reduction was performed using the *CrysAlisPro* program.^[26] The intensities were corrected for Lorentz and polarization effects, and an absorption correction based on the multi-scan method using SCALE3

ABSPACK in CrysAlisPro was applied.^[26] Data collection and refinement parameters are given in Table 1.

The structure was solved by direct methods using *SHELXT*,^[28] which revealed the positions of all non-hydrogen atoms of the title compound. All non-hydrogen atoms were refined anisotropically. H-atoms were assigned in geometrically calculated positions and refined using a riding model where each H-atom was assigned a fixed isotropic displacement parameter with a value equal to 1.2Ueq of its parent atom (1.5Ueq for methyl groups).

Refinement of the structure was carried out on F^2 using full-matrix least-squares procedures, which minimized the function $\Sigma w(F_o^2 - F_c^2)^2$. The weighting scheme was based on counting statistics and included a factor to downweight the intense reflections. All calculations were performed using the *SHELXL-2014/7*^[28] program in OLEX2.^[29]

A single crystal of the compound mounted on a glass fiber.

4. References

- H. C. Brown, A. K. Mandal, N. M. Yoon, B. Singaram, J. R. Schwier, P. K. Jadhav, J. Org. Chem. 1982, 47, 5069–5074.
- [2] D. Meyer, P. Renaud, Angew. Chem. Int. Ed. 2017, 56, 10858–10861.
- [3] H. C. Brown, B. Singaram, J. Am. Chem. Soc. 1984, 106, 1797–1800.
- [4] G. David Mendenhall, *Tetrahedron Lett.* 1983, 24, 451–452.

- J. Boukouvalas, S. Cren, P. Renaud, in *Encyclopedia of Reagents for Organic Synthesis*, Wiley, Hoboken, 2007, DOI: 10.1002/047084289X.rd062.pub2.
- [6] P. D. Bartlett, E. P. Benzing, R. E. Pincock, J. Am. Chem. Soc. 1960, 82, 1762–1768.
- [7] J. L. García Ruano, J. Alemán, C. G. Paredes, Org. Lett. 2006, 8, 2683–2686.
- [8] S. Racine, B. Hegedüs, R. Scopelliti, J. Waser, Chem. Eur. J. 2016, 22, 11997–12001.
- [9] R. Frei, J. Waser, J. Am. Chem. Soc. 2013, 135, 9620–9623.
- [10] W. Song, N. Zheng, M. Li, K. Dong, J. Li, K. Ullah, Y. Zheng, Org. Lett. 2018, 20, 6705–6709.
- [11] F. D. Ferrari, A. J. Ledgard, R. Marquez, Tetrahedron 2011, 67, 4988–4994.
- [12] H. C. Brown, A. K. Gupta, J. V. N. V. Prasad, Bull. Chem. Soc. Jpn. 1988, 61, 93–100.
- [13] Schaffner, Arnaud-Pierre, Darmency, Vincent, Renaud Philippe, Angew. Chem. Int. Ed. 2006, 45, 5847–5849.
- [14] F.-X. Felpin, E. Fouquet, Chem. Eur. J. 2010, 16, 12440–12445.
- [15] J. Haner, K. Jack, M. L. Menard, J. Howell, J. Nagireddy, M. A. Raheem, W. Tam, Synthesis 2012, 44, 2713–2722.
- [16] Y. Kobayashi, G. B. Kumar, T. Kurachi, H. P. Acharya, T. Yamazaki, T. Kitazume, J. Org. Chem. 2001, 66, 2011–2018.
- [17] S. P. Annangudi, M. Sun, R. G. Salomon, Synlett 2005, 1468–1470.
- [18] P. Kumar, P. Gupta, S. Vasudeva Naidu, Chem. Eur. J. 2006, 12, 1397–1402.
- [19] S. Archambaud, F. Legrand, K. Aphecetche-Julienne, S. Collet, A. Guingant, M. Evain, Eur. J. Org. Chem. 2010, 2010, 1364–1380.
- [20] B. M. Paz, L. Klier, L. Næsborg, V. H. Lauridsen, F. Jensen, K. A. Jørgensen, Chem. Eur. J. 2016, 22, 16810–16818.
- [21] S. L. Schreiber, H. V. Meyers, J. Am. Chem. Soc. 1988, 110, 5198-5200.
- [22] E. J. Corey, R. H. Wollenberg, Tetrahedron Lett. 1976, 17, 4705–4708.
- [23] S. Nozoe, M. Sunagawa, T. Ohta, *Heterocycles* 1979, 13, 267–270.
- [24] M. Inai, T. Nishii, S. Mukoujima, T. Esumi, H. Kaku, K. Tominaga, H. Abe, M. Horikawa, T. Tsunoda, Synlett 2011, 1459–1461.
- [25] CCDC 1937167 Contain the Supplementary Crystallographic Data for This Paper. These Data Are Provided Free of Charge by The Cambridge Crystallographic Data Centre.
- [26] CrysAlisPro (Version 1.171.40.37a), Oxford Diffraction Ltd., Yarnton, Oxfordshire, UK, 2018.
- [27] P. Macchi, H.-B. Bürgi, A. S. Chimpri, J. Hauser, Z. Gál, J. Appl. Cryst. 2011, 44, 763–771.
- [28] G. M. Sheldrick, Acta Cryst A 2015, 71, 3-8.
- [29] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. a. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339–341.

5. Spectra

¹H NMR (300 MHz, CDCl₃) (+)IpcBH₂ TMEDA complex

¹³C NMR (75 MHz, CDCl₃) (+)IpcBH₂ TMEDA complex

H2 ---TMEDA--B т°а

20234 CDCl3 22.16 CDCl3 22.28 CDCl3

S24

the experimental field is the first of the first investigation of the provided provided in the first operator of the first operator operato

▲ BH₂

-55.59

-7.26 CDCI3

¹³C NMR (75 MHz, CDCl₃) Di-*tert*-butylhyponitrite (DTBHN)

¹H NMR (300 MHz, CDCl₃) Di-*tert*-butyl peroxyoxalate (DTBPO)

¹³C NMR (75 MHz, CDCl₃) Di-*tert*-butyl peroxyoxalate (DTBPO)

TMS Ph^S

SMT 00.0---

0.0

0.5

I-00.6

¹H NMR (300 MHz, CDCl₃) Trimethyl((phenylsulfonyl)ethynyl)silane

¹H NMR (300 MHz, CDCl₃) Triisopropyl((phenylsulfonyl)ethynyl)silane

r4.82—		2 0
~32.58		
~33'34		1 40
		- Introduction
		1000 - 1000
26 [.] 201 —		
30.111 —		0 111 111 111
-125.05	-	
39.141 <u></u>		14 C
		MinwWh/Min
		1 7 0
		//////////////////////////////////////
		1000
		210
C O		220

 \sum

		илимпинии. 10
-21.84		10000000000000000000000000000000000000
		30
88.66—		
10:45-		
19 LV		
		(mhanyuahu) 60
		1
£2.87 _{.7}		училчи н ени)и
		w(w/w/w/
10.401-		100
71.011-		
		MUNIMMY
		unvirkinduni)
86.141		140
		150
₽ £.781—		
		1 1 7
<u>^</u>		лима/Миц/п - 18(
Н		190
		AlfNujadTNYAM
\checkmark		
<u>о</u> т		
└──		757 7

¹³C NMR (75 MHz, CDCl₃) *trans*-2-(2-furyl)cyclopentanol / (1*R*,2*R*)-2-(Furan-2-yl)cyclopentan-1-ol S40

SMT 10.0-		 Individual
		1 O
		Almondandad
-24.02		 all white the second se
~35.98 ~35.42		 MMMMMM
4۴.94—		
08.89—		
-22.14 CDCI3		
		14)ml/ml/hn/
19.401-		 Multivitation (mice)
10.011-		 F1 (p)
		120
		MWMMMW
22.141-		 WW/INW/W/W/
		1 5 0
6.931 —		 160
		V WUMMINIM
		180
	y la	190 190
I	c	Ilheithikuu 200
\checkmark		INUMINIMU
	, -	1000000000000000000000000000000000000

¹³C NMR (75 MHz, CDCl₃) *trans*-2-(2-ethynylcyclopentyl)furan / 2-((1*R*,2*R*)-2-ethynylcyclopentyl)furan (3) S42

 $\left\langle \right\rangle$

SMT 81.0—			- 0
42.11.42		e localitation and the localitation of the loc	10
92.81—			20
			0
99.78		normality and the second secon	
10101		ranggi y Wardmu	- 40
28 97—		MATANA LA MANA	50
		andra presenta	60
		, and a second	- 20
	-	 and the second se	
89.08		- ALWAUK WANG	- ∞
		And the second	- 6
		***/////w//v/shr/ut	100
20:011~ 20:011~ 96:111~			110 (ppm
		างราวมีหนุ่มหน	.20 f1
		promite toposite toposite toposite	30 1
		Novi V Bakima, Albec	
01.141-			14(
		1714(p+784)47WH	150
££.731—			160
			170
		านากกระดับกฎ	- 08
		rup Mahapan (MA)	0
		in industry	19
		Mr Jan Manual Manual	200
TIPS		Partitulian) in the	210
		kord (rd Josh kori iyosh	220
I		-	

¹H NMR (300 MHz, CDCl₃) 2-cyclopentylfuran

SMT 41.0-		Windfillingue
		arthmutantanta
		20
96.16—		Whan when
28.82—		40 40
		50
		0.9
		- 0.2 ////////////////////////////////////
		www.llhwww.
		WWWWWW
		06
		minulum 1
86.001-		110 110 110
		120 f
		1 3
92.041-		140
		1
		- T
rs.08r—		160
		170
		MM/(Neturian
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		Alamanana (
		10000000000000000000000000000000000000
		2 10
		1 220
\sum		

13C NMR (75 MHz, CDCl₃) (E)-4-cyclopentyl-4-oxobut-2-enoic acid

13C NMR (75 MHz, CDCl₃) (S)-pent-4-en-2-ol

¹³C NMR (75 MHz, CDCl₃) (*S*)-1-methoxy-4-((pent-4-en-2-yloxy)methyl)benzene (**4**)

		-
		- :
53.60 23.62 23.92		-
29.65 25.69 231.95		
L 38.75 23.10 23.10	A COLAR AND A COLA	- :
48.98 45.62 77 85.3		
	adjuti da najekanj	-
81.89—		-
		-
		-
		-
71.401		╞
96 [.] 601 —	All	-
		-
7 6'671 —		-
-133.55		-
£8.041 —		-
		-
07.881—		_
	val korver	-
		-
		-
H H		-
	Monthly (1) (1)	
$\langle \rangle$		
V N		╞

¹³C NMR (75 MHz, CDCl₃) (*S,E*)-7-((1*S*,2*R*)-2-(furan-2-yl)cyclopentyl)hept-6-en-2-ol (**8**)

		- O
		10
70'07-		Auluvraturen
20°22 22°92 21'92		
~37'88 ~35'11 ~35'12		Nyvallhurallina 3
64,85~		1 40
16.84—		1 50
20 ⁻ 29—		manahanulunu 60
۲ <u>7</u> .89—		ww.l/www.
212.48 CDCI3		10000000000000000000000000000000000000
		106
		100
		110
		20 1 (1
98'674 \		
97:131:29		ununuulunulunulun 1 1 1 3
-141.12		иминими 140
		150
		uriumuhuriuu 160
ra.881 —		www.www.
		MMMMMMM
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
,		19(
		200
		1410100104444
		10000000000000000000000000000000000000
		€ \N

¹³C NMR (75 MHz, CDCl₃) (*E*)-4-((1*R*,2*S*)-2-((*S*,*E*)-6-hydroxyhept-1-en-1-yl)cyclopentyl)-4-oxobut-2-enoic acid (**10**)

¹H NMR (300 MHz, CDCl₃) 4-dehydro-brefeldin C (**11**)

¹³C NMR (75 MHz, CDCl₃) 4-dehydro-Brefeldin C (**11**)

75.991-	

128.14
132.94
-132'60
12.041~
-

-20.46 25.31 25.90

~35.49 ~34.38 ~32.49			
Þ7.8Þ—			
			-
			_

in destruction of the second o

S62

		Lind indivi
		ni tuniny water
∠51°0 4 ∑52°36		WAJ NM WINN
80.28 20.28 26.92		why with with
15.35 		
60'27-		UNING IN THE REAL PROPERTY OF
		Alvia wa
6/1/2		()WAR
√ 2013 √ 2013 √ 2013		
212.48 CDCl3		MANAMINAN
		ALIMINAN
		ALIVINI MAN
		ANNAN MANAN
₽S.711 —		
74.061-		ultrium/m/untre
27 ^{,9} 21-		Minuka)
)d)aljevenjed (ev
66°L3L—		Muhdon Keel
24.091 —	_	W MINN
		Alifetija) (rejtan)
		ANNA ANA ANA
		indu and have and h
- 1		lihingi kutulu
		N/W/W/
I		NUMUNIA