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Adolfo Bastida,∗ José Zúñiga, Alberto Requena, and Javier Cerezo∗
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Abstract

A novel energetic route driving the folding of a polyalanine peptide from an ex-

tended conformation to its α-helix native conformation is described, supported by a

new method to compute mean potential energy surfaces accurately in terms of the

dihedral angles of the peptide chain from extensive Molecular Dynamics simulations.

The Energetic Self-Folding (ESF) route arises specifically from the balance between

the intrinsic propensity of alanine residues towards the αR conformation and two, op-

posite, effects: the destabilizing interaction with neighbor residues and the stabilizing

formation of native hydrogen bonds, with the latter being dominant for large peptide

lengths. The ESF mechanism provides simple but robust support to the nucleation-

elongation, or zipper models, and offers a quantitative energetic funnel picture of the

folding process. The mechanism is validated by the reasonable agreement between the

computed folding energies and the experimental values.

1 Introduction

The study of protein folding has revealed some remarkable paradoxes, the best-known prob-

ably being due to Levinthal,1,2 who argued that the conformational space of a protein is so

huge that the protein would require an almost unlimited amount of time to find its native
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structure by random search. The solution of the paradox seems to be obvious, pointing to

the fact that there must be specific folding pathways which drive the protein towards its

native structure. These folding pathways are conceived as trajectories in the free energy

landscape and account for the protein conformations as a function of the degrees of freedom

of the system, such as the dihedral angles along the peptide backbone.1,2 During the folding

process, the conformational entropy of the protein decreases since the formation of native

contacts reduces the accessible conformational space. This entropic reduction must be com-

pensated by the remaining contributions to the free energy, which are the energy resulting

from the intra- and intermolecular interactions and the entropy of the solvent, for the total

free energy to decrease during the folding process. This thermodynamic picture is known as

the folding funnel.1–5

At the atomistic level, the development of reliable Molecular Mechanics force fields has en-

abled successful simulations of the folding of small proteins by Molecular Dynamics (MD).6,7

Although the extension of the atomic simulations to more complex proteins is limited by the

increasing computational effort required, the availability of more accurate force fields and

optimized MD packages has resulted in atomistic simulations being very useful tools in this

respect.2,8–10 It is, however, paradoxical that the access to precise atomic simulations has

not substantially improved our knowledge of the general principles governing the routes and

speed of the protein folding.6 These principles should fill the gap between the atomistic and

thermodynamic pictures,7 thus allowing the prediction of the protein’s native structure from

its aminoacid sequence.6,11

The problem of extracting the folding patterns of proteins from MD simulations arises

from the intrinsic complexity of the system, in which the different energetic and entropic

contributions find a delicate balance that minimizes the total free energy along the folding

process. Indeed, as folding progresses, both the potential energy and the entropy of the

protein decreases, although resulting in opposite effects on the free energy, whereas the

entropy of the solvent plays a much more uncertain role.6,12 The global structure of the
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protein is determined by the conformation of each residue, which is defined in turn by the

backbone dihedral angles φ and ψ (see Figure 1a). A deep understanding of the folding

process therefore requires accurate estimations of the energetic and entropic contributions

to the free energy in terms of the dihedral coordinates.

Calculation of the free energy13,14 is usually performed using the mean force poten-

tial along some coordinates obtained by directly counting the times that the molecule vis-

its a given conformational subregion, which sometimes requires enhanced sampling tech-

niques.15,16 The resulting free energy landscapes are intrinsically rugged,11,17 and typically

include different local minima, β, pPII, αR,. . . , which act as traps during folding,18,19 with

the free energy barriers being of the same order of magnitude as the thermal energy, so

the molecule may overpass them during the folding process. Accordingly, the free energy

landscape must be calculated with an accuracy to within kBT (0.59 kcal/mol) for it to be

considered physically meaningful.

The calculation of the energetic and entropic contributions to the free energy separately

from atomistic simulations is much more problematic,14 with existing methods having an

often unsatisfactory efficiency/accuracy ratio. In principle, the energetic contribution should

be easier to evaluate since it is given by just the potential energy differences between the

distinct conformations. Computing the potential energy of the i-residue in terms of its

dihedral angles φi and ψi implies averaging the potential energy over the conformations of

all the remaining residues. In practice, such a calculation is not generally possible, due to

the numerical uncertainties arising from the huge number of bonded and, more significantly,

non-bonded interactions to be evaluated.

In this work, we present a novel effective method, called the K2V method, to calculate

the mean (φi, ψi) potential energy landscapes from MD simulations, to gain insights on the

energetic contributions of the free energy to the folding process. These landscapes allow us

to go beyond the two state (folded and unfolded) model, in which the energetic changes due

to the folding are characterized by a single quantity, ∆H or ∆E, depending on the choice of
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the NPT or NV E ensembles,7,20 although both quantities are basically identical in water

solutions at room temperature, a model which is indeed at odds with the image of a rugged

free energy landscape. The evaluation of the potential energy landscapes at different steps

during the folding process has allowed us, in turn, to unravel the presence, or absence, of

energy folding paths guiding the search for the native structure, and to investigate the role

of the intramolecular hydrogen bonds (HBs) in the energetic stabilization of the α-helix.

Polyalanine peptides show a remarkable αR-helix propensity,19 which justifies its use in

theoretical investigations of conformational processes. As model systems, we have chosen,

accordingly, the capped polymers of alanine (ACE-(Ala)m-NME) with m=1, 2, 3, 4, 6, 8

and 10. The m = 10 molecule, usually referred to as deca-alanine, has often served as a

methodological proof of concept,21 since it provides a good model of larger peptides, and

so it is used in this study. Deca-alanine is also long enough to offer a good representation

of the formation of the αR-helix, and short enough to allow the extensive MD simulations

necessary to reach convergence in the statistical analysis, and to reduce the presence of

misfolded intermediates that may significantly alter the folding rates.19 We should note

that our attention is essentially focused on the search for energetic mechanisms that may

assist the propagation of the elements of the secondary structure. Therefore, we concentrate

our analysis on the initial folding process, conducting the simulations up to 15 ns, a long

enough period of time to run from a mostly extended conformation to a structure where the

percentage of residues in the αR conformation is significant, although the conformational

equilibrium had not been yet reached.

2 Methods

2.1 MD Simulations.

MD simulations of the ACE-(Ala)m-NME molecules with m =1, 2, 3, 4, 6, 8 and 10, dissolved

in water, were carried out using the GROMACS package v2016.4.22,23 Each solute molecule
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was surrounded by a number of water molecules ranging from 600 to 2000 (depending on

the length of the polyalanine chain) and placed in a cubic box of a size chosen to reproduce

the experimental density of the liquid at room temperature. All the polyalanine molecules

were described using the CHARMM2724,25 force field. Two additional sets of independent

simulations were carried out for deca-alanine using the AMBERGS26 and the OPLS-AA27

force fields. The water solvent was in all cases described using the flexible TIP3P model.

Periodic boundary conditions were imposed in the simulations using the Particle-Mesh Ewald

method to treat the long range electrostatic interactions. The equations of motion were

integrated using a time step of 0.5 fs.

Since we were mainly interested in the first steps of the folding, the chronology of the

MD simulations for every polyalanine molecule and force field was as follows. The system

was first equilibrated during 0.4 ns in a NV T ensemble at 298 K by coupling to a thermal

bath. In this period of time, the deca-alanine molecule was kept frozen in a fully extended

conformation, with all dihedral angles fixed at the β conformer maximum. Then, the ve-

locities of the polyalanine atoms were reset randomly using a Boltzmann distribution, after

which an additional equilibration of 40 ps followed. The last process was repeated 112 times

with different sets of velocities. Each of these 112 initial configurations were propagated for

15 ns, generating the same number of distinct trajectories. During these production runs, the

kinetic energy of the deca-alanine atoms, the total potential energy of the system, and the

values of the dihedral angles of the ten residues were written every 5 fs. This computational

strategy allowed us to obtain thermally equilibrated systems, with the dihedral angles of

the molecule populating different regions of the conformational space. Throughout the MD

simulations, the number of hydrogen bonds (HBs) was computed using the criteria already

adopted by Zewail and co-workers.19
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2.2 The K2V algorithm.

The calculation of the mean potential energy maps of a given residue in terms of its dihedral

angles by averaging the total potential energy of the system calculated for the remaining di-

hedral conformations is not viable practically for the following reasons: (1) the huge statistics

necessary to cancel the mean contributions of the remaining degrees of freedom, including

the solvent ones, (2) the accuracy with which the potential energy is evaluated, probably not

high enough to reproduce the comparatively slight potential energy differences correspond-

ing to small variations of the dihedral angles, and (3) the numerical errors raising in the

evaluation of the average potential energy values due to the vast quantity of data involved

in the calculations.

We decided, then, to explore the possibility of determining the potential energy maps

using the kinetic energy of the atoms. This idea has its origins in the fact that the changes in

the kinetic energy of any internal coordinate of the system in a short time interval δt occur

in two ways, by variation of the potential energy function due to the internal coordinate

displacements, and from the energy fluxes with the remaining degrees of freedom driven by

the kinetic and/or potential couplings. If the system is at thermal equilibrium, the average

contribution of the energy fluxes vanishes since the average kinetic energy per degree of

freedom must be equal to kBT/2. Accordingly, the average changes of the kinetic energy of

the system in going form conformation i to other conformation j (i → j) is expected to be

equal to minus the potential energy difference, i.e.,

∆T i→j = −∆V i→j (1)

where the averaged kinetic (∆T ) and potential (∆V ) energy differences run over all the

transitions taking place along the trajectories.

By using the kinetic energy changes between conformations, we get the crucial advantage

of accurately expressing the kinetic energy as the sum of individual atomic contributions,
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something that cannot be done for the potential energy. This allows us to select the atoms

which have a real kinetic energy contribution to the displacement of a given internal co-

ordinate. Thus we find that, for the deca-alanine molecule, only a few atoms really have

an influence on the motion of the dihedral angles, and that these atoms always occupy the

same relative positions with respect to the dihedral angles (see Supplementary Figure 1).

As expected, the atoms with the highest contributions are those pertaining to the dihedral

angles, that is, the Ci−1-Ni-Cα,i-Ci and Ni-Cα,i-Ci-Ni+1 backbone atoms for φi and ψi, re-

spectively. These atoms together account for ∼97% of the total kinetic energy involved in

the displacements, which increases up to ∼99% when the contribution of the Hα,i atoms is

added (See Supplementary Table 1). We therefore use the kinetic energy of these six atoms,

referred to as the CNCHCN atoms, to unravel the mean potential energy as a function of

the dihedral angles of each residue.

In order to describe the algorithm employed to calculate the potential energy maps, the

so-called K2V algorithm, let us consider a 2D (φ, ψ) map divided in a squared N ×N grid.

The value of N is chosen to be high enough for the potential energy to be considered constant

in every square of the grid. These constant values are labeled as V1, V2,. . . ,VN2 and are the

unknowns to be determined. Using the coordinates and the kinetic energies of the atoms

exported at δt time intervals, we evaluate the mean change of the kinetic energy of the

CNCHCN atoms which are in the ith point of the grid at time t when passing to the jth

point at time t+ δt as follows:

∆T i→j =
1

nij

nij∑
k=1

(
T

(k)
j (t+ δt)− T (k)

i (t)
)

(2)

where nij is the number of i→ j conformational changes taking place in the simulation. A

regression analysis is then performed to calculate the Vi values by minimizing the weighted
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sum of squared residuals given by

R2 =
N2∑
i,j

nij
(
∆T i→j + (Vj − Vi)

)2
(3)

The condition

∂R2

∂Vi
= 0, i = 1, . . . , N2 (4)

leads accordingly to the following system of linear equations

Vi

N2∑
j 6=i
j=1

(nij + nji)−
N2∑
j 6=i
j=2

(nij + nji)Vj =
N2∑
j=1

(nij∆T i→j − nji∆T j→i), i = 2, . . . , N2 (5)

whose solution provides the Vi values. We note that the value V1 = 0 is arbitrarily chosen

to set energy origin.

In practice, not all the dihedrals conformations are explored by the molecule, due to

energetic constrains, so the real number of Vi variables is much smaller than N2. Typically,

we find that ∼40% of the conformational space is not visited, which reduces the number

of Vi variables to be calculated appreciably. The choice of the grid resolution (N) deserves

some additional comments. In principle, high values of N are desirable in order to increase

the resolution of the potential energy maps. However, this has two practical limitations.

The first is about the number of data available from the simulations, since higher resolutions

require more data to evaluate accurately the mean values of the kinetic energy differences

between the grid points. The second limitation has to do with the dimension of the linear

equations system to be solved. Grids with N in the range 90-180 imply solving equation

systems with 5000 to 20000 variables. Higher dimensions would require special computers

with extended memories. The maps shown in the present work have a 90×90 resolution and

are calculated using a computer with 32 Gb of RAM. This means that every grid square

has a 4◦ × 4◦ dimension. This size imposes a lower limit on the choice of the elapsed time

(δt) used to evaluate the kinetic energy differences. The algorithm is effective only when the
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displacement of the dihedral angles during the δt time interval is of the same magnitude as

the size of the grid cell, ordinarily involving, therefore, a transition between different grid

cells. Simultaneously, the value of δt cannot be too long since, otherwise, the validity of the

relation between the changes of kinetic and potential energies implied in equation (1) would

be lost due to the change of the atomic environment. The value chosen in the present work,

δt = 5 fs, is the results from a compromise. The average displacements of the dihedral angles

are ∼ 3◦, which assures that most of the displacements are going, to modify the grid point

while they are short enough to maintain the correlation in the changes of the kinetic and

potential energies. In the Supplementary Information we describe the tests carried out to

evaluate the performance and reliability of the K2V algorithm (see Supplementary Figures

2, 3 and 4).

3 Results and Discussion

We start our discussion by considering the results obtained from the MD simulations for

the deca-alanine molecule. In the Ramachandran plot shown in Figure 1a (see also Supple-

mentary Figures 5 and 6) we observe the presence of five local maxima, corresponding to

the β, pPII, αR, α′, and αL conformers (see Supplementary Table 2 for a precise location of

the conformational maxima). In order to quantify the time evolution of the conformational

changes, we have collected the conformational populations within ±10◦ intervals around each

maximum. We should note that the Ramachandran plot shown in Figure 1a, as well as the

remaining plots presented in this work, are averaged over all the residues of the molecules,

since the differences between residues are in general of little significance for the present

study. Also, it should be emphasized that the Ramachandran plot shown in Figure 1a does

not correspond to the conformational equilibrium, since the conformation of the deca-alanine

molecule evolves during the 15 ns simulations, as observed in Figure 1b. Initially, only the

β and pPII conformations have a significant contribution of around ∼10%, while ∼75% of
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the dihedral angles are in none specific conformational regions. During the propagation, the

population of the αR conformers increases monotonically and reach a value close to 40%.

In Figure 2a (see also Supplementary Figures 7 and 8) we show the mean potential

energy map of deca-alanine as a function of the dihedral angles, obtained using the K2V

algorithm (see section 2.2). This map corresponds to the early stages of the simulations,

when none of the remaining residues is in the αR conformation, and shows five minima that

are located in the same positions as the five maxima in the Ramachandran plot in Figure

1a. The deepest minimum corresponds to the αR conformer, and is followed by the pPII,

α′, αL and β minima in order of increasing energy. The potential energy wells are separated

from each other by potential energy barriers of different magnitudes, with the lowest barriers

being those between the αR-α′ and α′-pPII conformations. In general, the potential surface

looks rough, as expected. Typically, the barriers between the conformers are a few orders of

magnitude higher than the thermal energy (kBT ), high enough to trap the residue in a given

conformation for an elapsed time, although they can be surpassed when thermal fluctuations

concentrate enough energy in the dihedral degrees of freedom.

Inspection of the trajectories reveals that the mean energy map of Figure 2a is not static

but evolves during the folding process, indicating that the forces acting on the dihedral

angles of a given residue depend on the conformation of the other residues. This effect is

better shown by computing the potential energy maps filtering the data in order to ensure

that a certain amount of global αR conformation is within the chain. In particular, we

have calculated separated potential energy maps for a given residue of the polypeptide as

a function of the number, NαR
, of the remaining residues of the molecule being in the αR

conformation. In Figure 2b we present these maps for NαR
varying from 0 to 6, and they

show notable changes in the relative depths of the potential energy wells with NαR
which

gradually favor the αR conformation. Interestingly, the potential energy minima of the pPII,

α′, αL and β conformers relative to the αR minimum increase all of them linearly with NαR

and have similar slopes (see Supplementary Figures 9, 10 and 11). On the other hand,
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outside the αR region, the potential energy map is practically unaffected by NαR
, as better

illustrated by the minimum energy paths between the β and αR conformations included in

Figure 2c (see also Supplementary Figure 12). Overall, Figure 2b reveals the existence of

an energetic funnel that favors the successive formation of αR residues as the folding process

advances.

The stabilization of the αR conformers is expected to have a direct impact on the fold-

ing energies of the residues. Experimentally, the folding energy is obtained by assuming a

two-state (αR folded and unfolded) model,28,29 so we have evaluated it using the same pre-

scription, that is, by dividing the dihedral conformational space into a folded and an unfolded

region. The folded region is identified with the αR region centered at (-63◦, -41◦) with ±10◦

intervals, whereas the unfolded region contains all other molecular conformations. Using the

potential energy maps for a given value of NαR
and the Ramachandran plots, we simply cal-

culate the mean values of the potential energy inside and outside the folded region, and the

difference gives the folding energy as a function of NαR
. In order to disentangle the effects

that modulate the folding energy, we have also computed it for the series of the polyalanine

molecules of increasing size (m = 1 to 10). Only the results for NαR
conformations which

account for at least 5% of the total are used in the analysis to assure statistical reliability.

Figure 3 shows the computed folding energies for the different polyalanine chains as a

function of NαR
. As observed, the folding energy varies with NαR

following a trend that

strongly depends on the size of the polyalanine chain. In order to rationalize these results,

let us consider first the folding energy for the m = 1 molecule, which is -0.83 kcal/mol. Since

this molecule only contains one residue, the value of the folding energy indicates that there is

an intrinsic stabilization of the folded conformation with respect to the unfolded conformers,

even in the absence of interactions with other residues. This stabilization comes, therefore,

from the molecular structure of the alanine residue. For the two residues molecule, m = 2,

the folding energy per residue reduces to ∼0.4 kcal/mol when NαR
increases from 0 to 1,

that is, when the other residue folds into the αR conformation. So there is a neighborhood
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effect that hinders the folding of the adjacent residues when a given residue is already

in the αR conformation. It is worth noting that the effect of neighbor residues on the

conformational flexibility of a given residue has already been observed by analyzing the

dynamics of polypeptide chains.30–32 The neighboring residue effect also diverts the energetic

balance in peptide studies from group additivity, that is, from the isolated pair hypothesis.33

The results obtained for the m = 3 polyalanine reveal that the folding energy for the NαR
= 0

conformers is more negative than the corresponding energy for the shorter molecules. Also,

form = 3 alanine the increase of the folding energy whenNαR
goes from 0 to 1 is much smaller

than that for m = 2 alanine. This change of tendency is confirmed in the m = 4 molecule,

for which the folding energy decreases as NαR
increases, and results from the formation of an

increasing number of intramolecular HBs that stabilize the αR conformations of the residues

(see Supplementary Table 3). In fact, the increasing number of native (i, i+ 4) HBs, which

can formed only in the molecules with m ≥ 4, drives the folding energies towards even more

negative values.

The neighborhood effect and the formation of HBs have opposite effects, both intensifying

as NαR
increases, and the balance between them may well be responsible for the variation of

folding energy of the different polyalanine molecules. Interestingly, HBs dominate for longer

chains (m =6, 8 and 10), giving folding energies which decrease almost linearly with the

number of residues in the αR region. The slopes of these linear variations scale approxi-

mately with 1/m, since the calculated folding energies are averaged for the m residues of the

molecule. Assuming that the three effects, namely the intrinsic stabilization of αR confor-

mations, the neighborhood effect and the HBs formation, have unconnected contributions,

the folding energy as a function of the conformation, characterized by NαR
, and the length

of the molecule, m, can be modeled as follows

∆Ef,residue(m,NαR
) = Eint + nnnr(m,NαR

)Ennr +
f

m
nHB(m,NαR

)EHB (6)
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where Eint, Ennr, and EHB are, respectively, the energy values of the intrinsic, nearest neigh-

bor residues, and HB contributions, and nnnr and nHB are the average numbers of nearest

neighbor residues in the αR conformation and of HBs, whose dependence on m and NαR
is

explicitly indicated. The nnnr and nHB values are extracted from the simulations, as detailed

in Table 3 of the Supplementary. The f/m factor accounts for the number of residues affected

by each HB. For the shorter polyalanine molecules, with m ≤ 3, f is equal to m, while for

the longer chain molecules f should be close to but smaller than 4, since inner residues can

participate in more than one HB. The fits of the folding energies to Equation (6) are shown

in Figure 3b and the values of the parameters fitted are Eint = −0.80 kcal/mol, Ennr = 0.33

kcal/mol, EHB = −0.80 kcal/mol and f =3.4. The values of Eint, Ennr, and f are consistent

with the estimations discussed above, and the HBs contribution is also in line with previous

estimations of the HBs energy for proteins in solution.34

It is noteworthy that the patterns of the folding energies shown in Figure 3 can be reason-

ably reproduced using simple concepts, despite the apparent complexity of the simulations

performed to obtain them. In this sense, our analysis reveals the existence of an energetic

self-folding (ESF) mechanism resulting from the superposition of the three effects considered,

which guides the polyalanine molecules towards the formation of the αR-helix. We should

note that the values obtained for the folding energies in the longer molecules are between 1

and 3 times higher than thermal energy at room temperature. This means that the energetic

gains from the ESF mechanism plays an important role in the folding process, independently

of possible additional entropic contributions, and of the mechanism not being completely de-

terministic. Indeed, at certain times, the ESF mechanism can be counteracted by singular

thermal fluctuations of the kinetic energy of the atoms involved in the displacement of the

dihedral angles. The folding path of a molecule results, therefore, from the balance between

the ESF mechanism and the thermal fluctuations.

The ESF mechanism also provides a simple explanation for the fact that the folding of the

inner residues is favored with respect to the folding of the outer residues, as has been shown
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in previous simulations19 and experimentally.35–37 Figure 1c (and Supplementary Figures 13

and 14) shows the time-evolution of the αR conformer population percentage for deca-alanine

residues, extracted from the simulations. For clarity, we have grouped them according to their

relative position with respect to the center of the molecular chain. As observed in this figure,

the folding of the Ala1/Ala10 residues is comparatively disfavored, followed by the folding of

the Ala2/Ala9 residues. This effect decreases significantly in magnitude as we move toward

the center of the molecule, with the differences between the Ala4/Ala7 and Ala5/Ala6 pairs

of residues being practically negligible and absorbed by the statistical fluctuations. If we

analyze these results using the ESF mechanism, we first note that the Ala1/Ala10 residues

have only one nearest neighbor residue and can participate in one HB; and, second, that the

remaining residues have two nearest neighbor residues but can participate in a higher number

of HBs, the further away they are from the extremes: 2 HBs for the Ala2/Ala9 residues, 3

for the Ala3/Ala8 and 4 for the rest ones. Since the energetic stabilization provided by the

HBs is higher in magnitude than the destabilization caused by the neighbor residues in αR

conformations, the net effect is that the folding process is progressively favored from the

extreme residues up to the Ala4/Ala7 residues, as observed.

An additional test of the reliability of the results obtained from the simulations can be

performed by calculating the average folding energy per residue directly from the deca-alanine

molecule, assuming that the linear variations shown in Figure 3 (see also Supplementary

Figure 15) hold for the higher values of NαR
. The averaged folding energy per residue thus

obtained using the CHARMM27, AMBERGS, and OPLS-AA force fields are, respectively,

−1.42, −1.23, and −1.26 kcal/mol. It is notable that such similar values are obtained from

the three different force fields, being the CHARMM27 value slightly more negative due to a

comparatively higher stabilization of the αR well (see Supplementary Figures 9, 10, and 11.

In addition, experimental findings give folding energies between −0.9±0.128 and −1.0±0.129

kcal/mol per residue for the alanine peptide helix, which are ∼25% higher than the folding

energies per residue calculated theoretically. We find these differences to be acceptable
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within the usual degree of accuracy provided by the molecular mechanics force fields and the

discrepancies expected between the theoretical model and the actual experimental setup. In

this respect, for instance, the interpretation of the experimental measurements is made under

the assumption of the initial equilibrium percentage of αR residues, a quantity that is not

easy to establish,29 while our simulations are not performed at conformational equilibrium

conditions. Taking into account also that the calculated folding energies are obtained using

exclusively Ramachandran plots and potential energy maps, we think that the reasonable

agreement provided by our theoretical model with the experimental findings significantly

supports the methodologies used in this work. We finally note that a value for the average

folding energy similar to those given above for deca-alanine is obtained for the m = 8

polyalanine molecule in our simulations, in agreement with the experimental observation

that the enthalpy of helix formation per residue, is independent of the peptide length.28

4 Conclusions and perspectives

In this work, we have identified an energetic route guiding the folding towards α-helix in

polyalanine chains by means of extensive MD simulations. This route basically consists

of the stabilization of the αR conformation of a given residue when the adjacent residues

are also in the αR conformation, an effect which we refer to as an energetic self-folding

(ESF) mechanism. The evidence that supports this mechanism comes from the analysis of

the potential energy landscape associated to the (φi, ψi) dihedral angles describing a given

residue, which determines its conformation as function of the number NαR
of remaining

residues that are in the αR conformation. The results obtained for deca-alanine reveal a

stabilization of the αR conformations as NαR
increases, which has, in turn, a direct impact

on the folding energy per residue by causing it to decreases linearly with NαR
. The variation

of the folding energy with NαR
depends specifically on the balance between the intrinsic

stabilization of the αR conformation within the alanine residue, which is independent of
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NαR
, and two opposed effects that increase with NαR

, which are the interaction with neighbor

residues, which destabilizes the αR conformation, and the formation of native HBs, which

stabilizes the folding. Such effects are individualized and quantified by computing the folding

energy as a function of NαR
for polyalanine chains of increasing size and for deca-alanine. Our

model provides an intrinsic energy stabilization of −0.80 kcal/mol, a destabilization energy

per neighbor residue of 0.33 kcal/mol, and a stabilization energy per HB of −0.80 kcal/mol.

Interestingly, the HB stabilization dominates for long chains, leading to a nearly linear

decrease of the folding energy as function of NαR
. For large polyalanine peptides, the slope

of these variations is inversely proportional to the chain length which, in turn, provides

average folding energies independent of the peptide length.

A key feature in our work is the ability to compute the energy landscapes for the dihedral

angles of the residue, φi and ψi, averaged over the remaining degrees of freedom, from the

MD simulations. This non-trivial problem is accomplished by introducing a completely new

methodological tool, the K2V method, based on the computation of the kinetic energy of

a selected set of atoms to evaluate the changes in the potential energy. This methodology,

applied here for the first time, provides converged potential energy maps and, when coupled

to data filtering schemes in terms of NαR
, delivers individual maps for different values of

NαR
, which give fundamental support to our findings.

In our view, the results presented in this work give stimulating clues to rationalize the

folding process from an energetic point of view. This work marks in a way the beginning

of a new line of research that promises to deliver key pieces in the solution of the intricate

puzzle of protein folding dynamics. On the one hand, the origin of the ESF mechanism

needs to be understood at a molecular level, which would require an exhaustive analysis

of both, the intramolecular and intermolecular (non-bonded) energetic contributions to the

free energy. Interestingly, the ESF effect seems to be closely connected to the correlation

of the neighboring residues conformations, a key concept usually invoked to explain the

small perturbation of the polypeptide chain caused by the conformational oscillations within
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a residue. On the other hand, the K2V method is readily applicable to more complex

polypeptides, including arbitrary aminoacid sequences, thus opening the door to investigate

the feasibility of the ESF mechanism in terms of the aminoacids nature, and its role in the

folding propensity to specific motifs. Another appealing point of the K2V method is that,

when accompanied by accurate computation of the free energy, which is currently viable, it

may unlock the evaluation of the entropic contributions of both the solute and the solvent,

which would contribute to clarifying the folding dynamics further.
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