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ABSTRACT 

Molecular dynamics (MD) simulations have become increasingly popular in studying the 

motions and functions of biomolecules. The accuracy of the simulation, however, is highly 

determined by the molecular mechanics (MM) force field (FF), a set of functions with adjustable 

parameters to compute the potential energies from atomic positions. However, the overall quality 

of the FF, such as our previously published ff99SB and ff14SB, can be limited by assumptions 

that were made years ago. In the updated model presented here (ff19SB), we have significantly 

improved the backbone profiles for all 20 amino acids. We fit coupled ϕ/ψ parameters using 2D 

ϕ/ψ conformational scans for multiple amino acids, using as reference data the entire 2D 

quantum mechanics (QM) energy surface. We address the polarization inconsistency during 

dihedral parameter fitting by using both QM and MM in solution. Finally, we examine possible 

dependency of the backbone fitting on side chain rotamer. To extensively validate ff19SB 

parameters, we have performed a total of ~5 milliseconds MD simulations in explicit solvent. 

Our results show that after amino-acid specific training against QM data with solvent 

polarization, ff19SB not only reproduces the differences in amino acid specific Protein Data 

Bank (PDB) Ramachandran maps better, but also shows significantly improved capability to 

differentiate amino acid dependent properties such as helical propensities. We also conclude that 

an inherent underestimation of helicity is present in ff14SB, which is (inexactly) compensated by 

an increase in helical content driven by the TIP3P bias toward overly compact structures. In 

summary, ff19SB, when combined with a more accurate water model such as OPC, should have 

better predictive power for modeling sequence-specific behavior, protein mutations, and also 

rational protein design.  
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Introduction 

State-of-the-art computational methods have been able to complement experimental structural 

biology with information that is both interesting and difficult to obtain without computers. 

Recent simulation highlights are the time-resolved, atomic-detail folding of ubiquitin during a 1-

millisecond MD simulation
1
, or the accurate reproduction of a large set of protein-ligand binding 

affinities
2
. Moreover, simulations are typically used during the refinement of high resolution 

structures obtained using experimental data such as crystallography, NMR or cryo-electron 

microscopy.  

However, two significant caveats apply to the hypothetical power of simulations: (1) the 

energy function must provide an accurate model of the underlying physics of the system, and (2) 

the simulation must adequately sample the important regions of the resulting energy landscape. 

These problems are coupled, and improving the physics model typically gains accuracy at the 

expense of greater computational cost, reducing the conformational diversity that can be 

sampled. One of the main challenges in successfully employing simulations is the need to 

optimize this precision/accuracy compromise based on the requirements of each research project.  

All-atom molecular dynamics (MD) is likely the most widely used biomolecular simulation 

sampling method. These often employ simple classical energy functions (force fields, FFs) which 

usually have many adjustable parameters, most often obtained by fitting to data from 

experiments or QM. Most modern FFs have very similar functional forms, but differ 

significantly in choice of model systems and source of the training data. Although using even 

more complex models than those discussed here (such as including explicit polarizability
3-6

) may 
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improve accuracy, these gains come at the cost of computational complexity and corresponding 

reduction in the sampling that is usually the limiting factor in the application of force fields. 

Many approximations are made in fitting FF parameters. The FFs used for simulation of 

biomolecules in water tend to be relatively simple, due to the large number of atom pair 

interactions that contribute to the overall forces. In this article we focus on the FFs associated 

with the Amber simulation package
7
, though others tend to be very similar. Amber FFs include 

harmonic terms for covalent structure, such as bond stretching and angle bending. The 

intramolecular and intermolecular nonbonded interactions are modeled as a Lennard-Jones 12-6 

potential for vdW interactions, and a simple Coulomb term for electrostatics typically using fixed 

partial atomic charges obtained using QM-based electrostatic potentials on intact peptides. The 

final and crucially important component is the dihedral (torsion) correction terms, which modify 

the energy of the system as a function of rotation around bonds. These bond rotations control the 

flexibility of the biopolymer, and different corrections can alter barrier heights as well as the 

relative energies of various stable rotamers, directly influencing the sampled ensembles
8
.  

The physical motivation for the dihedral corrections is that the rest of the FF is purely 

classical, and therefore lacks quantum orbital effects such as the increased energy barrier for 

rotation around a double bond. In practice, these corrections are used broadly to empirically 

optimize force fields during training, accounting for quantum effects as well as other weaknesses 

in the simple model, such as lack of conformation-dependent polarization that could impact 

electrostatic interaction profiles, or even to remedy lack of agreement with experiments. In 

Amber and most other atomistic FFs, the dihedral correction is modeled as a simple truncated 

Fourier series with amplitudes and phases that are parameters in the FF. These parameters are 

optimized at the last stage in order to improve the agreement between training data and MM 
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properties calculated without the dihedral terms. Some FFs add one or more additional empirical 

adjustment steps to improve agreement with experiments. 

Importantly, these force fields rely on an implicit assumption that each term is independent, 

with no coupling between parameters for bonds, angles and dihedrals. This additivity assumption 

extends to the nonbonded pairs as well, and is a major source of efficiency in force field 

calculations. In reality, coupling exists to varying extents, and parameters for one component 

may depend on the conformations of other nearby functional groups. This is neglected in most 

current biomolecular force fields. Another important key assumption is transferability: that a FF 

trained on one set of molecules (typically small) will perform as well on different, perhaps much 

larger molecules. Transferability also applies to neglecting the coupling between parameters, 

since it is usually assumed that one set of parameters (for example, for rotation around a bond) 

will perform well for multiple conformations of neighboring groups. Since transferability is 

imperfect, one way to improve FF accuracy is to ensure that the training data more closely reflect 

the situations in which the parameters will be applied, and by implicitly accounting for any 

coupling with neighboring groups at least in a mean-field way. Choice of model systems is 

therefore crucial. Enabled by greater computer power, this has led to a trend away from fitting 

against QM data for small organic compounds
9-10

 to that for larger peptides.  

An important example is the protein backbone φ and ψ dihedral parameters that can alter the 

energy profiles for these rotations, and thus influence secondary structure preferences and loop 

conformations. These have been frequently revised over the years based on observations of 

secondary structure biases in prior models
11-16

. While early FFs used capped single amino acids 

(dipeptides) to train the backbone, our ff99SB
8
 FF used tetrapeptides

17
, allowing φ and ψ 
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parameters to be trained in a context of conformational diversity of neighboring amino acids in a 

longer peptide. The improvement was significant, and ff99SB has been widely adopted.  

Since that time, widespread use of ff99SB exposed weakness in some amino acid side chain 

dihedral parameters
18

, probably because they were carried over from ff99 which trained them 

against a limited set of energy minima for simple organic compounds
10

. In ff14SB
19

, we 

performed complete refitting of all side chain parameters using QM data for capped amino acids. 

An important update was the use of multidimensional QM conformational grid scans for every 

side chain, rather than fitting each rotatable bond separately. Likewise, fitting was done using 

both α and β peptide backbone contexts. Though it stopped short of explicit dihedral parameter 

coupling, this approach allowed implicit inclusion of coupling of rotational profiles to 

neighboring groups in a mean-field way, by fitting parameters for each bond rotational energy 

profile in the context of multiple conformations of neighboring groups, as was done for the 

backbone in ff99SB. ff14SB was a notable improvement; for example, a recent study
20

 of the 

ability of protein MD to reproduce high resolution experimental crystal data concluded that 

ff14SB performed best among all force fields tested, including several older Amber variants and 

even the empirically tuned CHARMM C36
21

.  

In addition to the weaknesses in side chain dihedral parameters, some studies also noted 

weaknesses in ff99SB backbone preferences. Several groups focused on empirically adjusting 

the ff99SB backbone parameters via comparison to experimental data such as NMR scalar 

couplings for very short peptides
22-23

, or amino acid helical propensities
18, 22

. Similar to these 

other groups, we also included in ff14SB a small empirical adjustment to ff99SB (using TIP3P 

water
19

) to improve agreement with NMR data for short alanine peptides. Empirical corrections 

can improve performance on training data but also can be problematic when extrapolated too far. 
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The relative scarceness of experimental data compared to the number of parameters in the FF 

leaves the empirical fitting problem severely under constrained. Also, the common target of 

NMR J coupling data is sensitive to the choice of Karplus parameters
24

, they are not equally 

sensitive to variations in φ and ψ, and the χ
2
 values typically used to score performance

25
 can be 

highly sensitive to small details in the energy landscape yet relatively insensitive to the large 

differences that are observed between force fields
26

. Fitting backbone parameters to helical 

propensities is also challenging; it was shown that updating side chain dihedral parameters had a 

substantial impact on the backbone helical tendencies of some amino acids
18

, perhaps because 

side chain positioning details may play a role in helicity by shielding backbone hydrogen 

bonds
12

, or due to side chain parameter changes modulating side chain entropy changes, which 

may influence helix formation
27

. Thus it is possible to erroneously adjust one part of the model 

(such as the backbone) to improve agreement with experiment, instead of fixing the more 

fundamental source of the error (e.g., the side chain rotamer energies). Designing or implicitly 

accepting cancellation of error can lead to models with unphysical and unwanted dependence 

between components, where one part cannot easily be improved (or even used) without exposing 

the compensating weakness in another. 

Another major challenge to empirical fitting against experiment is deconvolution of the solvent 

model from the solute FF, each of which may contribute inaccuracies that lead to deviation from 

experiment. This is complicated further when empirical adjustment creates dependence between 

solute and solvent models. Shell et al. showed that the best results for predicting small protein 

structures were obtained using the ff96 force field with the GB-OBC implicit solvent model, 

despite each having well-established deficiencies
28

. The CHARMM C22
29

 FF was trained using 

TIP3P water, and backbone refitting was needed to use a different water model
30

. ff14ipq
31

 was 
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developed with extensive training to TIP4P-Ew
32

 in the initial stages
31

, requiring refitting in 

ff15ipq
33

 to enable use with SPC/Eb water
34

. Moreover, weaknesses are apparent in studies of 

systems that sample diverse ensembles such as the unfolded states of proteins, or simulations of 

intrinsically disordered proteins (IDPs). This may well arise because of the vast number of nearly 

degenerate states, and the need for much higher accuracy than what is sufficient for simulating 

proteins in stable native basins. Currently, the challenge to FFs seems too great; for example, a 

recent study of IDPs found that the simulated ensembles depended dramatically on FF, but much 

less so on peptide sequence
35

. Piana et al. showed that the unfolded ensembles in their successful 

protein folding simulations were much more compact than expected from experiments
36

. 

Palazzesi compared simulations to NMR data, again finding generally poor agreement regardless 

of FF used
37

. In these and other cases, simulated ensembles are generally too compact. Several 

groups attempted to address the problem empirically by re-training backbone parameters against 

PDB coil libraries, and flattening energy landscapes
38-40

. Robustelli et al. carried out extensive 

refitting to improve the ability of ff99SB to model IDPs while retaining the ability to simulate 

folded proteins.
41

 

More recent IDP work has implicated overly weak water-protein interactions
24, 42-43

, consistent 

with other studies showing that protein-protein association in water is too favorable regardless of 

force field tested
44

. Best et al developed the ff03w model, empirically increasing the water-

protein dispersion interaction.
24

 Piana et al. developed the TIP4P-D water model, with 50% 

larger dispersion energies
43

, further adjusted later
41

. Both adjustments resulted in improved 

match to IDP experimental data such as Rg values inferred from SAXS and FRET. Recently, the 

Amber team’s new OPC 4-point explicit water model was shown to better reproduce liquid water 

properties than most other models.
45

 It also results in much less compact ensembles for IDPs.
46
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Such studies demonstrating that newer water models improve IDP behavior again highlight the 

dangers in empirically adjusting specific protein FF parameters to fix what may just be a 

symptom of a different problem. This weakens transferability, and emphasizes the value of 

independent development and validation of solute and solvent models. 

Despite the issues described above, current force fields clearly are good enough to have 

enabled many excellent biophysical simulation studies. In terms of simulating global structure of 

proteins of various sequences, protein force fields have improved with time
47

. Current force 

fields typically result in stable simulations of folded proteins, with many reports of good match 

to experimental solution NMR observables such as NOEs, RDCs and S
2
 order parameters. More 

challenging are studies that attempt to predict structure from sequence
48

. A particularly 

impressive achievement was the successful brute-force folding of ubiquitin in MD simulations
1, 

49
. We reported accurate folding via MD for 16 out of 17 diverse proteins up to 100 amino acids 

long
50

.  

Despite these successes, a growing number of studies have suggested that even after the recent 

updates to backbone and side chain parameters, as well as water models, the models still have 

significant limitations in protein simulations. There is a mounting consensus that current force 

fields do not accurately reproduce differences between backbone preferences of different amino 

acids. This is especially apparent in studies where the quantitative relative energies of basins are 

important, such as analysis of the effect of point mutations, or studies of flexible systems with 

many nearly isoenergetic minima. Pande et al. suggested 6 of 19 amino acids were outliers vs. 

NMR and should be re-optimized
47

. Best
18

 et al. and later, we reported
51

 that Amber does not 

accurately reproduce experimental
52

 amino acid specific behavior such as helical propensities, 

shown in Figure 1 for ff14SB used with TIP3P. Correlation is generally poor, with most amino 
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acids having similar helicity in simulation. In principle, nonbonded interactions should account 

for the impact of the side chain on backbone energetics (hereafter denoted “sequence 

dependence”), but weaknesses in the nonbonded function may limit the accuracy in modeling the 

short-range interactions that are responsible for backbone-side chain coupling. 

 

Figure 1. Helical propensities in ff14SB+TIP3P (Y) vs experiment
52

 (X) for amino acids (1 

letter codes). Values on the X-axis represent the data based on NMR and the reported standard 

deviations.
52

 Values on Y-axis represent the helical propensities fit against the combined 

trajectory (3.2 μs * 12), with error bars calculated via bootstrapping analysis (see Methods: 

Bootstrapping analysis on helical propensity). Black lines represent perfect agreement. Linear 

regression (red line) was performed against the data points, with R
2
 and slope quantifying the 

goodness of fit. 
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Importantly, alanine is an outlier in having its helicity significantly under predicted (below the 

diagonal line). This is concerning since alanine is used as the model system in all recent Amber 

protein force fields for fitting of backbone dihedral parameters that also are applied to the other 

amino acids (except Gly). CHARMM also uses the same alanine-based backbone map for all 

amino acids except Pro and Gly. The data clearly show that empirical correction of all amino 

acids using alanine helicity as a target would introduce a significant overall positive helical bias 

for the remaining amino acids.  

β-branched amino acids are not modeled correctly. Experimentally, steric clash between β-

branched side chains and the backbone carbonyl reduces helical propensity
52-53

. Troublingly, 

simulations in ff14SB show that β-branched Ile, Val and Thr all have higher or similar helical 

propensity than Ala, the reverse of the experimental trend (Figure 1). In high resolution 

structures of folded proteins, the same trend of backbone-side chain coupling is apparent
54

, 

where the helical basin is narrower in valine than alanine, along with a broader, flatter region at 

high ψ values corresponding to polyproline 2 (ppII) and β conformations as compared to alanine 

(Figure 2). It is challenging for force fields to reproduce these differences, and the alanine and 

valine MD Ramachandran landscapes are similar using ff14SB (see Results). These observations 

are further corroborated by solution NMR data; higher H
N
-H

α
 scalar couplings for Val dipeptide 

than Ala dipeptide suggest more structures along the β-ppII transition for valine than for 

alanine
55

, again not reproduced in the MD data (see Results). The situation is similar for 

CHARMM C36, where errors vs. NMR remained large for valine even though the force field 

was empirically adjusted to obtain a good fit for alanine
45

. Taken together, the results suggest 

that alanine may not be an ideal model for training other amino acids, in contrast to the central 

assumption in >20 years of Amber and CHARMM FF development.  
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Figure 2. Ramachandran sampling in PDB shown for  Ala (top) and Val (bottom) (using data 

from Lovell et al.
54

) Each contour line represents a doubling in population. Density is also shown 

as grids filled with light (no density) to dark (maximum density). Side histograms on each 

subplot represent independent distributions on φ and ψ. 

We previously developed empirical backbone corrections for some amino acids in order to 

improve residue-specific helical propensities
51

. Alternatively, Best et al. found that empirically 

enforcing the alanine backbone partial charges on all amino acids also resulted in improvement 
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for charged amino acids
18

, but this also may have been successful because it eliminated an 

inconsistency between using atom-specific partial charges and atom-type based dihedral 

parameters. Other recent work (for example, RSFF
38, 56-57

 and ff99IDPs/ff14IDPs
39, 58

) used PDB 

φ/ψ distributions to develop amino-acid specific empirical backbone parameters. However, in 

addition to the general problems with empirical fitting discussed above, these crystal data have 

significant limitations that prevent them from being used as an accurate source of 

thermodynamic training data (such as inconsistent and cryogenic temperatures, crystal packing 

effects, limited or noisy data outside low-energy basins, etc.). As a specific example, although 

the achiral glycine should have a fully symmetric φ/ψ energy profile, PDB-based distributions 

show significantly enhanced incidence of glycine in the positive φ region
54

, which would be 

reflected erroneously in force fields fit to these statistical distributions.  

Going beyond empirical adjustment requires insight into the physical weaknesses in the model. 

What is the source of this unsatisfactory sequence dependence, despite good reproduction of QM 

side chain rotational energy profile data
19

 in ff14SB? Speculation leads to several reasonable 

possibilities, including, but not limited to, lack of charge polarization of the backbone from the 

side chain (or weaknesses in the charge model overall), the inability of the current functional 

form to reproduce strong interactions between backbone and bulky side chains, or inaccurate 

empirical nonbonded scaling factors. Certainly using uncoupled cosine terms for backbone 

dihedrals limits the accuracy attainable even with ideal QM training data or extensive empirical 

adjustment.  The relative orientation of the two adjacent amides depends on both ϕ and ψ of the 

intervening amino acid, thus independent cosine terms may be insufficient at correcting the 

interaction energy or lack of polarization between these groups. 
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In this work, we revisit the ff14SB protein backbone description with an aim to improve the 

performance for amino-acid specific behavior discussed above. We hypothesize that several 

specific weaknesses in the ff99SB strategy may be dominant factors limiting accuracy. (1) 

Fitting only alanine data, and only at the gas-phase minima, poorly constrained the resulting 

energy landscape for many biologically relevant conformations
59

, or at locations of the slightly 

shifted φ/ψ minima sampled by other amino acids
54

. (2) The φ/ψ landscape is overly symmetric, 

arising from neglect of coupling in the simple cosine functional form. (3) Dihedral parameters 

are shared too broadly due to assignment by simple atom typing that does not discriminate amino 

acids. (4) Polarization was treated inconsistently in ff99SB and ff14SB, dating back to the 

original ff94 model. “Pre-polarized” Amber MM partial charges
60-61

 intended for aqueous 

solution simulations
62-63

 are used while fitting dihedral parameters against gas-phase QM data, 

thus forcing the rotational energy profiles back towards the gas phase profiles and thereby 

counteracting the intended effect of better modeling charge polarization.  

We describe here modifications to the protein backbone parameters that at least partially 

address these issues. We continue our previous philosophy for the Amber “SB” (Stony Brook) 

force fields, assuming that physics-based force field development can provide excellent models 

with good transferability beyond their training data. Different approaches also have merit, such 

as in CHARMM, where physics-based training is followed by iterative rounds of empirical 

adjustments that improve match to experimental data
21, 64

. The a99SB-disp model
41

 derives from 

our ff99SB, followed by extensive empirical refitting of torsion parameters, nonbonded pair 

interactions, atomic partial charges and water dispersion energetics in order to improve 

agreement with experiments. Likewise, the recent ForceBalance approach is a promising method 

to automate iterative improvement through iterative cycles of fitting and comparison to 
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experiment
65

. These adjustments can significantly enhance agreement with experiment, but the 

complex mapping of experimental observables to individual force field terms can also lead to the 

introduction of fortuitous (and non-transferable) cancellation of error between the various force 

field components. We attempt here to overcome the ff14SB weaknesses discussed above by a 

more self-consistent reconsideration of the physics-based training of protein backbone 

energetics, developing improved backbone parameters based on fitting to a wider variety of high-

level QM, and eliminating a series of inconsistencies in past fitting that are likely to have 

negatively impacted the resulting models.  

The first departure from ff14SB is that we fit coupled φ/ψ parameters using 2D φ/ψ 

conformational scans, followed by fitting the entire 2D QM energy surface. This will eliminate 

the problem of unconstrained energies outside the energy minima used to train ff99SB/ff14SB 

backbone parameters. This also explicitly accounts for coupling between these correction terms. 

As shown in Results, the correction profile needed to match the ff14SB MM to QM for the ψ 

rotation differs depending on the value of φ. In other words, in ff99SB/ff14SB, it is not possible 

to use a 1D correction profile to accurately reproduce QM energy profiles for ψ at all values of φ. 

This 2D “CMAP” approach was pioneered in the CHARMM force field
66

, and extended here. 

The CMAP approach was also used for backbone fitting in RSFF2+CMAP
57

, but in that case the 

free energy surface derived from PDB statistics was used as the fitting target, rather than QM 

data as we use here. Previously, the “CMAP” approach was employed by other Amber force 

fields as well. In ff99IDPs/ff14IDPs
39, 58

, the 2D energy profile was fitted against statistical data 

from PDB coil library. In ff12SB-cMAP
51

, only the minimum region in CMAP such as α basin 

and β basin were corrected by fitting to helical propensities and β strand population in MD. 
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The second difference from ff14SB is that we address the polarization inconsistency during 

dihedral parameter fitting. While fitting the entire gas phase surface using CMAPs would ensure 

sampling of energies for regions populated in solution, a significant problem arises during 

dihedral fitting when comparing in vacuo energies between QM and MM. The MM partial 

charges in most non-polarizable Amber models are traditionally fit to HF-level QM, which 

results in partial charges larger than expected in the gas phase, intending to mimic the higher 

dipoles induced in aqueous solution and avoid the need to explicitly include polarization in the 

FF calculation
62-63

. However, using these “pre-polarized” charges to compare to higher level QM 

providing gas phase conformation energies during dihedral fitting introduces error, and 

enforcing a match results in dihedral parameters that (at least partially) cancel out the effect of 

charge polarization. The ff03 Amber model addressed this by fitting new charges to QM 

calculations in low-dielectric organic solvent
67

, but the subsequent protocol for backbone 

dihedral fitting (also in organic solvent) resulted in erroneous double-counting of solvation 

effects
68

. The recent “ipq” force fields
31, 33

 addressed polarization inconsistency by using two 

independent charge sets, one for MD, fit to QM calculations that included a specific explicit 

water model
69

 that was used in MD simulations, while a second set of gas-phase partial charges 

was used during fitting dihedrals corrections to gas-phase QM rotational energy profiles. Our 

approach differs; we train backbone dihedrals using the same pre-polarized MM charges as used 

in MD, but using continuum aqueous solvation rather than gas-phase energies, and with 

reference QM data also in aqueous implicit solvent to resolve the gas/aqueous phase 

inconsistency (following precedent in RNA parameter fitting
68, 70

). An additional benefit is that 

the resulting dihedral parameters also can absorb conformation dependent changes in solute 
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polarization that are not reproduced in a fixed-charge model
71

 (also absent in the “ipq” models 

since dihedral fitting is done in the gas phase
31, 33

).  

More accurate reproduction of the QM training surfaces and resolving polarization 

inconsistencies allow us to undertake the third difference from ff14SB, that of exploring amino-

acid specific correction maps. Amber already used separate parameters for proline and glycine, 

and finer differentiation is a reasonable next step. In our experience, optimizing amino-acid 

specific backbone parameters using simple uncoupled cosine terms (as done by other groups
33, 38

) 

is unlikely to result in significant improvement for ff14SB since these are not able to accurately 

reproduce the QM training data even for a single amino acid (see Results). For example, despite 

fitting sets of uncoupled cosine parameters for several groups of amino acids, simulations using 

the ff15ipq
33

 force field show reduced accuracy for β-branched amino acids
33

. 

Alanine and valine (together with other β-branched isoleucine and threonine) are 

conformational outliers, justifying separate CMAP treatment. Alanine is very helical, whereas 

valine has a very flat φ distribution according to PDB φ/ψ distributions (Figure 2). Many 

residues exhibit conformational preferences between those of alanine and valine. Leucine is 

likely a better model for most amino acids (since all but Ala and Gly include a γ-carbon). We 

therefore used the CMAP fit to Leu for several other amino acids, including those with aromatic 

rings (Phe, Trp, Tyr) and nonpolar but non-β branched side chains (Met) and the three 

protonation states of His (His
+
, His

δ
, His

ε
). Polar or charged side chains (Ser, Cys, Thr, Asp

-
, 

Asp, Asn, Glu
-
, Glu, Gln, Arg

+
, Lys

+
) all received individual CMAPs, Pro received its own 

CMAP and the β-branched Ile used the CMAP fit to the similar Val. Other force fields also fit 

different parameters for different amino acids. For example in Amber fb15
72

, full scanning over 

φ/ψ and χ1/χ2 dihedrals were performed for each amino acid, then the 4D φ/ψ/χ1/χ2 grid was 
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mapped onto 2D φ/ψ grid by searching for lowest energy side chain conformation at each φ/ψ. 

Then, uncoupled (1D) cosine functions were used for each dihedral φ, ψ, χ1 and χ2, with all 

phases and amplitudes fit simultaneously. Here, we fit 2D CMAPs to φ/ψ energy maps using a 

single rotamer for each amino acid, in order to avoid transferring errors in the χ energy profiles 

into the φ/ψ correction, as could happen if the φ/ψ grid points also vary in χ values. 

Finally, we examine possible dependence of the backbone CMAP on side chain rotamer. In 

ff99SB and ff14SB backbone training (also CHARMM
21

), the coupling between backbone and 

rotamer was avoided by using the ff94 approach of Ala as a model for all other amino acids, thus 

ignoring any possible backbone-sidechain coupling correction. To account for rotamer 

dependency in RSFF2+CMAP
57

, the 2-dimensional ϕ/ψ CMAP was supplemented by the use of  

additional  two-dimensional free energy surfaces including ϕ/χ1 and ψ/χ1. Here, we find that the 

2D CMAPs that we fit to QM data in solution, in combination with the high-quality side chain 

energy profiles from ff14SB, result in a model that is reasonably transferable to side chain 

rotamers not included in the training data. 

Extensive MD simulations (a total of ~5 milliseconds in explicit water) were performed to 

validate the performance of the ff19SB model. We show below that ff19SB, using amino-acid 

specific training against QM data with solvent polarization, reproduces the amino-acid 

differences in Ramachandran maps much better than ff14SB or other older Amber models. For 

example, the reproduction of amino-acid specific helical propensity is significantly improved 

with ff19SB. We also show that the QM-based ff19SB is in reasonable agreement with 

experiments when combined with an accurate solvent model, while ff14SB performs poorly with 

the same solvent model and relies on cancellation of error with the less accurate TIP3P model in 

order to reproduce properties such as the helical content a Baldwin-type peptide. We conclude 
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that an inherent underestimation of helicity is present in ff14SB, which is (inexactly) 

compensated by an increase in helical content driven that is likely driven by the TIP3P bias
41-42, 

73-75
 toward overly compact structures. The improvements in modeling helicity with ff19SB do 

not appear to result in less accurate performance on β systems. With ff19SB, the overall 

excellent performance of ff14SB and ff99SB in NMR order parameter reproduction is also 

generally maintained with even smaller RMSD values relative to experimental structures. Future 

work will examine the performance of ff19SB on IDP model systems. 

 

Methods  

Structure preparation & simulations 

Unless noted otherwise, all crystal and NMR structures were downloaded from the PDB
76

 at 

www.rcsb.org. The non-native structures used for simulations were built via the LEaP module of 

AmberTools in the Amber v16 software
7
. Helical and extended conformations are defined as (φ, 

ψ) = (-60°, -45°) and (φ, ψ) = (-180°, -180°) In explicit solvent MD simulations, TIP3P
77

, OPC
45

, 

OPC3
78

, TIP4P-Ew
32

, SPC/Eb
34

 and fb3
79

 solvent models were used to solvate systems as noted. 

A truncated octahedron periodic box was used for all simulations. Implicit solvent MD 

simulations with GBneck2 parameter set
80

 of the GBneck solvent model
81

 and ff14SB
19

 were 

performed to generate additional initial structures. ff14SB
19

, ff15ipq
33

, fb15
72

 and ff19SB were 

used for explicit solvent MD simulations as noted. System-specific details are discussed below 

with additional details in Table S1.  

Dipeptides 

Acetyl and N-methyl capped dipeptides of the natural amino-acids (Ace-X-Nme) were used for 

force field training and testing. In training, 16 amino acids (including two protonation states of 
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Asp and Glu, but excluding Ile, Trp, Tyr, Phe, Met and His) were fully scanned in backbone 

dihedral space using implicit solvation (see Structure preparation & simulations and 

Geometry scanning). In testing, helical and extended conformations for all natural amino acids 

(including two protonation states each for Glu and Asp side chains, and three protonation states 

for His side chain) were used as initial structures in MD simulations. The number of explicit 

water molecules was equalized across all dipeptide systems and solvent models (Table S1).This 

was achieved by adjusting the value of buffer distance until desired number of water molecules 

was obtained. Four combinations including ff14SB
19

+TIP3P
77

, ff14SB
19

+OPC
45

, 

ff19SB+TIP3P
77

 and ff19SB+OPC
45

 were tested for dipeptides. 

Ala5 

Ala5 with a free N- and protonated C-terminus was used in simulation, corresponding to pH=2 

used in the NMR studies
55

 (see Parameter derivation for protonated C-terminal Ala). Both 

helical and extended conformations were used as initial structures for MD simulation. The 

number of water molecules was equalized across all runs (Table S1). Four combinations 

including ff14SB
19

+TIP3P
77

, ff14SB
19

+OPC
45

, ff19SB+TIP3P
77

 and ff19SB+OPC
45

 were tested 

for Ala5. 

A4XA4 and A9XA9 peptides 

Acetyl and NH2 capped polypeptides (matching pH=7 in NMR
52

) of the 20 natural amino-

acids (Ace-A4XA4-NH2 where X denotes the amino acid tested) were used to test amino-acid 

specific helical propensities. Two independent runs of 800 ns each starting from the helical and 

extended conformations were initially performed with ff14SB
19

+GBneck2
80

 (then extended to 2 

μs for calculating helical propensities), and cluster analysis (see Cluster analysis) was carried 

out on the combined trajectory. Cluster centroids from the top four clusters, together with helical 
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and extended conformations were then selected as initial structures for MD simulations in 

explicit solvent. Each of these six initial structures seeded 2 independent runs each with different 

initial velocity assignment (using ig=-1 in Amber). Therefore, a total of 12 initial states were 

simulated for 3.2 μs each, in each explicit solvent (~4000 water molecules for both OPC and 

TIP3P runs, see Table S1, for each one of the 20 peptide sequences, for a total of 768 μs for each 

force field + solvent model combination. Helical propensities were calculated using eight 

FF+water combinations including ff14SB
19

+TIP3P
77

, ff14SB
19

+TIP4P-Ew
32

, ff14SB
19

+OPC
45

, 

ff19SB+TIP3P
77

, ff19SB+TIP4P-Ew
32

, ff19SB+OPC3
78

, ff19SB+OPC
45

, ff15ipq
33

+SPC/Eb
34

 

and fb15
72

+fb3
82

.  

Acetyl and NH2 capped polypeptides of the 20 natural amino-acids in a longer peptide (Ace-

A9XA9-NH2 where X denotes the amino acid tested) were used to test the sensitivity of the 

helical propensities to chain length. Two independent runs, starting from helical and extended 

conformations, were initially performed for 800 ns with ff14SB+GBneck2, and cluster analysis 

(see Cluster analysis) was carried out on the combined trajectory. Cluster centroids from the top 

four clusters were then selected as initial structures for additional MD simulations in GBneck2. 

Each of these six initial structures seeded 2 independent runs with different initial velocity 

assignment (using ig=-1 in Amber). Therefore, a total number of 12 initial states were simulated 

in ff14SB
19

+GBneck2
80

 for each one of the 20 Ace-A9XA9-NH2 systems, and each simulation 

was 2 μs long, for a total of 480 μs. 

K19 helical peptide 

Consistent with our previous work
19, 83

, the sequence of Ace-GGG(KAAAA)3K-NH2 was 

chosen to validate parameter quality in folding helices. Since it was unfeasible to run long 

simulations starting from fully extended conformations that require very large numbers of water 
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molecules to solvate, a fully extended conformation was not selected for explicit solvent 

simulations. For instance, 12000 water molecules would be needed to solvate a fully extended 

conformation of K19 with 8 Å buffer. Instead, several semi-extended initial conformations were 

generated. Two independent runs starting from helical and extended conformations were run for 

800 ns with ff14SB
19

+GBneck2
80

, and clustering analysis (see Cluster analysis) was performed 

on the combined trajectory. The cluster centroids (Figure S1) from the top 1
st
 and 2

nd
 were 

disregarded because both were partially helical with 2.7 Å and 4.4 Å RMSD (backbone C, N, CA 

atoms) referenced to a fully helical conformation. Therefore, the centroids from top 3
rd

, 4
th
, 5

th
 

and 6
th
 clusters were selected as semi-extended and immersed in explicit water. The number of 

water molecules was equalized across all runs (Table S1). Each initial structure was used for 2 

independent runs with random initial velocity assignment (ig=-1 in Amber). Therefore, a total of 

10 initial states were simulated with each force field + explicit solvent combination, and each 

simulation was 3.2 μs. Three combinations including ff14SB
19

+TIP3P
77

, ff14SB
19

+OPC
45

, and 

ff19SB+OPC
45

 were tested for K19. 

CLN025 hairpin  

CLN025 (PDBID: 2RVD
84

, 
+
H3N-YDPETGTWY-COO

-
) is an engineered fast-folding hairpin 

that is a thermally optimized variant of Chignolin
85

. The native conformation was chosen as the 

5
th
 conformation in the NMR ensemble

84
 since that conformation was closest to the average of 

the NMR ensemble. A fully extended conformation of the same sequence was also used, and 4 

independent runs (ig=-1 in Amber) were performed with an explicit solvent for both native and 

extended conformations. Each simulation was 7.2 μs long and the number of water molecules 

was equalized across all runs (Table S1). Three combinations including ff14SB
19

+TIP3P
77

, 

ff14SB
19

+OPC
45

, and ff19SB+OPC
45

 were tested for CLN025. A native cutoff of 1.5 Å was 
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chosen because the highest population peak at low RMSD across all force field + solvent models 

ends near 1.5 Å (Figure S2).   

Folded proteins 

Three folded proteins were simulated for comparison to NMR-based backbone dynamics 

measurements. First was the third Igg-binding domain of protein G (GB3). The native structure 

was defined from a liquid crystal NMR structure (PDBID: 1P7E
86

). Second was Ubiquitin (Ubq), 

with the native structure defined from a crystal structure (PDBID: 1UBQ
87

). Third was hen egg 

white Lysozyme (HEWL), with the native structure defined from a crystal structure (PDBID: 

6LYT
88

). Four independent runs with random initial velocity assignment (ig=-1 in Amber) were 

performed for each system in explicit solvent. Each simulation was 200 ns long and the number 

of water molecules was equalized across runs for each system (Table S1). These folded proteins 

were tested using three combinations including ff14SB
19

+TIP3P
77

, ff14SB
19

+OPC
45

, and 

ff19SB+OPC
45

. 

Geometry scanning  

Backbone geometry scans were performed to generate structures for parameter training. All 

scans were carried out via the LEaP module of AmberTools in Amber v16 software
7, 89

. All 16 

dipeptides (see Dipeptides) were 2D scanned on φ and ψ dihedrals over ranges of -180° to 165° 

with an interval of 15°. For proline dipeptide, structures were limited to -180° to 120° on φ in 

order to exclude structures with excessive ring strain. For dipeptides containing one or more 

heavy atom χ dihedrals (Val, Leu, Ash, Asp
-
, Asn, Glh, Glu

-
, Gln, Lys

+
, Arg

+
, but excepting Ser, 

Cys and Thr, see below; Ash and Glh are neutral Asp and Glu, respectively), χ dihedral values 

were initialized to the most populated rotamer for that amino acid, according to Lovell’s rotamer 

library
54

. 
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Molecular mechanics (MM) optimization and energy calculations 

For Cys and Met, Lennard-Jones (LJ) parameters were taken from GAFF2 for sulfur and 

hydrogen (in -SH and –S-).  This was done to keep consistent with the most recent LJ 

parametrization on these atoms performed by Wang et al
90

.  

Unless otherwise noted, use of the term “GBSA” in this paper denotes the combination of 

GBneck2 (igb=8 in Amber) and SASA (gbsa=1 in Amber). 

Dipeptide structures were minimized with restraints after geometry scanning. MM 

optimization and energy calculations were performed with Amber v16
7, 89

 using ff14SB
19

 and 

GBneck2
80

 implicit solvent model with the mbondi3 radii set
80

 for polar solvation and SASA-

based nonpolar solvation
91

 .  

Dipeptides taken from geometry scanning were minimized using ff14SB
19

 and GBSA 

including restraints on φ and ψ values with harmonic force constant of 1000 kcal mol
-1

 rad
-2

.  All 

χ dihedrals were relaxed during minimization without restraints, except Ser, Cys and Thr, for 

which the χ2 dihedral (defined as CA-CB-OG-HG for Ser, CA-CB-SG-HG for Cys and CA-CB-

OG1-HG1 for Thr) was restrained (10 kcal mol
-1

 rad
-2

) to 165° to prevent the hydroxyl group 

(O-H bond) from approaching too closely to the backbone amides during minimization. As we 

noted for ff14SB
19

, this was done to avoid incorporating into the backbone dihedral parameters 

any difference between the quantum mechanical (QM) and MM models in the short-range 

potential between side chain and backbone. Our strategy assumes that the largest contribution to 

rotamer dependency is errors in the MM short-range nonbonded model, which may be present 

for backbone conformation using a rotamer with steric clashes or strong electrostatic 

interactions. If correction to these errors were to be incorporated into the backbone parameter for 
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that φ/ψ grid point, it consequently would be applied for conformations sampling the same φ/ψ 

values but with different rotamers that lack these inaccurate interaction energies.  

We adopted the strategy of initializing all structures on the grid at the same rotamer 

conformation, then minimizing with backbone restraints to relax the rotamer to a local minimum. 

The rationale for using a single initial rotamer for the entire φ/ψ grid scan is to reduce the 

likelihood of transferring any errors in the ff14SB side chain rotamer energy profiles to the 

CMAP (which can occur if neighboring grid points also differ significantly in χ dihedral values). 

The same relaxed rotamer was used in the QM calculations (discussed below).  

Structures were minimized for a maximum of 10,000 cycles in ff14SB+GBSA with no cutoff 

on non-bonded interactions. Steepest descent was employed for the first 10 cycles in the 

minimization and conjugate gradient for the following cycles. Single point energies were 

calculated for the MM-optimized structures using ff14SB00+GBSA. ff14SB00 is defined as the 

original ff14SB
19

 force field with the amplitudes of dihedrals sharing the same central two atoms 

with φ and ψ (C-N-CA-C, C-N-CA-CB, N-CA-C-N, CB-CA-C-N, HA-CA-C=O) set to zero 

(Table S2).  

CMAP fitting groups 

A total of 16 CMAPs were fit and then applied to the 20 natural amino acids with several 

having alternate protonation states (Table S3). Ala, Gly, Pro were fit separately because the 

allowable regions in Ramachandran plot according to PDB are notably different from each 

other.
92

 Ser, Cys and Thr were fit separately from others because of the proximity of the polar 

group to the backbone, and from each other because the polarity of their side chains is different 

(Ser vs. Cys) or the side chain β-branching structure is different (Ser vs. Thr). Val CMAP was fit 

and applied to both Val and Ile since Val and Ile are the only two amino acids having β-branched 
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non-polar side chain. Arg
+
, Lys

+
, Asp

-
,
 
Ash, Asn, Glu

-
, Glh and Gln were fit separately because 

the charge state is different (Arg
+
 and Lys

+
 vs. Asp

-
 and Glu

-
), the polarity of side chain is 

different (Arg
+
 vs. Lys

+
, Asp

-
 vs. Ash vs. Asn, Glu

-
 vs. Glh vs. Gln), or the length of side chain is 

different (Asp
-
 vs. Glu

-
, Ash vs. Glh, Asn vs. Gln). Leu CMAP was fit and applied to long non-

polar and non-charged side chains including amino acids with aromatic rings (Phe, Trp and Tyr), 

Met, Cys in disulfide bonds (Cyx) and Cys interacting with metal (Cym). Leu CMAP was also 

applied to the three protonation states of His (His
+
, His

ε
, His

δ
).  

CMAP fitting 

A CMAP is defined by a 24*24 grid that is evenly spaced (15°) in φ/ψ dihedral space, the 

same spacing as used in C22/CMAP
93

, C36
23

, C36m
94

 and RSFF
38, 56-57

 force fields. At each grid 

point, the energy Ucmap(φ, ψ)  corresponds to the following: 

𝑈𝑐𝑚𝑎𝑝(𝜑, 𝜓)  = 𝐸𝑄𝑀
𝑔𝑎𝑠 + 𝐸𝑄𝑀

𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝐸𝑄𝑀
𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 − (𝐸𝑀𝑀

𝑓𝑓14𝑆𝐵00 + 𝐸𝑀𝑀
𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛) (1), 

where 𝐸𝑄𝑀
𝑔𝑎𝑠

 represents gas-phase QM energy, 𝐸𝑄𝑀
𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

represents the contribution from 

solute-solvent polarization from QM solvation and 𝐸𝑄𝑀
𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 represents the remaining specific 

solvation effects in QM. 𝐸𝑀𝑀
𝑓𝑓14𝑆𝐵00

 represents MM energy calculated in ff14SB00 (Table S2) 

using pre-polarized charges, and 𝐸𝑀𝑀
𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 represents MM solvation energy calculated in GBSA. 

In practice, 𝐸𝑄𝑀
𝑔𝑎𝑠

, 𝐸𝑄𝑀
𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

 and 𝐸𝑄𝑀
𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 cannot be separated since the solute electron 

density is evaluated self-consistently with the solvent polarization represented in a reaction field.  

In Amber, the bicubic spline function is fit once against the 24*24 grid values of the CMAP, 

and is later used to interpolate MM energy at any arbitrary φ/ψ dihedral. The bicubic spline 

function for each residue is as following: 

𝑓(𝜙, 𝜓) =  ∑ ∑ 𝑎𝑖𝑗𝜙𝑖𝜓𝑗3
𝑗=0

3
𝑖=0  (2), 
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where ϕ and ψ are dihedral values in radians, and aij are the coefficients of the bicubic spline 

function that are solved from a set of linear equations derived from values at the 4 corners of the 

grid cell. The resulting CMAP forces are calculated by the chain rule and added to the total 

forces
95

. The CMAPs are intended to be used as direct replacement for the old cosine-based 

dihedral terms in ff14SB.  

QM energies in solution 

To calculate 𝐸𝑄𝑀
𝑔𝑎𝑠 + 𝐸𝑄𝑀

𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝐸𝑄𝑀
𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 (Equation 1), we used the SMD solvent model 

that includes both polar and nonpolar solvation components
96

. The polar component uses the 

integral-equation-formalism polarizable continuum model (IEFPCM)
97

, where the solute cavity 

is defined through superposition of atom-centered spheres with reparametrized  “intrinsic radii”.  

The non-polar component is a product of the solvent-accessible surface area (SASA) and the 

surface tension, which is a function of several element-specific parameters. These empirical 

parameters for effective radii and surface tension were iteratively optimized to reproduce 2346 

solvation free energies of both neutral solutes and ions
96

. In the original work
96

, the authors 

concluded that among various QM theories used in their parameter fitting, the DFT method 

M05-2X
98

 yielded the best performance. Taking these results into consideration, particularly 

performance for amides, we selected the hybrid functional M05-2X with basis set 6-311G** 

together with SMD to compute the total solvation energy in QM. In the original paper
96

, 6-

31+G** was shown to have smaller mean unsigned error in aqueous solvation free energy for all 

tested molecules, including four amides, compared to other basis sets such as MIDI!6D, 6-31G* 

and cc-pVTZ. The diffuse functions in 6-31+G**, however, cause convergence issues in some of 

our calculations where the geometries are far from equilibrium. Instead, we use the comparable 
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6-311G** basis set. Based on our results, M05-2X/6-311G** is reasonably accurate relative to 

MP2/cc-pVQZ at reproducing relative energy for Ala dipeptides in gas phase (Figure S3). 

QM optimization and energy calculations 

QM calculations were performed with Gaussian 09
99

. Geometry optimizations and single point 

energy calculations were performed on the 16 dipeptides at the M05-2X/6-311G**/SMD level of 

theory
98

. Grimme’s dispersion correction with the original D3 damping function
100

 was used to 

correct for long-range dispersion. The solvation environment was represented as a self-consistent 

reaction field using SMD
96

 with consideration of both polar and nonpolar solvation energy 

components.  

Very tight optimization convergence criterion was used to generate data for fitting. To 

maintain the structure on the φ/ψ grid, one of the dihedrals sharing the same central two atoms 

with φ, and one dihedral sharing the central two atoms with ψ were restrained to the values from 

the structures taken from the last step of MM optimization. In order to avoid inclusion of errors 

in the χ energy profiles into the QM-MM energy difference used for CMAP fitting, we also 

restrained one of the dihedrals for each χ dihedral to the value from the last step of MM 

optimization (see Molecular mechanics (MM) optimization and energy calculations) (details 

on restrained dihedrals provided in Table S4).  

Parameter derivation for protonated C-terminal Ala 

Following the original RESP method for peptide partial charge assignment
10, 63

, new charges 

were trained for Ala with acetylated N-terminus and protonated C-terminus. Helical and 

extended conformations were used for RESP fitting. The partial charges on all atoms except the 

–COOH group were restrained to the charges from ff94
62

; –COOH group charges were refit via 

RESP. QM calculation was performed with Gaussian 09
99

.  HF/6-31G* was used for geometry 
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optimization. MK
101-102

 population analysis was performed on the optimized geometry. 

Antechamber, espgen and residuegen as implemented in Amber v16
89

 were used in RESP fitting.  

The resulting atomic charges are listed in Table S5. The –COOH functional group in the 

protonated C-terminal Ala was assigned the same atom types as –COOH in side chains of Alh or 

Glh, thus sharing existing bonds, angles, dihedral and LJ parameters. When simulating a system 

with a protonated (uncapped) C-terminal Ala in ff19SB, the ff14SB parameters were applied to 

the C-terminal residue without application of a CMAP due to lack of C-terminal amide.   

MD simulations  

The following methods were used for all MD simulations unless otherwise noted. Bonds to 

hydrogen atoms were constrained with the SHAKE algorithm
103

 using a geometrical tolerance of 

0.000001Å. The direct space non-bonded interaction cutoff was 10.0 Å for explicit solvent 

simulations and 9999.0 (no cutoff) for implicit solvent simulation. Long-range electrostatic 

interactions in explicit solvent were calculated via the particle mesh Ewald (PME) approach
104

. 

There were a total of 9 steps of equilibration in both implicit and explicit simulations (see SI: 

MD equilibration).  For production runs, the time step was increased to 4 fs using the hydrogen-

mass repartitioning method implemented as described previously
105

, and explicit solvent 

simulations were changed to the NVT ensemble (ntb=1, ntp=0 in Amber). 

Cluster analysis  

Unless noted otherwise, cluster analysis was performed on the combined trajectories starting 

from helical and extended conformations. The hierarchical agglomerative (bottom-up) approach 

was used with average linkage (defined by RMSD of C, N and CA atoms) to generate a 

maximum of 10 clusters using default settings in Cpptraj
106

. This was performed to divide the 

trajectory into 10 clusters without setting a threshold on how similar the structures are to each 
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other within a cluster. The representative structures extracted from these clusters were used as 

initial conformations in independent MD runs to check convergence.  

RMSD calculations 

Unless otherwise noted, all RMSD calculations were done on backbone C, N and CA atoms 

via Cpptraj
106

. In all cases, terminal residues and capping groups on termini were neglected.  

Helical propensity  

Following the Best et al.
22

 protocol of implementing Lifson-Roig model
107

 for computing 

helical propensities, we explored the helical propensities of each amino acid in the context of the 

sequence Ace-A4XA4-NH2 to compare to experimental data
52

. This model measures the 

equilibrium properties of coil-to-helix transitions: three states are defined: coil, start/end of the 

helix, and within a helix. Their relative weights are 1, vi and wi, respectively. The start/end of the 

helix is defined when residue i is in the helical region but either of its two adjacent residues is 

not in the helical region. The residue within a helix is defined when residue i and its two adjacent 

residues are all in the helical region. Everything else is considered to be random coil within the 

model. A residue is considered helical if inside the α region using the basin definition in Table 

S6. The sensitivity to this definition was tested by calculating helical propensity with a wider 

range definition (Table S6 and Figure S4).  

Following Best et al.
22

, the partition function for the blocked peptide of length N (N=9) is 

defined as: 

𝑍 = (0 0 1) ∏ 𝑀𝑖  (0 0 1)𝑇𝑁
𝑖=1 , where 𝑀𝑖 = |

𝑤𝑖 𝑣𝑖 0
0 0 1
𝑣𝑖 𝑣𝑖 1

| (3), 

The log-likelihood that residue i will be assigned a helical propensity parameter wi is given by:  

𝑙𝑛(𝐿)  = ∑ 𝑁𝑤,𝑖𝑙𝑛(𝑤𝑖)𝑖 + ∑ 𝑁𝑣,𝑖𝑙𝑛(𝑣𝑖)𝑖  − 𝑁𝑘𝑙𝑛(𝑍)  (4), 
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where vi and wi are the parameters for fitting, Nk is the total number of frames in the 

simulation, Nw,i and Nv,i are the total number of times in the simulation that residue i is within a 

helix and start/end of a helix, respectively. More specifically, Nw,i is incremented if residue i is 

within a helix and Nv,i is incremented if residue i is start/end of a helix. The subscript i indicates 

the amino acid (Ala, Val, Leu, etc). The model parameters (v and w), and their distributions, 

were optimized by performing genetic algorithm following the protocol of Perez et al.
51

 to 

maximize the objective function, ln(L), which maximized the likeliness of residue i being 

assigned to specific v and w. Mutation and crossover moves were performed to change ln(wi) and 

ln(vi), with a rate of 0.3 and 0.7 respectively. A total of 1000 genetic optimization cycles were 

performed to yield specific v and w for residue i. vala and wala were initially evaluated for all Ala 

in the capped A4AA4 peptide, then vi and wi for X were evaluated in capped A4XA4 peptide with 

v and w parameters for Ala being fixed to the values of previously optimized vala  and wala. 

Histidine was excluded because the imidazole protonation state (δ, ε or both) is difficult to 

assign, and the reported experimental scales for 20 natural amino acids vary the most for His, 

with it being the least helical from one experimental scale but almost in the middle of the helicity 

from another 
52, 108

 For instance, Pace and Scholtz
108

 summarized a helical propensity scale based 

on NMR measurements of helix propensity from 11 systems, including both proteins and short 

peptides, at different pH values and temperatures. All helical propensities were reported in ΔΔG 

relative to Ala (0 kcal/mol, the most helical) and normalized by setting Gly=1 kcal/mol, the least 

helical. In that report, His exhibits a value of 0.61±0.11 (error bar calculated from 13 reported 

measurements) averaged across systems and protonation states (estimated based on experimental 

pH). Specifically, for neutral His, the helical propensity is 0.56±0.07 (uncertainty calculated 

from seven reported measurements), and for the protonated His
+
, the helical propensity is 
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0.66±0.10 (uncertainty calculated from six reported measurements). This value is much lower 

(closer to Ala, meaning more helical) than several other amino acids including Asn, Thr, Cys and 

Asp. However, according to the NMR data
52

 (reported as helical propensity w instead of ΔΔG), 

His is the least helical along with Gly (see Table S7). These NMR data are generally consistent 

with Pace and Scholtz except for His (Figure S5). Due to these uncertainties, we decided to 

remove His from the helical propensity comparisons in Figure 9. The helical propensity data 

(from both NMR and MD) of all including His are provided in Table S7 and Table S8. 

Bootstrapping analysis on helical propensity 

In order to quantify the uncertainty of the computed w, bootstrapping analysis was performed 

for each system. When the sample size is insufficient for straightforward statistical inference, 

bootstrapping provides a way to account for the distortions caused by a specific sample that may 

not be fully representative of the population. First, a combined trajectory from 12 independent 

runs of each A4XA4 (3.2 μs for each run) was used to fit the v and w for that X. Second, the 

combined trajectory was split into 10 segments with same length. Third, 50 times of resampling 

with replacement were done on the 10 sub-trajectories. This step generated 50 trajectories with 

the same length of the initially combined one (3.2 μs * 12) but with some segments repeated. 50x 

resampling has been suggested to lead to reasonable standard error estimates
109

. Lastly, we fit the 

v and w parameters with each of the 50 trajectories respectively and calculated the standard 

deviation of the 50 resulting w values for each amino acid. According to the distribution of the 

sampled w parameters (Figure S6), all amino acids have a high peak and a narrow range on w 

which suggests good quality sampling and precise estimates of helical propensity. 

NMR scalar coupling calculations 
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Following Best et al.
25

 and our previous work
110

, scalar couplings were calculated from 

simulations using Karplus relations
111

 and the “Orig parameters”
112

 also adopted by Graf et al.
55

. 

To quantify the discrepancy between experimental scalar couplings and those calculated from 

simulation, χ
2
 error was defined in Best et al.’s work

25
 and also here as 

𝜒2 =  𝑁 −1 ∑ (〈𝐽𝑗〉𝑠𝑖𝑚 − 𝐽𝑗,𝑒𝑥𝑝 )2 𝜎𝑗
2⁄𝑁

𝑗=1  (5) 

where N is the total number of scalar coupling types,  <Jj>sim is the averaged scalar coupling 

from the simulation for scalar coupling type j. Jj,exp is the NMR data for type j. σj is the estimated 

systematic error of the Karplus equation for type j adopted by both Best et al.’s work
25

 and our 

previous work
110

. Precision of χ
2
 is estimated as half the difference of χ

2
 calculated from two 

simulations starting from either helical or extended conformation. For dipeptides, Table S9 lists 

3
JHNHA data and an estimated systematic error of 0.91 was used in the χ

2
 calculation

25, 110
. For 

Ala5, Table S10 lists all scalar coupling types and the corresponding systematic errors
19

.  Since 

the NMR data
113

 were measured at pH=4.9, side chains for Arg, Lys and His were modeled in 

protonated state. For Glu and Asp, both deprotonated and protonated states were simulated, and 

the error was reported as a weighted average value. Constant pH simulations were performed to 

obtain the appropriate ratio of protonated state versus deprotonated state respectively.  

Constant pH simulation 

Constant pH simulations of 800 ns with TIP3P
77

 and OPC
45

 explicit solvent were performed 

on the capped dipeptide forms for the titratable residues Glu and Asp. Initially, these titratable 

residues were assigned to be protonated, and the state change was attempted every 100 MD steps 

through Monte Carlo approach using a Generalized Born implicit solvent model (igb=2)
114

 which 

was the model used to parameterize the reference compounds in constant pH simulation
115

. 

Following published protocol, the intrinsic Born radii of carboxylate oxygen atoms were shrunk 
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in order to reduce artifacts arising from including all four alternate hydrogen atom positions in 

the GB descreening calculation.
115

 200 steps of solvent relaxation dynamics (in which the solute 

was held fixed) were performed before resuming simulation if any protonation states were 

changed
115

. The solvent pH value was set to 4.9 in agreement with the NMR experiment
113

. The 

rest of the input was retained from the standard MD protocol described above.  

These constant pH simulations have limitations, such as using an older GB model
114

 (igb=2) 

for reference compound energy, and neglect of updating dihedral parameters when protonation 

state switches
115

. Therefore, the constant pH simulations were only used to estimate the 

percentage of protonation states for titratable residues, and the sampled ensembles were not used 

directly for χ2
 analysis. The χ

2
 analysis was performed on the combination of protonated and 

deprotonated trajectories in explicit water, weighted by the ratio of protonated state versus 

deprotonated state.    

NMR order parameters 

The ability of a force field to model local dynamics accurately in well-folded proteins in 

solution was examined by comparing to NMR experimental backbone NH S
2
 order parameters 

for GB3
86

, ubiquitin
87

 and lysozyme
88

. We adopted the model-free approach originally proposed 

by Lipari and Szabo
116

 and used iRED
117

 as implemented in Cpptraj. iRED is based on a 

covariance matrix analysis of inter-nuclear vector orientations, represented by spherical 

harmonics, extracted from MD simulations. For this analysis, we averaged iRED results 

calculated for windows of length five times the tumbling correlation time (τc), which was 

suggested to best reproduce the model-free S
2
 order parameters

118
. Thus, window sizes of 2 ns, 4 

ns and 8 ns were used for GB3, ubiquitin and lysozyme respectively, in agreement with previous 

work
119-120

. The uncertainties in the computed S
2 
were calculated by taking the standard deviation 
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from four independent MD runs. The mean absolute difference (MAD) is computed between 

theoretical and experimental S
2
 averaged over all residues.  

Statistical analysis of PDB data 

To compare the φ/ψ distributions from simulation against PDB data, we used Lovell’s rotamer 

library
54, 121-122

 of 7957 high-resolution, quality-filtered protein chains to generate the PDB-based 

φ/ψ distributions. Two filters were applied to select a portion of the original 7957 structures. 

Firstly, only residues in coil and turn as defined by DSSP
123

 were selected. Secondly, these 

residues were eliminated if any of the backbone heavy atoms had B factors larger than 30.  

Biopython
124

 was used to apply the two filters against 7957 PDB files (PDB IDs and residue 

numbers provided in SI file pdbid_residue.csv).  

 

Results and Discussion 

Backbone rotational energies in ff19SB compared to ff14SB 

Alanine and Glycine energetics. Backbone φ/ψ rotational energy profiles were analyzed for 

QM, ff19SB, ff14SB and CMAP (derived by subtracting ff14SB00 from QM energies on the 2D 

grid, see Methods). Ala and Gly are discussed first because they are the simplest with no 

significant side chain degrees of freedom. We performed 2D backbone rotation scans for the 

capped Ala and Gly dipeptides, followed by restrained minimization and energy evaluation with 

implicit solvent for QM and MM. The CMAPs were derived by subtracting MM from QM 

energies on the 2D grid. The ff19SB energies were obtained by adding the CMAP-based bicubic 

function to ff14SB00 (see Methods: Molecular mechanics (MM) optimization and energy 

calculations and CMAP fitting). As shown in Figure 3&4, the ff19SB energy profiles are 

nearly identical to the QM reference data, which was anticipated based on the training method. 
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However, significant differences between ff14SB and QM are apparent. In ff14SB, the overall 

energy profiles are highly symmetric with little φ/ψ coupling, likely due to the lack of coupling 

between the ff14SB dihedral correction parameters. This coupling may arise from polarization 

changes as the amide dipoles become aligned in the helical conformation. The shape and location 

(the bin having lowest energy in the basin defined in Table S11) of the α basins from QM are 

poorly reproduced by ff14SB for both Ala and Gly. Importantly, the diagonal shape of the left- 

and right-handed α helical basins as observed in QM and ff19SB is poorly reproduced in ff14SB, 

which instead samples too deeply into negative φ for ψ < 0. In addition, for Ala, the C7
eq

 local 

minimum between ppII and αR in QM (Figure 3) is absent in ff14SB, but reproduced with 

ff19SB. For Gly, the QM energy barrier at φ = -120 / ψ = -60 is more accurate with ff19SB 

(Figure 4).  

 

Figure 3. Ala dipeptide Ramachandran energy (kcal/mol) surfaces calculated in ( left) 

ff14SB+GBSA, (middle) QM+SMD and (right) ff19SB+GBSA. All energies were zeroed 

relative to the lowest energy in the ppII region (defined in Table S6). The values above the color 

bar range are depicted in dark red. Solid, labeled contours indicate integer energy values in 

kcal/mol, whereas dashed contours indicate half-integer energies. The bicubic spline 

interpolation implemented in Python was used to calculate values between grid points.   
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Figure 4. Gly dipeptide Ramachandran energy (kcal/mol) surfaces calculated in (left) 

ff14SB+GBSA, (middle) QM+SMD and (right) ff19SB+GBSA. All energies were zeroed 

relative to the lowest energy at ppII region (defined in Table S6). The values above the color bar 

range are depicted in dark red. Solid, labeled contours indicate integer energy values in kcal/mol, 

whereas dashed contours indicate half-integer energies. The bicubic spline interpolation 

implemented in Python was used to calculate values between grid points.   

Overall, the deviation of ff14SB from QM for Ala and Gly is notable despite the use of QM 

data for multiple conformations of Ala3 and Gly3 during training of ff14SB/ff99SB backbone 

parameters. This relative weakness in ff99SB/ff14SB is likely a result of the use of only gas-

phase energy minima for training (thus lacking the compulsion to reproduce the entire basin 

shape, or even the locations of aqueous-phase minima), along with dihedral correction terms that 

lack φ/ψ coupling, resulting in an overly symmetric energy map. Use of the CMAP approach for 

ff19SB results in improved reproduction of the overall energy surfaces for both amino acids.  

We tested the impact of using QM in gas-phase as the target data. We fit an Ala dipeptide 

CMAP (same protocol as in CMAP fitting) against the entire surface of gas-phase QM energy 

instead of in solution QM (Figure S7A), and ff14SB00 was used as the MM model for CMAP 

fitting. The resulting energy surface, applied in solution (Figure S7C), has an unusual shape of 
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the αR basin (extending much farther into ϕ<-120°) and the αL energy basin is unexpectedly deep. 

We conclude that fitting CMAPS using solution QM & MM calculations is important for good 

results here. 

Amino acids with multiple side chain rotamers. The 2D CMAP training provides a “perfect” 

fit against the 2D reference QM data for Ala and Gly since no other significant rotational degrees 

of freedom are present. However, all other amino acids have longer side chains with additional 

degrees of freedom, and the situation becomes more complex since the energies (and their errors) 

depend on rotational degrees of freedom not sampled explicitly in the CMAP. While 3D fitting 

might accommodate some amino acids such as Val or Ser, this rapidly becomes intractable. We 

first compare alanine and valine using the valine rotamer used in training, then evaluate the 

transferability of the Val CMAP to alternate Val rotamers. 

Our strategy to improving rotamer dependence extends the approach to improving 

transferability in the side chain parameters we used when developing ff14SB, where we assumed 

that the largest contribution to poor transferability of dihedral parameters arises from including 

structures in the training set that expose inaccuracies in the MM short-range nonbonded model 

that depend on degrees of freedom outside those being trained. Therefore, rotamer dependency 

was addressed here by initializing all structures on each CMAP training ϕ/ψ grid at the same 

rotamer conformation, then locally relaxing the side chain conformations to relieve any 

backbone:sidechain steric clashes that were likely to be inaccurately modeled in MM. If 

corrections for training set structures with inaccurate backbone:rotamer MM energies were to be 

incorporated into the backbone parameter for that φ/ψ grid point, the CMAP would have poor 

transferability to structures with the same φ/ψ values but with alternate rotamers that lack these 
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inaccurately modeled interactions (see Methods: Molecular mechanics (MM) optimization 

and energy calculations).  

Comparison of Alanine and Valine Energy Surfaces. For Val, we selected the trans rotamer 

for CMAP training (Figure 5 first row). As shown in Figure 3B and Figure 5B, the QM 

profiles are qualitatively different between Ala and Val. Val prefers a flatter β/ppII transition 

region with a U-shape, while Ala has a higher barrier, a stronger preference of ppII over β, and a 

lower transition barrier between αR and ppII. The C7
eq

 local minimum between ppII and αR 

observed in Ala is absent in Val. In addition, the elongated diagonal shape of the αR and αL 

basins in Ala (indicating strong φ/ψ coupling) is quite different from the narrow circular 

minimum in Val. The energy minimum at φ = 60 and ψ -150 in Ala is shifted upwards at φ = 70 

and ψ = -60 in Val. Importantly, these differences in the Ala/Val QM surfaces are reproduced 

poorly in ff14SB where the Ala and Val surfaces are generally too similar; both Ala and Val 

prefer ppII over β and have similar symmetric αR/αL basins (Figure 3A vs. Figure 5A).  
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Figure 5. Val dipeptide Ramachandran energy surfaces using the trans (t) rotamer, calculated in 

(A) ff14SB+GBSA, (B) QM+SMD and (C) ff19SB+GBSA, and using the gauche(-) (g-) 

rotamer, calculated in (D) ff14SB+GBSA, (E) QM+SMD and (F) ff19SB+GBSA. The trans 

rotamer was used for ff19SB training. All energies were zeroed relative to the lowest energy at 

ppII region (Table S6). The values beyond the color bar range are depicted in dark red. Solid, 

labeled contours indicate integer energy values in kcal/mol and dashed contours indicate half-

integer energies. The bicubic spline interpolation implemented in Python was used to calculate 

values between grid points.   

 

Transferability of ff19SB backbone parameters to different side chain rotamers 

We tested the ability of our approach to provide reasonable transferability of CMAPs between 

alternate rotamers using valine, for which the side chain rotamer is known to significantly 

influence backbone populations
27, 54, 125-127

. We switched the Val rotamer from trans to gauche(-

), calculating QM and MM φ/ψ energies for gauche(-) conformations, but keeping the Ala-based 

ff14SB and trans-based Val ff19SB MM parameters (Figure 5, bottom row). Even though 

ff19SB was fit using the trans rotamer, it reasonably reproduces the changes in the Val QM data 

from trans to gauche(-). For example, moving from trans to gauche(-), the α basins become 

more diagonal, αL extends farther into the upper left quadrant, the barrier between ppII and β 

increases, and the minimum at (90, -60) disappears. As seen with the Ala/Val comparison, 

ff14SB poorly reproduces each of these changes, and the overall energy profiles are generally 

much too similar between the two rotamers, inconsistent with the QM results. Even though the α 

basin is stabilized more and becomes wider from trans to gauche(-) for ff14SB, the energy 

profiles are still highly symmetric in both rotamers and the notable difference in the shape of α 
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basins reflected by QM and ff19SB is poorly reproduced in ff14SB, along with a too-flat barrier 

between ppII and β. Furthermore, rather than the disappearance of the (90, -60) minimum as seen 

in QM and ff19SB, the two minima with positive φ values merge into a single minimum in the 

wrong location with ff14SB. Thus even though ff19SB was trained using a single rotamer for 

Val, it does a better job than ff14SB at reproducing the rotamer-dependent backbone profiles 

from the QM calculations. The results also demonstrate that the high quality match between QM 

and ff19SB is not simply the result of empirical fitting to an energy map with a single rotamer, 

but that the accurate reproduction of the QM profiles is maintained even when the map is 

qualitatively different for an alternate rotamer. Reasonable transferability is observed for other 

amino acids as well; examples include Ser and Glu. For Ser (Figure S8), ff19SB was trained 

against gauche(+), but is able to reproduce reasonable QM surfaces for both gauche(+) and 

gauche(-), such as the diagonal shape of αR and αL basin for both rotamers and the local 

minimum between ppII and αR for gauche(-). For Glu (Figure S9), ff19SB was trained against 

rotamer mt-10 (using naming conventions from literature
54

) (gauche(-) for χ1, trans for χ2 and -

10° for χ3) and reproduces reasonably the QM surfaces for both mt-10 and tt0 (trans for χ1, 

trans for χ2 and 0° for χ3). In contrast, ff14SB merges the two minima into one at ϕ = 60° for 

mt-10, and poorly reproduces the barrier height at ϕ = -120° and ψ > 30° for tt-0
54

. 

The QM, ff14SB and ff19SB energy maps for all 16 amino acid dipeptides in the training set 

are shown in Figure S10. 

Amino-acid specific Ramachandran sampling from PDB is reproduced better with 

ff19SB 

As shown above, the CMAP procedure allows the MM 2D φ/ψ energy surfaces to 

quantitatively match the QM 2D training data. Furthermore, we showed that using CMAPs 
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improves the ability of MM to reproduce changes in QM φ/ψ basin shapes and locations for 

different χ rotamers. An important question, though, is whether these QM-based training data for 

dipeptides in solution provide good reference states for longer peptides in solution, or larger 

proteins with more complex structures and interactions. In order to explore the relevance of the 

differences seen between the ff19SB and ff14SB energy maps for different amino acids, we 

sought out high-quality PDB data
54, 121-122

 on each amino acid and compared them to dipeptide 

φ/ψ sampling in MD using ff19SB. As discussed above in the context of statistical potentials, 

such comparisons have significant flaws, largely arising from the imperfect assumption that the 

distribution of backbone conformations for an amino acid across different proteins in a crystal 

environment (at different and typically low temperatures) corresponds to the MD-sampled 

Boltzmann distribution for the unconstrained peptide in solution at room temperature. Here, we 

restrict the use of the PDB data to a comparison of qualitative differences between amino acids 

from the same data source, such as from PDB or MD simulations. We expect that comparison of 

general features such as simulation and crystallographic basin shapes could provide valuable 

feedback that is independent of the dipeptide QM training data. However, we avoid assessment 

of quantitative features such as basin energies, for the reasons discussed above.  

Distributions from the high resolution crystal structures
92

 (“PDB”), dipeptide MD in 

ff14SB+OPC and dipeptide MD in ff19SB+OPC are shown in Figure 6 for Ala, Val and Leu 

(with all amino acids shown in Figure S11). The OPC solvent model was selected for this test 

since this model was developed by optimizing the charge distribution to match QM data and 

vdW parameters to reproduce water density. Neither ff14SB nor ff19SB parameters were 

empirically adjusted with this model (ff14SB used TIP3P data in training). Because the dipeptide 

is fully exposed to the solvent, the results are more sensitive to the protein force field than to the 
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solvent model; similar distributions are observed between ff14SB+OPC and ff14SB+TIP3P, and 

also between ff19SB+OPC and ff19SB+TIP3P (Figure S11) for each amino acid. However 

when comparing between force fields and PDB, as expected, the PDB distributions indicate that 

each of these amino acids samples unique features on the Ramachandran map. The ff14SB 

approach is clearly overly simplistic; when the same uncoupled Ala-based parameters are applied 

to all three amino acids, the peptides exhibit very similar φ/ψ sampling during MD, with the only 

apparent difference being slight changes to the population of the β basin (Figure 6). This result 

is consistent with the ff14SB potential energy maps (Figure 3 and Figure 5) where only subtle 

differences in β basins are observed between Ala and Val. The ff14SB population maps also lack 

the diagonal shape of the α basin that is seen in the PDB data (and was also apparent in the 

dipeptide QM data discussed above). In contrast, using amino-acid specific training against QM 

data with solvent polarization, the differences in Ramachandran maps are reproduced much 

better with ff19SB CMAPs. For instance in PDB, Val and Leu both have a flatter β-ppII 

transition region than Ala, with Val preferring greater population in this transition region. 

Compared to Ala, Leu has a broader diagonal α basin extending into the positive ψ region; these 

differences are reproduced more faithfully with ff19SB than ff14SB. The relative insensitivity of 

ff14SB backbone sampling to amino acid identity also explains its poor ability in modeling 

sequence dependence as discussed in the Introduction. Overall, given the fact that PDB data was 

not used in ff19SB training, this agreement between ff19SB and PDB shows a remarkable 

improvement in reproducing sequence-dependent behavior obtained using physics-based 

training, and highlights that these trends can be recapitulated without problematic empirical 

fitting against PDB data. 
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Figure 6. Ramachandran sampling shown for Ala, Val and Leu in dipeptide simulations with 

OPC water and ff14SB (A)-(C), in PDB (by Lovell et al.
54, 121-122

) (D)-(F), in dipeptide 

simulation with OPC water and ff19SB (G)-(I). Each contour line represents a doubling in 

population. Density is also shown as grids filled with light (no density) to dark (maximum 

density). Side histograms on each subplot represent independent distributions on φ and ψ. The 

MD simulations were run for a total of ~10 μs for all data shown. 
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Improved reproduction of NMR 
3
J(HNHA) scalar couplings on blocked dipeptides 

  Another way to examine the ability of ff19SB to improve amino-acid specific behavior in 

solution is through quantitative comparison against NMR data probing backbone dihedrals, 

which have been reported
113

 for each of the amino acids in a dipeptide form (except Pro which 

lacks HN). As explained (Methods: CMAP fitting groups), a total of 16 CMAPS were fit and 

then applied to 20 natural amino acids (also including alternate side chain protonation states) in 

ff19SB. We compared the performance of ff19SB and ff14SB by simulating blocked dipeptide 

systems (Methods: Structure preparation & simulations) in both OPC and TIP3P solvent 

models. We then calculated the 
3
J(HNHA) from each MD trajectory based on the Karplus 

equation
111

  and “Orig” parameter set
112

 and quantified the agreement by calculating the χ
2 

error 

following Best et al
25

 and us
110

. The χ
2
 error was also used as an empirical target in ff14SB 

backbone training
19

. The χ
2 

value quantifies the agreement between experimental and MD 

ensemble average J value(s), also taking into account the uncertainty of the theoretical model 

being used. In theory, smaller χ
2 

errors correspond to better agreement between MD and 

experiment. However, χ
2 

values below one only indicate that the error is smaller than the 

uncertainty of the model and do not necessarily indicate continued improvement vs. experiment. 

Further details of the calculations and precision estimates are provided in Methods (Methods: 

NMR scalar coupling calculations). 

The calculated 
3
J(HNHA) values for each amino acid, using four different combinations of FF 

(ff14SB and ff19SB) and water model (OPC and TIP3P), are provided in Table S9, with the χ
2 

errors for OPC shown in Figure 7 and TIP3P shown in Figure S12. Though we observed 

differences among force fields for the Ramachandran sampling maps, the χ
2 

errors and actual 

3
J(HNHA) values appear relatively insensitive to force field. For a given force field, neither 
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Ramachandran sampling maps nor the χ2 errors and actual 3J(HNHA) values are sensitive to 

solvent model. For instance, for either ff14SB or ff19SB, the average χ
2 

errors are similar and 

mostly below 0.5 for both OPC and TIP3P (Figure 7 and Figure S12). In this respect, the 

performance of ff19SB is not significantly improved over ff14SB for dipeptide NMR data, as 

ff14SB already showed reasonable behavior with few amino acids having errors larger than 1.0 

(His
+
 and Cys) for both solvent models. In addition, the histograms of χ

2 
errors are similar 

regardless of the force field and solvent model (Figure S13). Together with the fact that 

3
J(HNHA) in the Karplus calculation is sensitive only to the φ dihedral, this test seems 

insufficient to examine the specificity of parameters for different amino acids and the quality of 

parameters across the full Ramachandran space. However, this is a good indicator that the QM 

fitting is reasonable and ff19SB introduced no spurious outliers.  

 

Figure 7.  χ
2
 errors in reproducing NMR 

3
J(HNHA) coupling data for all non-Pro amino acids 

(using single letter codes on X axis), with data for ff14SB+OPC (red) and ff19SB+OPC (blue). 

The MD simulations were run for a total of ~60 μs for all data shown. 
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  As shown in Figure 7, ff19SB+OPC gave a slightly larger error for Glu, but since the pH 

used in the NMR experiment (4.9) was close to the Glu side chain pKa (~ 4.25), a simulation 

using either a protonated or deprotonated state of Glu may not adequately model the 

experimental ensemble. To address this ambiguity, we ran constant pH simulation (pH=4.9) on 

Glu dipeptide (Methods: Constant pH simulation), and obtained the carboxyl group protonated 

state ratio for each force field + solvent model combinations (Table S12). Next, we performed 

regular MD for both protonated and deprotonated Glu. The combined trajectory weighted by 

protonation state ratio (Methods: Constant pH simulation) was used so that our calculated χ
2
 

more accurately reflected the protonation states in the experiment. 

For deprotonated Glu, the ppII region is the most populated in both ff14SB and ff19SB and the 

shape of energy basins are similar between ff14SB and ff19SB regardless of the solvent model 

(Figure S11). However, ff19SB samples the ppII basin extending farther towards ϕ > -60° than 

ff14SB. This subtle change causes the 
3
J(HNHA) to deviate significantly from experiment (χ

2 
= 

1.31±0.03). This shift, however, is much less pronounced in the protonated state MD with 

ff19SB (Figure S11), resulting in a much smaller χ
2
 error of 0.031±0.01. Overall, the χ

2
 value 

from the re-weighted population at pH 4.9 was calculated to be 0.50±0.03, indicating that the 

scalar coupling calculated with ff19SB is in reasonable agreement with experiment once the 

protonation state is taken into account. 

 We also performed constant pH simulation at pH=4.9 for Asp, obtaining the side chain 

carboxyl protonation ratio for different force field + solvent model combinations (Table S12). 

The χ
2
 values from Asp simulation with deprotonated side chain and pH-weighted ensemble 

were calculated to be 0.01±0.01 and 0.30±0.01, respectively, with both indicating reasonable 

agreement with experiment for ff19SB. In addition, for both Asp and Glu, in either ff14SB or 
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ff19SB simulations, using TIP3P vs. OPC has little effect on the χ
2 

results with average χ
2 

errors 

all below 0.5. 

In summary, both ff19SB and ff14SB provided reasonable results in reproducing NMR scalar 

coupling when using either OPC or TIP3P solvent, indicating that this test is relatively 

insensitive to the sampling differences that are apparent in the Ramachandran surfaces (Figure 

S11). It is encouraging, however, that ff14SB includes an empirical adjustment to improve 

agreement with the same type of NMR data as used here, while the QM-trained ff19SB achieves 

similar or better accuracy without empirical adjustment.  

 

Accurate reproduction of Ala5 NMR scalar couplings is maintained in ff19SB 

We next tested ff19SB by simulating Ala5 in both OPC and TIP3P solvents, and compared to 

ff14SB. A total of six NMR scalar couplings have been measured on this peptide
55

. Following 

Best et al.
25

 and us
19, 110

 previously, we calculated the scalar couplings from each MD trajectory 

as discussed above, and quantified the agreement between simulations and NMR by calculating 

the χ
2
 error (Methods: NMR scalar coupling calculations). The NMR data, calculated scalar 

couplings for ff14SB and ff19SB in both OPC and TIP3P water and the systematic error σ
25, 110

 

used in χ
2
 calculations are provided in Table S10, with the χ

2
 errors in OPC shown in Figure 8 

and TIP3P shown in Figure S14. Overall, the average χ
2
 errors are smaller than one regardless of 

force field and solvent model, indicating a reasonable reproduction of NMR data for ff14SB and 

ff19SB with both OPC and TIP3P. Specifically, ff19SB has smaller averaged χ
2
 compared to 

ff14SB for both OPC (0.77±0.03 vs. 0.93±0.10) and TIP3P (0.77±0.03 vs. 0.88±0.09) solvent 

model. The measurement of 
3
J(HNCA) is correlated with the ϕ dihedral as well as the ψ dihedral 

of the preceding amino acid
55, 111

; this is the only coupling we examined that depends on two 
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dihedrals instead of one. This Karplus correlation has the smallest σ among all of these scalar 

coupling types, making it more sensitive to error than other scalar coupling types. Even though 

the χ
2 

value is large (Figure 8 and Figure S14), the difference between simulation and NMR in 

actual 
3
J(HNCA) value is as small as 0.2 across all models, suggesting reasonable agreement 

between simulation and NMR across different models (Table S10). 

 

Figure 8. χ
2
 errors in reproducing six NMR scalar coupling data for Ala5, with data for 

ff14SB+OPC (red) and ff19SB+OPC (blue). The MD simulations were run for a total of ~3 μs. 

 

Amino-acid specific helical propensities are significantly improved in ff19SB 

Since the scalar coupling χ
2 

analysis presented above was relatively insensitive to the updated 

residue-specific parameters, additional tests were performed to further validate the new model. 

The 
3
J(HNHA) analysis is only sensitive to the distribution for φ; thus, we calculated amino-acid 

specific helical propensities to probe ψ dihedral sampling. We focus both on the absolute helical 

propensity in the force field as well as the ability to reproduce known differences between amino 

acids. We performed multiple MD simulations on model peptides with sequence Ace-A4XA4-

NH2 with varying X, and fit helical propensity parameters w through Lifson-Roig
107

 theory 
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implemented in a genetic algorithm (Methods: Helical propensity). Different from having three 

substitutions in Best et al.’s system
18

, our model peptides only have a single substitution, as was 

done for the experimental system
52

, to avoid possible interaction between the substitutions across 

turns of helix. The sensitivity to the peptide length was tested by comparing propensities 

calculated using A4XA4 and A9XA9 in ff14SB + GBneck2; calculated helical propensities for all 

amino acids with ff14SB + GBneck2 are well correlated between A4XA4 and A9XA9 (Figure 

S15), justifying the use of the shorter peptide in the more computationally expensive explicit 

solvent simulations.  

We also calculated the sensitivity of the results to the exact definition of the helical region of 

overall φ/ψ space (defined in Table S6) using ff14SB and ff19SB, in both OPC and TIP3P. The 

calculated helical propensities for each force field and solvent model show little sensitivity to the 

α basin definition, especially for ff19SB+OPC (Figure S4).  

Helical propensities were calculated for A4XA4 with ff14SB and ff19SB, in TIP3P, TIP4P-

Ew
32

 and OPC, and also for ff19SB in OPC3
78

. The results of the MD simulations are compared 

to values based on experiments
52

. Data for ff14SB+TIP3P, ff14SB+OPC, ff19SB+TIP3P and 

ff19SB+OPC are shown in Figure 9, with data for TIP4P-Ew and ff19SB+OPC3 in Figure S16. 

Histidine was excluded from plots, see Methods: Helical propensity for details.  Numerical 

values are provided in Table S7 and Table S8. For TIP4P-Ew and ff19SB+OPC3 runs, a subset 

of 12 representative amino acids were selected due to the computational expense of the 

calculations. Ala, Leu, Ile, Gln and Trp were selected since helicities for these are signifiantly 

overestimated in ff19SB+TIP3P (Figure 9C). Charged amino acids Glu, Arg and Lys were 

selected as well. In addition, several amino acids having low (Gly and Asn) and medium (Val 

and Phe) experimental helical propensity were selected. 
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In general, ff14SB has difficulty reproducing the trend from NMR experiments regardless of 

solvent model. In TIP3P, Ala should be the most helical amino acid but is distinctly 

underestimated, while most other amino acids have significantly overestimated helical 

propensities, and the overall residue-specific correlation with NMR is poor at R
2
 = 0.38 (Figure 

9A). Although OPC is arguably a better water model
45

 than TIP3P, combining it with ff14SB 

produces worse results than in TIP3P (R
2
 = 0.27, Figure 9B), with helical propensities being 

underestimated for most amino acids. There is very little sequence dependence, with a slope of 

0.49. The amino acids with negatively charged side chains (Asp and Glu) are outliers in both 

solvent models for ff14SB. Results in TIP4P-Ew are similar, with R
2
 = 0.41 and somewhat lower 

overall helical propensities than in TIP3P (Figure S16B). 

This poor correlation with experiment appears to be due to ff14SB rather than weaknesses in 

these solvent models; the correlation is significantly higher when comparing the helical 

propensities of ff14SB in 2 water models (OPC vs. TIP3P R
2 

=0.84 as shown in Figure S17, 

with TIP3P giving higher helical propensities). These results suggest that the ff14SB force field 

would be unable to reliably model quantitative changes to secondary structure or protein stability 

due to point mutations, despite its ability to successfully fold large proteins to near-native 

structures
50

. Protein folding tests are likely less sensitive to sequence-specific energetics since 

the overall fold can be maintained even when a large fraction of the protein sequence is varied
128

.  
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Figure 9. Correlation between helical propensities w from experiment
52

 and simulations using 

(A) ff14SB+TIP3P, (B) ff14SB+OPC, (C) ff19SB+TIP3P and (D) ff19SB+OPC. Amino acids 

are indicated using single letter codes. Values on the X-axis represent the data based on NMR
52

 

and the reported standard deviations. Values on Y-axis represent the helical propensities fit 

against the combined trajectory (3.2 μs * 12), with error bars calculated via bootstrapping 

analysis. Black lines represent perfect agreement. Linear regression (red lines) was performed 

against the data points, with R
2
 and slope quantifying the goodness of fit. The MD simulations 

were run for a total of ~3225 μs.   

Ideally, the ff19SB residue-specific training against QM data should improve modeling of 

sequence-dependent behavior and give improved correlation to experimental residue-specific 

differences. Consistent with this expectation, we find that using ff19SB+TIP3P reproduces the 

experimental trend much better than ff14SB+TIP3P (R
2 

= 0.62 vs 0.38, respectively, Figure 9C 

vs. 9A). However for ff19SB+TIP3P we also observe substantially higher sensitivity to amino 

acid variation than in experiment (slope = 1.95, Figure 9C). The source of this high slope and 

amplified sensitivity may be weaknesses in TIP3P (see Introduction), in particular the bias 

favoring compact structures like helices. 

When ff19SB is combined with the better OPC water model (Figure 9D), the correlation 

between simulated and experimental helical propensities is further improved (R
2 

= 0.75 vs. 0.62 

in TIP3P) and the sensitivity to amino acid is also improved (slope = 1.27 vs. 1.95 in TIP3P). 

The sensitivity of the model still seems slightly overestimated, with slope modestly larger than 

unity. The remaining deviations from a perfect linear correlation may not be highly significant, 

since small disagreements also exist among various experimental measurements (Figure S5). In 

OPC, the helical propensity for Ala remains slightly too low with ff19SB, and Leu is similar to 
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Ala within uncertainties (Table S7). Ser, Thr and Cys are all predicted to have helical propensity 

somewhat lower than experiment; all have short, polar side chains that could compete with 

backbone hydrogen bonding and reduce helical content. This will be investigated in more detail 

in the future.  

These results show that ff19SB has significantly improved capability to differentiate amino 

acid properties and thus should have better predictive power for modeling sequence-specific 

behavior, protein mutations, and also rational protein design which requires quantitative 

sequence-structure accuracy.   

In addition to ff14SB and ff19SB, we also considered several other recent Amber-related force 

fields in combination with their recommended water model. In ff15ipq
33

+SPC/Eb
34

, Ala shows 

good agreement with experiment, but otherwise there is poor overall correlation and weak 

sensitivity among the remaining amino acids (R
2
 = 0.26 and slope = 0.52, Figure S16G). In 

fb15
72

+fb3
82

, Ala helical propensity is much lower than NMR, and the overall correlation is also 

poor (R
2
 = 0.28 and slope = 0.74, Figure S16H). As with the TIP4P-Ew and ff19SB+OPC3 runs, 

12 representative amino acids were included for these Amber-related force fields tests. 

Best et al. reported helical propensity benchmarks for 20 amino acids, showing that the overall 

trend from experiments
52

 was poorly reproduced by two force field + water combinations 

(ff03w
129

+TIP4P/2005
130

 and ff99SB*
22

+TIP3P
77

) with correlation coefficients R
2
 being 0.01 

and 0.22 respectively.
18

 Therefore, they performed an empirical adjustment of a few amino acids, 

together with the updated parameters in the ILDN
131

 variants of ff99SB*, to better match helix-

coil transition data. They refit partial charges of Cα and side chain atoms on charged amino acids 

(D, E, K, R) while forcing the charges on amide N, H, C, O to have same values as all the other 

residues. The helical propensities
18

 using these charge-refit residues were better correlated with 
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experiment (R
2
 = 0.51 and slope = 0.68 for all amino acids, Figure S18) than the original ff03w 

and ff99SB*, but even with this empirical fitting the overall trend for the 20 amino acids is still 

notably worse than ff19SB+OPC (R
2
 = 0.75 and slope =1.27, Figure S18).  

 

Evaluating helical content in the K19 peptide 

In order to assess the ability of ff19SB to model α-helices in more complex systems, we 

employed the Ala-rich Baldwin-type
132-133

 peptide K19
83

 that was previously simulated
19

 using 

ff14SB. Experimental measurements
83

 on K19 using NMR chemical shift deviations (CSDs) 

suggest that the fraction helix at 300 K of four central residues and two residues near the C-

terminus are ~0.38 and ~0.17, respectively (Figure 10). Simulations with ff14SB+TIP3P 

exhibited an average 0.30±0.05 (central four) and 0.19±0.03 (two near C terminus) fraction 

helix, in close agreement with our previously reported
19

 value of 0.30±0.05 and 0.20±0.04 using 

the same force field and solvent model. Both values are in good agreement with the experiment, 

likely reflecting the inclusion of K19 data generated using TIP3P in the empirical adjustment of 

ff14SB backbone parameters.  

In order to better separate the accuracy of the solute force field from that of the solvent model, 

we ask: does the good match come from a good modeling of protein and water separately, or 

from training-based error cancellation between the force field and solvent model? As shown in 

Figure 10, after substituting TIP3P with a better model for water (OPC), ff14SB MD resulted in 

significantly reduced helicity, with 0.08±0.02 (central four) and ~0.08±0.01 (two near C 

terminus) helical content for the 6 measured residues. Given OPC’s excellent agreement with 

water properties, the worsened agreement with experiment for K19 supports a fortuitous 

cancellation of error in the combination of ff14SB+TIP3P. Since overly weak solvent-solute 
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dispersion in TIP3P
73, 75

 may introduce a bias in favor of compact structures, it seems reasonable 

that this bias may also enhance helical content to maintain hydrogen bonding in compact states. 

This hypothesis is supported by data in Figure S19, which shows an inverse correlation between 

helical content and radius of gyration of K19, indicating that more compact structures tend to be 

more helical, and also Figure 9, which shows a dramatic increase in helical propensities when 

combining ff19SB with TIP3P vs. OPC. We conclude that an inherent underestimation of 

helicity is present in ff14SB, which is (inexactly) compensated by an increase in helical content 

driven by the TIP3P bias toward overly compact structures. 

 

Figure 10. The fraction helix of each amino acid in K19 sampled in simulations using 

ff14SB+TIP3P (red), ff14SB+OPC (yellow) and ff19SB+OPC (blue). Uncertainties reflect the 

standard deviation of 10 independent runs. The black dots represent values reported in NMR 

experiments at 300 K
83

. The MD simulations were run for a total of ~96 μs. 

Simulation of K19 with ff19SB+OPC resulted in modestly increased helical content vs. 

ff14SB+TIP3P, with 0.55±0.05 (central four) and ~0.31±0.02 (two near C terminus) average 

helicity. These values are also somewhat higher than those from experiment (~0.38 and ~0.17 

respectively), but the deviation in MD corresponds to an error of only 0.27 and 0.36 kcal/mol 
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free energy, respectively. Furthermore, uncertainties were not reported for the NMR-based data 

for K19, and ff19SB+OPC is in quantitative agreement with experiment for helical propensities   

for Lys and Ala that make up the majority of K19 (Figure 9). The simulations also agree with 

the trend from experiments, with the helical content falling off towards the C-terminus, with the 

two measured Ala in this region being less helical than the central four. Overall, we conclude 

that the QM-based ff19SB is in reasonable agreement with experiment when combined with an 

accurate solvent model, while ff14SB performs poorly with the same solvent model and relies on 

cancellation of error with the less accurate TIP3P model in order to reproduce the helical content 

of this alanine-based peptide. 

 

β-hairpin stability  

We next tested whether the improvements in modeling helical content with ff19SB (and 

perhaps a slight overestimation of helical content) were obtained at the cost of less accurate 

performance on β systems. Following our previous work
19

 with ff14SB, we used CLN025
84

, an 

engineered fast-folding hairpin that is a thermally optimized variant of Chignolin
84

. CLN025 

contains four aromatic side chains, including three Tyr and one Trp. This system presents a 

challenge due to the relatively slow folding of β-sheets compared to the helical systems (though 

T-jump IR experiments
85

 estimate a 100-ns folding time for CLN025). Because of the 

computational cost in obtaining highly precise estimates of β hairpin population in MD 

simulations with explicit water, we limit our testing here to a qualitative view of whether 

ff19SB’s improved helical propensity prediction may compromise β stability. We again tested 

ff14SB with TIP3P and OPC, and ff19SB with OPC.  
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We performed four MD runs, each of 7 μs in length, at 300K (each was) starting from the 

NMR structure, and four additional 7 μs runs starting from a fully extended structure (56 μs total 

for all ff+water combinations). As measured by backbone RMSD against the NMR structure 

(PDBID: 2RVD
84

), folding was reversible in every simulation using each of the three 

combinations of the force field + solvent model (Figure 11). The histogram of RMSD values 

shows that both ff14SB+TIP3P and ff19SB+OPC predominantly sample the NMR structure 

(Figure S2). The average fraction of native population (±standard deviation) across all MD runs 

for ff14SB+TIP3P, ff14SB+OPC and ff19SB+OPC are 0.75±0.23, 0.33±0.19 and 0.56±0.29, 

respectively, compared to the experimental estimate
84

 of 0.9 based on CD spectra. These 

populations suggest that ff14SB+TIP3P might stabilize the β-hairpin to a greater extent than the 

other combinations, but the differences are within the uncertainties of the populations. It is 

interesting that with ff14SB, MD in TIP3P appears to prefer more β-hairpin structure than with 

OPC. The same preference for the native structure in TIP3P was seen with K19, perhaps 

indicating that the weaker solute-solvent dispersion in TIP3P generally stabilizes compact 

structure (such as native folds) consistent with previous studies
41-42, 73-75

, rather than a specific 

secondary helical bias such as the K19 stability increase discussed above. 
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Figure 11. Backbone RMSD to the NMR structure (PDBID: 2RVD
84

) vs. time for the four 

extended (ext) and four native (nat) runs of CLN025 with ff14SB+TIP3P, ff14SB+OPC and 

ff19SB+OPC. The MD simulations were run for a total of ~172 μs. 

 

High quality backbone dynamics vs. NMR is maintained with ff19SB 

NMR S
2
 order parameters reflect the internal protein dynamics that are helpful to validate MD 

trajectories. These internal motions need to be separated from global tumbling on time scale of 

pico to nanosecond. Therefore, a choice for the window size of the MD trajectory needs to be 

made over which S
2 

values are computed and averaged, which remains challenging
117-118

. As 
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reported in our previous work, ff14SB+TIP3P maintained ff99SB’s overall good reproduction of 

NMR S
2
 order parameters.

19
 Here, we also evaluated the ability of ff19SB to recapitulate local 

dynamics in well-folded proteins. As shown in Figure 12, the NMR data were reasonably 

reproduced by the different force field + solvent model combinations, with average absolute 

difference between NMR S
2
 and calculated S

2 
over all amino acids close to 0.04. The overall 

differences were not statistically significant, however, we note some instances where all three 

force field + solvent models deviate from experiment and also some instances where ff19SB 

results are in worse agreement with experiment than is ff14SB. These residues typically have 

overestimated flexibility in MD as compared to NMR for Gly (smaller S
2
 in MD). Examples 

include Gly14 in GB3, with S
2 
= 0.58 in ff19SB+OPC and S

2 
= 0.74 in NMR (Table S13), Gly10 

in Ubiquitin with S
2 

= 0.54 in ff19SB+OPC and S
2 

= 0.73 in NMR (Table S14) and Ser85 in 

Lysozyme with S
2 

= 0.55 in NMR and S
2 

= 0.75 in all three force field + solvent models (Table 

S15). Other outliers in Lysozyme are C-terminal residues (residues 126 to 129) that are overly 

flexible in all three force field + solvent model combinations (Table S15). Interestingly, 

ff19SB+OPC sample structures with even lower RMSD against native crystal structure than 

either ff14SB+TIP3P or ff14SB+OPC (Figure S20-S22). 
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Figure 12. Per-residue order parameters (S
2
) from NMR compared to simulations using 

ff14SB+TIP3P (red), ff14SB+OPC (yellow) and ff19SB+OPC (blue) of (top) GB3
134

, (middle) 
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Ubiquitin
135

 and (bottom) Lysozyme
136

. AD is the absolute difference between NMR and MD 

simulation. MAD is mean absolute difference over all residues. For each subplot, error bars 

represent the standard deviation from four independent runs. Some residues are missing 

experimental values as indicated in the original NMR papers
134-136

. The MD simulations were 

run for a total of ~1.8 μs. 

In GB3, Gly14 was reported to have a high S
2
 (0.74) using NMR, likely due to its 

intermolecular hydrogen bond in a β-sheet secondary structure. However with ff19SB+OPC, the 

flexibility is overestimated (0.58±0.04) by slightly more than ff14SB+TIP3P (0.68±0.03) and 

ff14SB+OPC (0.66±0.03). This may not reflect problems in ff19SB Gly parameters since this 

trend is reversed for Gly41 in the loop region connecting a β-strand to an α-helix. S
2
 from NMR 

is quite low for Gly41 (0.50) due to loop flexibility, and this flexibility is reproduced slightly 

better with ff19SB+OPC (0.60±0.04) than ff14SB+TIP3P (0.66±0.02) and ff14SB+OPC 

(0.67±0.03). 

In Ubiquitin, Gly10 flexibility is overestimated in ff19SB+OPC (0.54±0.08) compared to 

NMR (0.73). Gly10 lies in a β turn region highly exposed to the solvent. Except for the slightly 

worsened performance on Gly10, ff19SB+OPC yields the best overall agreement with NMR 

compared to ff14SB with either TIP3P or OPC solvent model. 

In Lysozyme, Ser85 lies in a loop region connecting two α helices, and is overly rigid with all 

three simulation models (~0.75 in MD vs 0.55 in NMR). The backbone (ϕ/ψ) and side chain 

(χ1/χ2) Ser85 conformations in the crystal structure lie in regions that are most populated in all 

three force field + solvent model combinations. Despite matching the ϕ/ψ values of crystal 

structure and indication of flexibility in sampling of ϕ, the simulations appear to underestimate 

flexibility with all three models.  
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In spite of subtle disagreements with NMR, we concluded that ff19SB generally maintained 

the overall performance of ff14SB and ff99SB in order parameter reproduction, with a few 

outliers that do not appear to follow any systematic trend that could be attributed to the CMAPs.  

 

Conclusions 

In the updated ff19SB (with the “SB” models indicating Stony Brook) protein force field 

presented here, we have developed new backbone dihedral parameters with amino-acid specific 

CMAP functions. We trained the parameters to match solution phase QM data using full 2D φ/ψ 

scans, instead of the gas-phase minima used for training uncoupled φ and ψ cosine terms in 

ff99SB. Use of energies calculated from QM in solution provides better consistency with the pre-

polarized partial atomic charges used by the MM model, as compared to gas-phase energies that 

were used previously. Fitting of dihedral corrections against QM in solution also allows the 

model to incorporate (to some extent) conformation-dependent polarization energy that is not 

present explicitly in a fixed-charge MM model such as the one used here. A total of 16 CMAPs 

were fit, with applicability to all amino acids using a grouping approach based on side chain size, 

branching and polarity. Leu was used as a general model for other amino acids, in contrast to Ala 

that has traditionally been used as a protein backbone model. We also investigated whether 

CMAP functions fit using a single side chain rotamer could remain accurate for other rotamer 

states, and found good transferability as measured by the ability of the model to reproduce 

rotamer-dependent differences in Ramachandran space QM energetics and PDB-based statistics. 

We performed a total of ~5 milliseconds MD simulations in explicit solvent to extensively 

validate ff19SB against experiments. The results show that our new FF more accurately 

reproduces amino-acid specific NMR properties such as scalar coupling and helical propensity, 
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as well as structure and stability of a Baldwin-type helical peptide and a small hairpin. Folded 

proteins show good agreement with NMR S
2
 order parameters, and modestly improved RMSD 

values as compared to ff14SB.  

We make the important observation that the performance of the QM-based ff19SB model 

improves as the quality of the water model is improved (going from TIP3P to TIP4P-Ew to 

OPC), suggesting lack of fortuitous cancellation of error with a particular water model, and that 

the water model is likely the limiting factor in these comparisons of ff19SB to experiment. 

Currently, our best results are obtained using ff19SB with OPC water, and we recommend that 

combination. Biomolecular force fields such as ff19SB that are not tied to a specific water model 

through empirical adjustment will be in a stronger position to take advantage of future, better-

quality water models. In contrast, use of a better model for water does not lead to improved 

match with experiment for ff14SB, supporting that both a good water model and good protein 

force field are needed for an accurate simulation. We also conclude that weaker solute-solvent 

dispersion in TIP3P not only leads to overly compact unfolded states as has been reported 

previously, but also overstabilizes native helical and hairpin structures as compared to OPC.  

If water models can be sufficiently improved, there is in principle no need for specialized 

“IDP” force fields, as suggested in recent work
41

 by Robustelli et al. Our belief is that physics-

based protein FFs trained against short peptides should be quite capable of modeling IDPs and 

unfolded ensembles, which are more similar to the peptide training data than are folded proteins. 

Amber’s OPC 4-point water model not only better reproduces liquid water properties as 

compared to most other models
45

, but IDP simulations with OPC result in much less compact 

ensembles as compared to simulations using the same FFs in older water models.
46

 This provides 

additional evidence that the current problems with modeling IDPs are likely to be related to the 
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water models, and further improvement of physics-based protein FFs is warranted, independent 

of water model development going on in parallel. While the studies here of flexible peptides 

using ff19SB+OPC are promising, future studies using this combination for IDPs will be carried 

out in the future.  
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