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Abstract: Computer simulations are foundational to theoretical chemistry. Quantum-mechanical 

(QM) methods provide the highest accuracy for simulating molecules but have difficulty scaling 

to large systems. Empirical interatomic potentials (classical force fields) are scalable, but lack 

transferability to new systems and are hard to systematically improve. Automated, data-driven 

machine learning is close to achieving the best of both approaches. Here we use transfer learning 

to retrain a general purpose neural network potential, ANI-1x, on a dataset of gold standard QM 

calculations (CCSD(T)/CBS level) that is relatively small but designed to optimally span chemical 

space. The resulting potential, ANI-1ccx, approaches CCSD(T)/CBS accuracy on benchmarks for 

reaction thermochemistry, isomerization, and drug-like molecular torsions. ANI-1ccx is broadly 
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applicable to materials science, biology and chemistry, and billions of times faster than the parent 

CCSD(T)/CBS calculations.  

One Sentence Summary: Approaching coupled cluster accuracy with a general-purpose neural 
network potential through transfer learning. 

 
KEYWORDS. Transfer learning, active learning, machine learning, molecular potentials, force field, 
neural network
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Main Text: 
Introduction 

The central questions in modern chemistry relate to the identification and synthesis of molecules for useful 

applications. Historically, discoveries have often been serendipitous, driven by a combination of intuition 

and experimental trial and error.1,2 In the modern age, the computer revolution has brought about powerful 

computational methods based on quantum mechanics (QM) to create a new paradigm for chemistry 

research.3,4 At great computational expense, these methods can provide accurate chemical properties (e.g. 

energies, forces, structures, reactivity, etc.) for a wide range of molecular systems. Coupled cluster theory 

systematically approaches the exact solution to the Schrödinger equation, and is considered a gold standard 

for many quantum chemistry applications.5–7 When CCSD(T)  (coupled cluster considering single, double, 

and perturbative triple excitations) calculations are combined with an extrapolation to the complete basis 

set limit (CBS)8,9, even the hardest to predict non-covalent and intermolecular interactions can be computed 

quantitatively.10 However, coupled cluster theory at the level of CCSD(T)/CBS is computationally 

expensive, and often impractical for systems with more than a dozen atoms.  

Since the computational cost of highly accurate QM methods can be impractical, researchers often seek to 

trade accuracy for speed. Density functional theory (DFT)11–13, perhaps the most popular QM method, is 

much faster than coupled cluster theory. In practice, however, DFT requires empirical selection of a density 

functional, and so DFT-computed properties are not as reliable and objective as coupled cluster techniques 

at guiding experimental science. Even stronger approximations can be made to achieve better efficiency. 

For example, empirical potentials (e.g. classical force fields) are commonly employed to enable large scale 

dynamical simulation such as protein folding14, ligand-protein docking15 or the dynamics of dislocations in 

materials16. These models are often fragile; an empirical model fit to one system may not accurately model 

other systems17. An outstanding challenge is to simultaneously capture a great diversity of chemical 

processes with a single empirical model. 
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Machine learning (ML) methods have seen much success in the last decade due to increased availability of 

data and improved algorithms.18–20 Applications of ML are becoming increasingly common in experimental 

and computational chemistry. Recent chemistry related work reports on ML models for chemical 

reactions21,22, potential energy surfaces23–27, forces28–30, atomization energies31,32, atomic partial charges32–

35, molecular dipoles26,36,37, materials discovery38–40, and protein-ligand complex scoring41. Many of these 

studies represent important and continued progress toward ML models of quantum chemistry that are 

transferable (i.e. applicable to related, but new chemical processes) and extensible (i.e. accurate when 

applied to larger systems). These advances aim to revolutionize chemistry through applications to chemical 

and biological systems. Since molecular dynamics simulations underpin much of computational chemistry 

and biology, transferable, accurate, and fast prediction of molecular energies and forces is particularly 

important for the next generation of empirical potential energy surfaces. 

Transferable and extensible ML potentials often require training on very large datasets. One such approach 

is the ANI class of methods. The ANI-1 potential aims to work broadly for molecules in organic chemistry42. 

A key component of this potential is the ANI-1 dataset, which consists of DFT energies for 22M randomly 

selected molecular conformations from 57k distinct small molecules43. This vast amount of data would be 

impractical to generate at a level of theory more accurate than DFT44. However, advances in machine 

learning methodologies are greatly reducing the required dataset sizes. The ANI-1x dataset, constructed 

using active learning, contains DFT data for 5M conformations of molecules with an average size of 15 

atoms45. Active learning iteratively adds new QM calculations to the dataset for specific cases where the 

current ML model cannot make a good prediction. Despite the much smaller size of the ANI-1x dataset, 

potentials trained on it vastly outperform those trained on the ANI-1 dataset, especially on transferability 

and extensibility benchmarks. Even with the success of the ANI-1x potential, its true accuracy is still reliant 

upon the accuracy of the underlying DFT data. 

A remaining challenge is to develop ML-based potentials that reach coupled cluster-level accuracy while 

retaining transferability and extensibility over a broad chemical space. The difficulty is that datasets with 
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CCSD(T)-level accuracy are very expensive to construct and therefore tend to be limited in chemical 

diversity. Previous studies have trained on high-quality QM data for small molecules at equilibrium 

conformations46,47 and for non-equilibrium conformations of a single molecule48. A limitation is that ML 

models trained on datasets which lack chemical diversity are not expected to be transferable or extensible 

to new systems. The present work uses transfer learning49,50 to train an ML potential that is accurate, 

transferable, extensible, and therefore, broadly applicable. In transfer learning, one begins with a model 

trained on data from one task and then retrains the model on data from a different, but related task, often 

yielding high accuracy predictions51–53 even when data is sparsely available. In our application, we begin 

by training a neural network on a large quantity of lower-accuracy DFT data (the ANI-1x dataset with 5M 

molecular conformations45), and then we retrain to a much smaller dataset (about 500k select conformations 

from ANI-1x) at the CCSD(T)/CBS level of accuracy. The resulting general-purpose potential, ANI-1ccx, 

exceeds the accuracy of DFT in benchmarks for isomerization energies, reaction energies, molecular torsion 

profiles and energies and forces at non-equilibrium geometries, while being roughly nine orders of 

magnitude faster than DFT. The ANI-1ccx potential is available on GitHub 

(https://github.com/isayev/ASE_ANI) as a user-friendly Python interface integrated with the Atomic 

Simulation Environment54 package (ASE; https://wiki.fysik.dtu.dk/ase/). 

An efficient and accurate CCSD(T)/CBS approximation 
Recalculating even 10% of the ANI-1x dataset (i.e., 500k molecules) with conventional CCSD(T)/CBS 

would require enormous computational resources. Therefore, we developed an approximation scheme 

(herein referred to as CCSD(T)*/CBS) that allows highly accurate energy calculations in a high-throughput 

fashion. 

Our CCSD(T)*/CBS method is a computationally efficient approximation of CCSD(T)/CBS energies that 

takes advantage of the linear-scaling domain-localized DPLNO-CCSD(T) method developed by Neese et 

al55 which is implemented in the ORCA software package56. It provides an affordable alternative capable 

of achieving near CCSD(T) accuracy at a fraction of the computational cost. The DLPNO 
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approximation relies on the MP2 method to estimate energy contributions from interacting electron pairs 

and effectively reduce the active orbital space. Table 1 provides accuracy and timing benchmarks, clearly  

Table 1: Computational cost of CCSD(T)/CBS and CCSD(T)*/CBS methods, and accuracy compared to 

reference calculations at the CCSD(T)-F12 level of theory57. S66 and W4-11 are standard benchmarks for 

interaction and atomization energies of small molecules58,59. See Table S1 for a more detailed comparison. 

All calculations are performed on an Intel Xeon E5-2630 v3 @ 2.40GHz CPU. 

 CPU-core hours 
Mean absolute deviation from 

CCSD(T)-F12 (kcal/mol) 
Alanine 

(13 atoms) 
Aspirin 

(21 atoms) S66 W4-11 

CCSD(T)/CBS 9.13 427.00 0.03 1.31 
CCSD(T)*/CBS (this work) 1.44 7.44 0.09 1.46 
 
showing our CCSD(T)*/CBS approximation provides accurate energies in a computationally efficient way. 

Details of our CCSD(T)*/CBS scheme plus additional benchmarks are given in supplemental information 

Section S1.1. 

Using active learning for CCSD(T)*/CBS dataset curation 
The existing ANI-1x active learning generated dataset45 is used to train an initial DFT (to the ωB97x/6-

31G* model chemistry60) potential, likewise dubbed ANI-1x. The ANI-1x dataset consists of 5M 

conformations from 64k small molecules and complexes of molecules containing only CHNO atoms. All 

model and training procedures are detailed in the ANI-1 work.42 Section S1.2 provides details of the 

architecture, selection of hyperparameters, and held out test set errors. To reduce variance and increase 

accuracy, all ANI results presented in this work are the ensemble prediction of 8 ANI neural networks, i.e. 

the ANI-1x potential used in this work is an ensemble of 8 ANI-1x neural networks trained to different 

splits of the ANI-1x dataset.45 The disagreement between predictions of ensemble members can be used as 

a proxy to the prediction error, enabling rapid identification of molecular conformations where the current 

ANI model fails. 
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Despite the efficiency of our CCSD(T)*/CBS extrapolation scheme, optimal curation of the coupled cluster 

dataset is still essential since we can only perform a limited number of these calculations. As a source of 

structures for CCSD(T)*/CBS data generation, we choose to systematically subsample the existing ANI- 

 

Figure 1: Diagram of the transfer learning technique evaluated in this work. Transfer learning starts from 

a pretrained ANI-1x DFT model, then retrains to higher accuracy CCSD(T)*/CBS data with some 

parameters fixed during training. 

1x dataset with 5M molecules, since this dataset already provides a pool of highly diverse molecular 

configurations and conformations. We begin with an initial random subsample of 200k data points, then 

iteratively we select new data for coupled cluster calculations according to maximal ensemble disagreement 

(i.e., query by committee61). Through 3 iterations of coupled cluster data generation using active learning, 

we grow the coupled cluster dataset to about 480k molecules. To further improve the ANI potential’s 

description of torsion profiles, we also perform 20 iterations of active learning45 on random molecular 
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torsions from small and druglike molecules to enhance ANI-1x with about 200k new DFT calculations. The 

ANI driven torsion sampling technique is detailed in Section S1.3. Of these torsion conformations, we 

randomly select 10% for CCSD(T)*/CBS calculations. The result is an enhanced ANI-1x DFT dataset 

containing 5.2M datapoints and a high-accuracy CCSD(T)*/CBS dataset containing about 500k datapoints.   

Training to high-accuracy data using transfer learning 
Here we describe the transfer learning methodology (depicted schematically in Figure 1) used to create 

ANI-1ccx. First, an ANI model is trained to the DFT dataset with the new active learning torsion data 

added, yielding a potential equivalent to the ANI-1x potential45. We then retrain the ANI-1x potential to 

the CCSD(T)*/CBS data with a portion of the optimizable network parameters held constant. Neural 

network parameters are organized into a set of hidden layers. The ANI models trained in this work contain 

4 hidden layers; we leave two hidden layers to be optimized during the transfer learning process, while the 

other two layers are left fixed to reduce the number of optimizable parameters during the training process 

and thus avoid overfitting to the smaller CCSD(T)*/CBS dataset. An alternative to transfer learning is ∆-

learning46. With ∆-learning, one trains a new model to correct for the difference between CCSD(T)/CBS 

and the existing model pretrained on DFT data. Although ∆-learning yields similar accuracy to transfer 

learning, it needs to evaluate the neural networks twice to make inferences. More information on ∆-learning 

and its accuracy is provided in Figure S2 and Table S3.  

Results 
We compare the errors of ANI-1ccx (trained with transfer learning), ANI-1x (trained on DFT data only), 

and direct DFT calculations (ωB97X/6-31g*). We also compare to a model, ANI-1ccx-R, that was trained 

only with the CCSD(T)*/CBS data, i.e., without transfer learning from the DFT data. To test transferability 

and extensibility, we employ four benchmarks to appraise the accuracy of molecular energies and forces, 

reaction thermochemistry, and the computation of torsional profiles on systems consisting of CHNO. The 

GDB-10to13 benchmark45 is designed to evaluate relative energies, atomization energies, and force 

calculations on a random sample of 2,996 molecules containing 10 to 13 C, N, or O atoms (with H added 

to saturate the molecules). The GDB-10to13 molecules are randomly perturbed along their normal modes 
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to produce between 12 and 24 non-equilibrium conformations per molecule. HC7/1162 is a benchmark 

designed to gauge the accuracy of hydrocarbon reaction and isomerization energies. The ISOL6  

Table 2: Accuracy in predicting conformer energy differences on the GDB-10to13 benchmark relative to 

CCSD(T)*/CBS. The mean absolute deviations (MAD) and root mean squared deviations (RMSD) are 

given in kcal/mol. Methods compared are the ANI-1ccx transfer learning potential, the ANI-1ccx-R trained 

only on coupled cluster data, the ANI-1x trained only on DFT data, and the DFT reference (ωB97X-D3). 

 ANI-1ccx ANI-1ccx-R ANI-1x ωB97X-D3 
MAD 1.46 1.81 1.98 1.42 
RMSD 2.07 2.55 2.80 2.05 

 

benchmark63 (a subset of the ISOL24/11 benchmark) measures isomerization energies for organic 

molecules. Finally, we test on the Genentech torsion benchmark64, which contains 62 diverse organic 

molecule torsion profiles (45 containing only CHNO).  

Table 2 provides mean absolute deviations (MAD) and root mean squared deviations (RMSD) for the ANI 

potentials and ωB97X-D3/6-31g*, on the GDB-10to13 benchmark from COMP645 benchmark suite. 

Reference values are recomputed at the CCSD(T)*/CBS level of theory. Table 2 only considers 

conformations within 100kcal/mol of the energy minima for each molecule. The conformational energy ∆E 

is the energy difference between all conformers for a given molecule in the benchmark.45 Our analysis 

concludes that training a model only to the smaller CCSD(T)*/CBS dataset (ANI-1ccx-R) results in a 23% 

degradation in RMSD compared to the transfer learning model (ANI-1ccx). The DFT trained ANI-1x (with 

D3 dispersion corrections applied) model has a 36% increase in RMSD over ANI-1ccx. ANI-1ccx performs 

as well as the original reference with D3 dispersion corrections added (ωb97X-D3/6-31G*) in the 

100kcal/mol energy range on the GDB-10to13 CCSD(T)*/CBS benchmark. Recall that each ANI model is 

an ensemble average over 8 neural networks. Without an ensemble of networks, the MAD and RMSD of 

ANI models degrades by about 25%.65 Table S4 provides errors for all methods within the full energy range 

of the GDB-10to13 benchmark. Notably, ANI-1ccx outperforms DFT with an RMSD of 3.2 kcal/mol vs. 
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5.0 kcal/mol for DFT, which means the ANI-1ccx model generalizes better to high energy conformations 

than ωb97X-D3/6-31G*. Figure S3 shows correlation plots for the ANI models vs. CCSD(T)*/CBS. 

Figure 2 displays a comparison of atomization energy deviation from reference CCSD(T)*/CBS for DFT 

(blue) and ANI-1ccx (orange) for all conformations in GDB-10to13 within 100 kcal/mol of the 

conformational minima. Compared to the DFT functional, the ANI-1ccx potential provides a more accurate 

prediction of the CCSD(T)*/CBS atomization energy. The distribution for ANI-1ccx has a standard 

deviation of 2.3 kcal/mol, while the DFT distribution is much wider, with a standard deviation of 7.5 

kcal/mol. The MAD/RMSD for DFT vs. reference CCSD(T)*/CBS is 6.0/7.5 kcal/mol, while for ANI-1ccx 

it is 1.9/2.5 kcal/mol. Figure S4 shows an attempt to correct the DFT model to the reference CCSD(T)*/CBS 

atomization energies via a linear fitting of the atomic elements in each system. Even after this non-trivial 

correction, ANI-1ccx is still more accurate than DFT vs. the more accurate coupled cluster atomization 

energies. The corrected DFT has a distribution with a standard deviation of 5.7 kcal/mol with MAD/RMSD 

of 4.9/6.0 kcal/mol. 

Accurate forces are important for MD simulations and geometry optimization. Therefore, we explicitly 

assess force accuracy as well. It is impractical to obtain forces with the CCSD(T)*/CBS extrapolation due  

 

Figure 2: Accuracy in predicting atomization energies 𝐸( on the GDB-10to13 benchmark relative to 

CCSD(T)*/CBS. 
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to extreme computational expense with existing packages. However, MP2/cc-pVTZ (dubbed here as 

MP2/TZ) provides a high-quality alternative. Table 3 compares MP2/TZ force calculations on the GDB-

10to13 benchmark to MP2/cc-pVDZ (MP2/DZ), ωb97x-D3/6-31G* (DFT/DZ), ANI-1x, and ANI-1ccx 

models. ANI-1ccx provides the best prediction of MP2/TZ forces compared to all other methods. Notably, 

ANI-1ccx forces deviate less from the MP2/TZ target forces than the original ANI-1x DFT trained 

potential, providing evidence that the transfer learning process not only corrects energies but forces as well. 

The HC7/11 and ISOL6 benchmarks address the calculation of reaction and isomerization energies and are 

depicted in Figure 3. For each reaction, reference energies and calculated energies are provided in Tables 

S7 and S8. Figure 3 shows the differences between the computed and the reference energies, for the reaction 

and isomerization energies individually for ωB97X-D3/6-31g*, ANI-1x, ANI-1ccx, and our 

CCSD(T)*/CBS. HC7/11 used target MP2/6-311+G(2df,2p) and ISOL6 used target CCSD(T)-F12a/aug-cc- 

pVDZ calculations. The latter is the most accurate simulation method currently available. For each system in the 

benchmark, ANI-1ccx and ANI-1x (integrated with the Atomic Simulation Environment54 package) was 

employed to optimize the reactants and products in each case. The LBFGS optimization algorithm was used 

for all geometry optimizations. Performing geometry optimizations with ANI-1ccx in this benchmark 

shows the applicability of ANI-1ccx forces in a realistic computational chemistry project setting. ωB97X-

D3/6-31g* was also used to optimize the structures for comparison with the benchmarks. Our 

CCSD(T)*/CBS methods used the structures provided by the benchmarks. For the HC7/11 benchmark, the 

medium-sized basis DFT reference ωB97X-D3/6-31g* is not sufficient for describing the chemistry 

represented in these complex hydro-carbon reactions. Likewise, ANI-1x, trained to data from this 

Table 3: Accuracy in predicting atomic forces on the GDB-10to13 benchmark relative to high-quality 

MP2/TZ reference calculations. Shown are the MAD/RMSD (in kcal/mol/Å) for individual force 

components. MP2/DZ uses a smaller basis set and is computationally more efficient than MP2/TZ.  

 ANI-1ccx ANI-1x ωB97X-D3 MP2/DZ 
MP2/TZ 3.4/5.3 4.7/7.1 3.7/5.9 4.6/5.9 
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functional, closely mirrors the behavior of DFT. Similarly, the transfer learning-based ANI-1ccx model 

tends to mirror its CCSD(T)*/CBS reference calculations and substantially outperforms DFT compared to 

the target reaction energies. Overall MAD/RMSD on the HC7/11 benchmark for DFT, ANI-1x, ANI-1ccx, 

and CCSD(T)*/CBS are 16.0/21.7, 17.8/23.1, 1.9/2.0 and 1.5/1.8 kcal/mol, respectively. 

Figure 3b displays a similar comparison for the five medium sized organic C, H, N, O containing molecules 

of the ISOL663 isomerization energy benchmark. A similar trend is seen here as with the HC7/11 

benchmark, where ANI-1x deviations tend to correlate with the large deviations of its reference DFT. The 

transfer learning-based model follows the accuracy of the CCSD(T)*/CBS reference well. For the ISOL6 

reactions shown in Figure 3b, overall MAD/RMSD for DFT, ANI-1x, ANI-1ccx, and CCSD(T)*/CBS are 

4.0/4.7, 5.1/5.6, 1.5/1.6 and 1.0/1.1 kcal/mol, respectively.  

Molecular torsions play an import role in computational drug discovery (e.g. in screening ligands for 

favorable protein binding) and in modeling the assembly of soft materials. Therefore, we compare the new 

ANI-1ccx transfer learning-based potential against various QM and molecular mechanics (MM) based 

methods from the molecular torsion benchmark of Sellers et. al.64 This benchmark provides a measure of 

accuracy for a model at reproducing potential energy profiles from a diverse set of molecular torsions. 

Figure 4 provides a comparison of results for three highly accurate but computationally expensive QM 

methods, four moderately computationally expensive QM methods, and two commonly used small 

molecule force fields. These data were obtained from Sellers et. al.64 We also add the ANI potentials (ANI-

1ccx, ANI-1ccx-R, and ANI-1x) used in this work, as well as CCSD(T)*/CBS reference energy 

calculations. Other semi-empirical QM and MM methods studied in Sellers et al. are left out of this 

comparison since each one performed worse than OPLS2005 on the benchmark. The red QM methods (first 

three from the left) are computationally intense QM methods which used MP2 restrained optimized 

structures, while the green QM methods were all optimized using their own forces. The ANI and MM 

models also carried out restrained optimizations using their own forces. The ANI-1x potential, trained to  
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Figure 3: Accuracy in predicting reaction and isomerization energy differences on the (a) HC7/11 and (b) 

ISOL6 benchmarks, relative to CCSD(T)/CBS. Methods compared are the ANI-1ccx transfer learning 

potential, ANI-1x trained only on DFT data, the DFT reference (ωB97X-D3), and our coupled cluster 

extrapolation scheme CCSD(T)*/CBS. The top panel provides the HC7 reactions numbered 1, 2, 6, and 7 

and bottom panel shows the ISOL6 reactions numbered 1-5. 
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Figure 4: Accuracy in predicting torsional energies relevant to drug discovery. Methods compared are QM 

(red and green), molecular mechanics (blue) and ANI (orange) performance on 45 torsion profiles 

containing C, H, N and O atomic elements. The grey dots represent the MAD of a given torsion scan vs. 

gold standard CCSD(T)/CBS. The box extends from the upper to lower quartile, the black horizontal line 

in the box is the median, and the “whiskers” guide the eye to identify outliers as in Sellers et al64. 

the ANI-1x DFT dataset plus active learning-based dihedral corrections, obtains a median MAD of 0.47 

kcal/mol on the benchmark. The ANI-1x potential performs similarly to MP2/6-311+G** and to the ANI- 

1ccx-R potential. The DFT trained ANI-1x also outperforms OPLS3, one of the most accurate and widely 

used small molecule force-fields available. Further, the transfer learning-based ANI-1ccx potential achieves 

a median MAD of 0.23 kcal/mol, a 51% reduction in error over ANI-1x vs. the CCSD(T)/CBS target. ANI- 

1ccx exceeds the performance of all DFT (B3LYP-D3/6-311+G**, B3LYP/6-311+G**, and ωB97X-D3/6-

31g*) methods utilized in this study, approaching the accuracy of higher-level, and costlier, ab initio QM 
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methods (MP2/CBS and MP2.X/CBS). The ANI-1ccx potential achieves these prediction accuracies 

without an increase in computational cost over the original ANI-1x potential. Each ANI-1ccx restrained 

optimization (averaged over the 36 angles for each of the 45 torsions) took approximately 0.58s on a single 

NVIDIA V100 GPU. A similar timing comparison was reported in Sellers et al.64 for the QM and MM 

methods. Comparing to this literature result, the ANI model on a single GPU is (on average) as fast as 

OPLS3 on a CPU and 6200 times faster than B3LYP-D3 on a CPU. While a GPU to CPU comparison with 

the use of different optimization methods is not exactly a fair comparison, it does provide a sense of the 

computational affordability of the ANI potential. Moreover, the ANI potential scales more easily than QM, 

exhibiting linear scaling and a small prefactor.  

Conclusions and outlook 
Great progress has been made in creating faster and more accurate QM methods, but even in modern 

computer architectures the cost involved in the improved accuracy becomes prohibitive very quickly. With 

the advent of machine learning, we can and must make the leap to modern statistical and data-driven 

approaches, which have the potential to drive rapid progress in drug and materials design as well as 

applications to natural systems such as proteins. The ANI-1ccx potential (available at 

https://github.com/isayev/ASE_ANI) presented in this work is an attractive alternative to density functional 

theory approaches and standard force fields for conformational searches, molecular dynamics, and the 

calculation of reaction energies. The availability of high-quality QM reference data, produced with a new 

extrapolation scheme to CCSD(T)/CBS, allowed us to use transfer learning techniques to build a chemically 

accurate universal ANI potential. Accuracy benchmarks show that the transfer learning-based ANI-1ccx 

outperforms DFT on test cases where DFT fails to accurately describe reaction thermochemistry and on 

small molecule torsion benchmarks. We conclude that subtle but important physics captured by gold-

standard QM is modeled by ANI-1ccx. Comparisons between transfer learning and naïve training to only 

the small dataset of high quality QM calculations show that transfer learning is a superior approach. As 

such this work offers a computationally efficient and accurate ML-based molecular potential for general 

use across a broad range of chemical systems. 
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S1 Methods 

S1.1 Detailed description of the CCSD(T)*/CBS scheme 

The linear-scaling domain-localized DPLNO approximation, and its accuracy, are primarily 
controlled by an electron pair cutoff threshold. There are three pre-set thresholds implemented in 
ORCA: LoosePNO, NormalPNO, and TightPNO, which are recommended for rapid estimation, 
general thermochemistry and kinetics, and non-covalent interactions and molecular 
conformations, respectively.9 They were benchmarked against two high-quality and distinct 
datasets: S6610 for intermolecular interaction energies relevant to biomolecules and FH5111 for 
reaction energies of medium-sized organic molecules. The effect of tightening the DPLNO 
threshold is very significant for these datasets: TightPNO setting reduces energy RMSD from 0.36 
to 0.06 kcal/mol for S66 and from 0.38 to 0.16 kcal/mol for HF51, compared to NormalPNO.9 
Therefore, in order to obtain a high-quality approximation to CCSD(T) energies TightPNO 
thresholds must be properly chosen. 

Another key component of our efficient computational method is the complete basis set (CBS) 
extrapolation. We have applied the widely used two-point “EP1”12 extrapolation scheme originally 
proposed by Hobza and coworkers13. The total energy is computed as the sum of the MP2/CBS 
extrapolated energy and the difference between CCSD(T) and MP2 energies calculated with a 
smaller basis set. For the sake of computational efficiency we have used cc-pVTZ and cc-pVQZ 
basis sets for extrapolation of HF and MP2 energies using the formulas of Halkier14 and Helgaker15 
(𝛼*+ = 5.46, 𝛽*+ = 3.05 16). The difference between CCSD(T) and MP2 energies was estimated 
with the cc-pVTZ basis set as shown in Equation 1. 
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 𝐸-.-(/012 ≈ 𝐸45012 + 𝐸789012 + :𝐸002;(=)
??@AB=C − 𝐸789

??@AB=CE 1 

The most computationally demanding term in the Equation 1 is 𝐸002;(=)
??@AB=C , which we need to 

calculate with at least TightPNO level of accuracy. To reduce computational cost further, we 
approximated this term using an idea similar to the CBS extrapolation approach above: TightPNO 
and NormalPNO-CCSD(T) energies were calculated with a smaller basis set and the difference 
was added to the NormalPNO-CCSD(T)/cc-pVTZ energy. Summarizing, the CCSD(T)/cc-pVTZ 
part in Eq. 1 was estimated with equation 2.  

 𝐸002;(=)
??@AB=C ≈ 𝐸F.GH(/@;8IFJ@002;(=)

??@AB=C + (𝐸=KLM-@;8IFJ@002;(=)
??@AB;C

− 𝐸F.GH(/@;8IFJ@002;(=)
??@AB;C ) 

2 

Such a composite scheme for approximating CCSD(T)/CBS energies is computationally efficient, 
as it requires computation of Tight-DPLNO-CCSD(T) with at most a double-zeta basis set. The 
robustness of this suggested CCSD(T)*/CBS scheme is evaluated against two distinct datasets 
with high-quality CCSD(T)-F12 data available: S66 benchmark17 for weak intermolecular 
interactions and the extensive W4-11 benchmark18 for thermochemistry. CCSD(T)*/CBS 
performs excellent on both benchmarks (See Table S1). 

In Table S1, the extrapolation schemes are noted with the “small” basis set, which is used to 
calculate ΔCCSD(T) with respect to MP2, the MP2/CBS energy obtained using extrapolation with 
basis set with higher cardinal number. CCSD(T)*/CBS is equal to the TightPNO-
CCSD(T)*/CBS(TZ) scheme, which was applied for obtaining our reference training dataset. 
TightPNO-CCSD(T)* denotes that the ΔTightPNO term is the difference between TightPNO and 
NormalPNO energy using a basis set with lower cardinal number. The data in Table 1 shows that 
CCSD(T)*/CBS provides excellent balance between cost and performance with errors no worse 
than the canonical CCSD(T)/CBS(aDZ) method. It also should be noted that incorporating the 
ΔTightPNO approach helps to achieve much lower error, compared to NormalPNO, without 
sacrificing much computational efficiency.  

Table S1: Computational efficiency for example small molecules and performance of the 
CCSD(T)/CBS approximation (CCSD(T)*/CBS) evaluated against CCSD(T)-F12 reference data 
and compared to other composite schemes. 

Method 
CPU-core hoursa MAE / RMSD, kcal/mol 

Alanine Aspirin S66b W4-11c 
CCSD(T)/CBS(aDZ) 1.53 42.79 0.08 / 0.10 1.58 / 1.85 
CCSD(T)/CBS(haTZ) 9.13 427.00 0.03 / 0.04 1.31 / 1.53 
NormalPNO-CCSD(T)/CBS(aDZ) 0.78 4.63 0.31 / 0.39 2.35 / 2.59 
NormalPNO-CCSD(T)/CBS(haTZ) 1.85 16.83 0.27 / 0.36 1.91 / 1.66 
TightPNO-CCSD(T)/CBS(TZ) 1.56 16.70 0.16 / 0.10 1.40 / 1.50 
CCSD(T)*/CBS (our reference) 1.44 7.44 0.09 / 0.10 1.46 / 1.55 
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a Calculations performed on an Intel(R) Xeon(R) E5-2630 v3 @ 2.40GHz CPU 
b Reference data from 17 
c Reference data from 18, averaged for all subsets of W4-11. 

d Original reference data from 10 
e Revised S66 data from 19 

S1.2 Neural network model details 

S1.2.1 Neural network architecture 

The models trained in this work all utilize variable size networks for different atomic species. This 
is done since the molecules in the ANI-1x datasets are proportioned 48% H, 30% C, 13% N, and 
9% O. Table S2 provides details of each model architecture used in this work. 

Table S2: Fully connected neural network architectures for each atom type. 

Hydrogen Network Architecture 
 Layer1 Layer2 Layer3 Layer4 
Nodes 160 128 96 1 
Activation CELU6 CELU CELU Linear 
Regularization L2 (1.0E-4) L2 (1.0E-5) L2 (1.0E-6) None 

Carbon Network Architecture 
 Layer1 Layer2 Layer3 Layer4 
Nodes 144 112 96 1 
Activation CELU CELU CELU Linear 
Regularization L2 (1.0E-4) L2 (1.0E-5) L2 (1.0E-6) None 

Oxygen and Nitrogen Network Architecture 
 Layer1 Layer2 Layer3 Layer4 
Nodes 128 112 96 1 
Activation CELU CELU CELU Linear 
Regularization L2 (1.0E-4) L2 (1.0E-5) L2 (1.0E-6) None 

 

S1.2.2 Atomic environment vector parameters 

The ANI model atomic environment vector (AEV) is computed using the in-house NeuroChem 
software suite. These AEVs are computed identically to those published in the ANI-1 work.7 In 
this work the atomic elements C, H, N, and O are described by the AEVs (using the parameters 
below) yielding a total of 384 AEV elements per atom. The AEV parameters used to train each 
model are supplied below. 

Radial Parameters: 

• Radial cutoff = 5.2	Å 
• 𝜂Q(RK(/  = [16] 
• 𝑅TQ(RK(/ = [0.900000, 1.168750, 1.437500,1.706250, 1.975000,2.243750,2.51250,	 

                  2.781250, 3.050000,3.318750, 3.587500, 3.856250,4.125000, 4.39375, 
	4.662500, 4.931250]	Å 
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Angular Parameters: 

• Angular cutoff = 3.5	Å 
• 𝜂deLf/(G = [8] 
• 𝑅TQ(RK(/ = [0.900000, 1.550000, 2.200000, 2.850000]	Å 
• 𝜁 = 	 [32.00000]  
• 𝜃T = [0.19634954, 0.58904862,0. 9817477,1.3744468,1.7671459, 

	2.1598449, 2.552544,2.945243] 
 
S1.2.3 Training details 

Prior to training the ANI models, a linear fitting to the energy per atomic species is performed—
essentially, an empirical self-energy term for each element. This linear fitting is over the entire 
dataset and the fit is performed with respect to the number of each atomic element in a given 
molecule as the input. The ANI models are then trained to the QM calculated energy minus the 
linear fitted prediction. The energy obtained from this process is roughly analogous to the process 
of computing an atomization energy, but without any per-atom bias. The linear fitting parameters 
(in Hartrees) used in this work are provided below. 

ANI-1x DFT Linear fitting parameters: 

• H = -0.600952980000 
• C = -38.08316124000 
• N = -54.70775770000 
• O = -75.19446356000 

ANI-1x CCSD(T)*/CBS Linear fitting parameters: 

• H = -0.5991501324919538 
• C = -38.03750806057356 
• N = -54.67448347695333 
• O = -75.16043537275567 

ANI-1x DFT to CCSD(T)*/CBS ∆ Linear fitting parameters: 

• H = -0.003172990955487249 
• C = 0.04396089482092749 
• N = 0.03789128635905942 
• O = 0.029194038876402876 

The following hyperparameters are used during training for all ANI models. These parameters 
have been determined through rigorous hyperparameter searches in prior ANI potential5,7 
development. 

• Mini-batch size: 2560 molecules 
• Initial learning rate: 1.0E-3 
• Patience for annealing learning rate: 100 
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• Multiplier for annealing learning rate: 0.5 
• Learning rate for training termination: 1.0E-5 
• ADAM8 stochastic optimization is used with default parameters  

A single epoch of training the ANI-1x DFT models takes 12.5s while a single epoch for training 
the ANI-1x CCSD(T)*/CBS model takes 1.25s on a single Titan V. Approximately 1450 epochs 
of training are carried out on all models before convergence. This leads to a total training time of 
5 hours for the DFT models, 5.5 hours for training the DFT plus transfer and ∆-learning models, 
and 0.5 hours for training the model which was only trained to the CCSD(T)*/CBS data. 

S1.2.4 Ensemble held out test set results 

Table S2 provides the 1/8th held out test set mean absolute error (MAE) and root mean squared 
error (RMSE) for the DFT trained ANI-1x and CCSD(T)*/CBS trained ANI-1ccx and ANI-1ccx-
R single models from the ensemble. The ANI-1ccx models were trained to a small dataset (500k) 
still fits to its reference as well as the ANI-1x models trained to a larger dataset (5M). However, 
the ANI-1ccx-R models, which were only trained to the coupled cluster data with no transfer 
learning, performs significantly worse on the held out test set. From this we conclude that transfer 
learning is performing as designed by providing the performance of a model trained to 5M 
datapoints with only 500k datapoints. 

Table S2: ANI held out test set performance. In the case of ANI-1x the errors are with respect to the 
reference DFT, while for ANI-1ccx and ANI-1ccx-R the errors are with respect to the CCSD(T)*/CBS 
reference.  

Model ID 
(from 8x ensemble) 

ANI-1x test set 
performance 

ANI-1ccx test set 
performance 

ANI-1ccx-R test set 
performance 

MAE RMSE MAE RMSE MAE RMSE 
1 1.75 2.55 1.78 2.54 2.30 3.35 
2 1.78 2.60 1.82 2.80 2.26 3.30 
3 1.77 2.58 1.78 2.63 2.26 3.26 
4 1.73 2.53 1.77 2.55 2.24 3.23 
5 1.76 2.66 1.76 2.51 2.24 3.25 
6 1.73 2.54 1.75 2.50 2.26 3.26 
7 1.75 2.62 1.76 2.47 2.24 3.34 
8 1.76 2.61 1.79 2.59 2.21 3.20 

Mean 1.75 2.59 1.78 2.57 2.25 3.27 
 

S1.3 Active learning molecular torsions 

Since molecular dynamics simulations and normal mode perturbation is used for sampling the 
ANI-1x dataset, molecular torsion barriers can be poorly described by the ANI-1x potential. In 
other words, ANI torsion barriers tend to have higher error than near equilibrium conformations 
due to the sampling methods used to generate training data. To reduce this error and improve 
barrier sampling, we develop an iterative and entirely ML driven active learning technique for 
automatically sampling molecular torsions. We begin with a dataset of SMILES [opensmiles.org] 
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strings; in this work we start with a portion of the ChEMBL1–3 database containing less than 20 
total atoms. We also include the SMILES strings for molecules in the Genentech torsion 
benchmark4 since these molecules represent a diverse set of dihedrals in the simplest chemical 
environment that they can be found. From the resulting set of SMILES strings we carry out active 
learning iterations as follows: 

1. Randomly select N smiles from the database 
2. Embed the N molecules in 3D space 
3. Randomly select a rotatable bond, and direction of rotation 
4. Conduct relaxed scan every 10 degrees (36 points) of each selected torsion using the 

current ANI model 
5. Carry out an ensemble disagreement test (see our work on active learning for details; a 

selection criterion of 𝜌j = 0.2 kcal/mol is used in this work)5 on the 36 * N generated 
molecular conformations 

6. For all M conformations that fail the ensemble disagreement test, compute ANI normal 
modes 

7. Randomly perturb the M conformations along the normal modes to a maximum distance 
of 0.2Å along each mode. Generate 4 normal mode sampled (NMS) points for each M 

8. Generate DFT energies and forces for all NMS points 
9. Add resulting data to the training dataset and retrain ANI model 
10. Go back to 1 and iterate 

We complete 20 iterations of the above scheme resulting in the generation of 202k extra DFT 
datapoints. We subsample 19k points from this dataset generation using our CCSD(T)/CBS 
extrapolation scheme. Figure S1 compares ANI-1ccx and ANI-1x with and without the active 
learning generated dihedral corrections. 
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Figure S1: Comparison of ANI model performance with and without transfer learning and dihedral 
active learning reparameterization on 45 torsion profiles containing the atomic elements C, H, N, 
and O. The ANI potentials with ‘-d’ appended are reparametrized for better torsions and with ‘-
nd’ represent no reparameterization data was used during training. The grey dots represent the 
MAD of a given torsion scan vs. gold standard CCSD(T)/CBS. The box extends from the upper to 
lower quartile of the MAD distribution, the black horizontal line in the box is the median MAD. 
All ANI methods carried out using restrained optimization with ANI forces. 

Table S3. Computed conformer ∆E on the GDB-10to13 benchmark (all conformers within 100 
kcal/mol of the global minimum) for the transfer learning-based ANI-1ccx and the ∆-learning based 
ANI-1ccx-∆ potential. Uncertainties are the standard deviation of each ANI model’s error from 
the ANI ensemble used for the mean prediction. Energy units are kcal/mol. 

 ANI-1ccx ANI-1ccx-∆ 
MAD 1.46±0.02 1.44±0.04 
RMSD 2.07±0.04 2.04±0.15 

Table S4. GDB-10to13 benchmark results comparing various ANI potentials and DFT.  Errors 
for conformer energy differences (∆𝐄) and potential energies (𝐄) for all ANI potentials. ωB97x-
D3/6-31G* errors are also provided. The blank cells are for values which cannot be compared 
because absolute energy differences between DFT and CCSD(T)*/CBS are arbitrary. µ and σ are 
the arithmetic mean and standard deviation, respectively. M and R are the MAE and RMSE, 
respectively. Units of energy are kcal/mol. 
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Model ∆𝐄𝐌
𝛍  ∆𝐄𝐌𝛔  ∆𝐄𝐑

𝛍  ∆𝐄𝐑𝛔  𝐄𝐌
𝛍  𝐄𝐌𝛔  𝐄𝐑

𝛍  𝐄𝐑𝛔  

ANI-1x 3.84 0.07 5.82 0.12 -- -- -- -- 
ANI-1ccx 2.24 0.02 3.24 0.04 2.22 0.05 3.02 0.04 

ANI-1ccx-∆ 2.21 0.07 3.18 0.10 -- -- -- -- 
ANI-1ccx-R 2.77 0.05 3.97 0.08 2.72 0.08 3.65 0.08 

ωB97x-D3/6-31G* 3.26 -- 4.99 -- -- -- -- -- 
 

Table S5: Performance of the two target methods and two ANI potentials used in this work. The 
performance comparison is on the HC7 hydrocarbon reaction energy benchmark and the ISOL6 organic 
molecule isomerization energy benchmark. 

 CCSD(T)*/CBS ANI-1ccx 𝝎b97x/6-31g(d) ANI-1x 
HC7 1.5/1.8 1.9/2.0 16.0/21.7 17.8/23.1 

ISOL6 1.0/1.1 1.5/1.6 4.0/4.7 5.1/5.6 
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Figure S2: Diagram of the delta learning techniques evaluated in this work. ∆-learning uses the 
pretrained ANI DFT model to predict an energy, then a second network is trained to correct the 
DFT prediction to better predict the CCSD(T)/CBS-extrapolated data. The resulting scheme 
requires two networks for prediction and is thus more expensive than the transfer learning. 
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Figure S3: Comparison of four different ANI potentials at predicting relative energies (∆E) 
between all conformers for each molecule in the GDB-10to13 (CCSD(T)/CBS* computed) 
benchmark. These log-scale density correlation plots show a) ANI-1ccx (transfer learning-based 
CCSD(T)*/CBS trained model), b) ANI-1ccx-∆ (∆-learning based CCSD(T)*/CBS trained 
model), c) ANI-1ccx-R (model trained only to the CCSD(T)*/CBS dataset), and d) ANI-1x (DFT 
trained model).  
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Figure S4: Per atom corrected atomization energy difference (∆𝐸() distribution for ωB97X-D3/6-31G* 
and ANI-1ccx vs. CCSD(T)*/CBS reference data. An average correction of 33 kcal/mol was applied to the 
DFT data so it better fits the CCSD(T)*/CBS atomization energies. This correction came from a non-trivial 
linear fitting to the atomization energy difference between DFT and CCSD(T)*/CBS, based on the number 
of each atomic element. No such correction was applied to the ANI-1ccx data. 
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Table S6: Reference and calculated energies (kcal/mol) for the HC7/11 benchmark. Reference 
calculations are obtained from Peverati, Zhao, and Truhlar a. The rows of the table correspond to 
the index given in the HC7/11 portion of Figure 3 in the main article. 

 

   

Reaction details Referencea ANI-1ccx CCSD(T)*/CBS ANI-1x 𝝎b97x/6-31g(d) 
E2 → E1 14.34 15.62 13.78 34.60 28.18 
E3 → E1 25.02 27.74 23.12 48.33 39.66 

Octane-a →	 Octane-b 1.90 0.37 -1.25 2.65 1.70 
4C𝐻+ + 𝐶v𝐻w+ → 5𝐶9𝐻v 9.81 7.86 8.73 7.18 6.27 
6C𝐻+ + 𝐶x𝐻wx → 7𝐶9𝐻v 14.84 11.93 13.06 10.76 9.31 

Adamantane → 3C𝐻+ + 2𝐶9𝐻9 193.99 196.16 195.92 236.80 237.96 
E4 → 3C𝐻+ + 2𝐶9𝐻9 127.22 127.76 126.87 157.66 157.28 

 a Reference data from20 

E1 (1) E2 (22) E3 (31) 
E4 

(Bicyclo[2.2.2]octane) 
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Table S7: Reference and calculated energies (kcal/mol) for the ISOL6a benchmark. Reference 
calculations are obtained from Peverati, Zhao, and Truhlar b. The rows of the table correspond to 
the index give in the ISOL6 portion of Figure 3 in the main article. One reaction involving the 
atomic element fluorine (F) was left out since the ANI potential in this work is only fit to CHNO. 

 

  

Reaction Referencea ANI-1ccx CCSD(T)*/CBS ANI-1x 𝝎b97x/6-31g(d) 
1 9.77 8.22 10.54 5.23 8.53 
2 21.76 20.95 21.23 20.15 20.69 
3 6.82 4.49 4.90 -2.08 0.75 
4 33.52 35.20 34.06 27.93 26.50 
5 5.30 6.43 6.30 0.45 0.48 

 a Reference data from21 
 b Reference data from20 

 

 

 

3 (10) 

4 (13) 

1 (3) 

2 (9) 5 (14) 
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