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ABSTRACT: Despite the ubiquity of stacking interactions between heterocycles and aromatic amino acids in biological systems, our ability

to predict their strength, even qualitatively, is limited. Based on rigorous ab initio data, we have devised a simple predictive model of the

strength of stacking interactions between heterocycles commonly found in biologically active molecules and the amino acid side chains Phe,

Tyr, and Trp. This model provides reliable predictions of the stacking ability of a given heterocycle based on readily-computed heterocycle

descriptors, obviating the need for quantum chemical computations of stacked dimers. We show that the values of these descriptors, and

therefore the strength of stacking interactions with aromatic amino acid side chains, follow simple predictable trends and can be modulated by

changing the number and distribution of heteroatoms within the heterocycle. This provides a simple conceptual model for understanding

stacking interactions in protein binding sites and tuning the strength of stacking interactions in drug design.

Introduction

Arene stacking interactions, broadly defined as approximately par-

1-3

allel face-to-face interactions between aromatic rings,"” impact
everything from the binding of ligands by proteins to the solid-state
packing of organic electronic materials and the performance of
asymmetric catalysts.*'® By understanding the factors that impact
the strength of these interactions, we can explain their role in chem-
ical and biochemical systems and exploit their power in the context
11

of design.!' Stacking interactions between heterocycles and the

aromatic amino acid side chains Phe, Tyr, and Trp are particularly

important in biological systems,"*

contributing to the binding of
artificial inhibitors, natural substrates, co-factors, and nucleic acids
by proteins (see Fig 1).'*?° Changes in the number and distribution
of heteroatoms within such heterocyclic systems can modulate
their ability to stack with binding site aromatic residues, tuning

their overall binding over a broad range.">*"*

The favorable stacking between aromatic rings has long been rec-
ognized, and Hunter and Sanders” provided a foundational con-
ceptual model of the factors that impact the strength and geometry
of these interactions. Over the last 15 years, high-accuracy quan-
tum chemical studies and new experiments have provided a more
nuanced view of these interactions, particularly with regard to the
impact of substituents.”*** However, despite progress in the area of

heterocycle stacking,*

the factors that impact how strongly a
given heterocycle will stack are still not completely understood.
This limits our ability to understand stacking interactions in many
biological contexts and hamstrings efforts at structure-based drug
design. For example, even though tools exist for enumerating po-
tential heterocyclic fragments during exploratory chemistry and
lead optimization,*¢ there is currently no means of ranking the
ability of such fragments to stack with binding site aromatic resi-

dues short of expensive quantum chemical computations.

Figure 1. Examples of stacking interactions between heterocycles and
aromatic amino acid side chains in biological systems. A. Inhibitor VX-
787 (grey) bound to the influenza A viral polymerase (PDB: 4P1U); B.
A quinazolinone-based inhibitor (grey) bound to a zinc-finger ubiqui-
tin binding domain (PDB: 6CEF); C. Folate (grey) bound to the hu-
man folate receptor (PDB: 4KMZ). D. Single stranded DNA (green)
bound to human TDP-41 (PDB: 41UF).

In 2009, Hohenstein and Sherrill® published high-accuracy gas-
phase computations of the pyridine-benzene dimer, showing that
electrostatic interactions result in a 0.5 kcal mol™ enhancement in
the stacking interaction compared to the benzene dimer. Subse-
quently, Stahl and co-workers" published a guide to molecular
interactions for medicinal chemists based on analyses of crystal
structure data and representative drug binding sites. This included



the general advice that stacking interactions of electron-deficient
rings are generally preferred over stacking of electron-rich rings and
noted that the preferred orientation of stacked arenes can often be
rationalized by the alignment of molecular dipoles or partial atomic
charges.* In a different context, Corminboeuf and co-workers*
showed that n-electron depletion correlates with the strength of
stacking interactions, lending further support to the notion that
electron-deficient arenes stack more effectively than their electron-
rich counterparts.

There have been several efforts to distill our understanding of het-
erocycle stacking into predictive models based on simple molecular
descriptors. Such models could potentially be used to predict the
strength of stacking interactions without the need for expensive
quantum chemistry computations. For instance, Huber and co-
workers*” demonstrated that molecular dipole moments are corre-
lated with the strength of stacking interactions of monocyclic het-
erocycles with benzene. However, subsequent work by An, et al.*
on stacking interactions between a broader set of biologically rele-
vant heterocycles and 9-methyladenine showed that dipole mo-
ments alone do not capture trends in stacking interactions for bicy-
clic and larger heterocycles. Thus, it appears that the development
of a predictive model of the strength of stacking interactions appli-
cable to the diverse heterocycles appearing in biologically active
molecules will require more advanced molecular descriptors.

We have demonstrated the utility of recently developed heterocycle

descriptors® ™

in predictive models of non-covalent interactions
relevant to biological systems. For instance, we were able to obtain
robust predictions of stacking interactions between Asp-Arg salt-
bridges and heterocycles commonly found in pharmaceuticals®
using heterocycle descriptors derived from the electrostatic poten-
tial (ESP) and electric field of the heterocycle. Here, we use these
descriptors to develop a predictive model of the strength of stack-
ing interactions between heterocycles found in biologically active
molecules and Phe, Tyr, and Trp side chains, which informs the
development of an understanding of these interactions.

Results and Discussion

We systematically searched for low-lying stacked dimers of toluene,
p-methylphenol, and 3-methylindole (as models of Phe, Tyr, and
Trp side chains, respectively; see Chart 1) with a training set of 46
heterocycles that are representative of those in biologically active
molecules (1-46, Chart 1).** The gas-phase interaction energies
for all unique stacked dimers were then computed using robust ab
initio methods (See Computational Methods). Interaction ener-
gies for the global minimum energy stacked dimers of each hetero-
cycle with Phe, Tyr, and Trp are listed in Table 1. Figure 2 shows
geometries of selected dimers. The computed interaction energies
for the heterocycles in this training set span more than 10 kcal mol”
'. This includes a span of 7.2 kcal mol™ across the monocycles,
from -3.6 kcal mol™ for pyrazole (8) stacked with Phe to ~10.8 kcal
mol™ for 1,2,3,4-tetrazine (25) stacked with Trp. As for the bicy-
clic systems, computed stacking energies range from -7.1 kcal mol
! for isoindole (28) stacked with Phe to —15.8 kcal mol™ for 3,9-
dihydro-purine-2,6-dione (37) stacked with Trp. Stacking interac-
tions of heterocycles with Tyr are, on average, ~10% stronger than
those with Phe, while stacking interactions with Trp are ~40%
stronger. Apart from this broad trend, there is considerable spread
in predicted interaction energies for each amino acid side chain.

This highlights the wide range over which heterocycle stacking
interactions with a given aromatic amino acid side chain can vary
while also revealing a powerful means of tuning stacking interac-

tions in the context of drug design.'>*"**
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Figure 2. Stacked dimers of selected heterocycles with Phe (top) and
Trp (bottom) side chains.

In order to understand the trends in stacking interaction energies
across this set of heterocycles, the stacked dimers were analyzed using
symmetry-adapted perturbation theory (SAPT).5* SAPT enables the
decomposition of interaction energies into electrostatic, dispersion,
exchange-repulsion, and induction effects, and can be used to identify
the effects that drive trends in interaction energies.* Overall, these data
show that the stacking abilities of the heterocycles in Chart 1 are driven
by dispersion and electrostatic effects (see SI Figure S1). This is in
accord with the previous results of Hohenstein and Sherrill®® for the
stacked benzene-pyridine dimer.

A. Predictive Models of Stacking Interactions

Based on this insight, we sought to develop predictive multivariate
models of the stacking energy between each of these heterocycles
and the aromatic amino acids Phe, Tyr, and Trp based on readily
computed descriptors. We considered our recently developed het-
erocycle descriptors™ along with other physically motivated quanti-
ties such as dipole moment, quadrupole moment, volume, and
polarizability (see SI Table S7 for full list of descriptors), focusing
on descriptors that capture electrostatic effects and dispersion in-
teractions. Initial exploratory fitting of the data for Phe, Tyr, and
Trp separately revealed that the coefficients in each fit were propor-
tional to the size of the amino acid side chain. This motivated con-
sideration of functional forms in which the total interaction energy
is scaled by the number of heavy atoms in the amino acid side chain
(Niz2)-

Ultimately, we were able to develop four predictive models of the
stacking interaction of heterocycles with Phe, Tyr, and Trp con-
taining four adjustable parameters and one with three parameters.
These five models were fit to the global minimum energy stacking
interaction energies of 1-46 and provide nearly equally robust pre-
dictions for the training set data. Two are presented as equations 1
and 2 below (see SI Figures $2-SS for other models):



Chart 1. Heterocycle training set along with the model amino acid side chains Phe, Tyr, and Trp.
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Table 1. Interaction energies for global minimum energy stacked dimers of heterocycles 1-58 with Phe, Tyr, and Trp side chains along with

heterocycle descriptors, all in keal mol™.?

Het ESPhg, ESPiag. ESPhgy E0e E E0P Het ESPhc, ESPis,. ESPhs EL E E7

int int int int int int

1 -59 14.7 3.0 - - -4.5 31 -0.7 21.8 11.3 -94 -112 -11.0
2 -39 6.3 -0.7 -42  -43 -5.3 32 -1.1 14.9 8.2 -79 -9.1 -11.8
3 -4.5 7.0 -0.9 -45 =52 -5.8 33 -3.0 12.4 4.7 -7.6 -83 -136
4 -1.8 11.5 3.4 -S.1 -5.1 -7.2 34 -0.3 15.3 6.0 -94 -11.7 -124
S -1.8 9.0 2.3 -5.1 -5.1 -6.7 35 -1.0 20.4 7.2 -92  -10.5 -10.2
6 -2.4 10.1 2.7 -55 -S58 -7.2 36 1.1 16.4 8.9 -94 -11.5 -14.0
7 -2.5 8.8 1.9 -5.5 =-S5 -7.3 37 09 27.1 14.8 -88 -112 -144
8 -4.0 12.2 3.2 -36 45 -5.1 38 -39 10.2 1.6 -8.1 -85 -142
9 -3.7 17.7 6.2 - - -84 39 =23 16.1 42 -89 -9.2 -15.8
10 -1.7 13.8 6.7 -43 43 - 40 -1.8 9.1 3.0 -8.6 -93 -10.5
11 -1.8 17.8 6.9 - - -6.0 41 -4.2 12.8 33 -7.7 -9.1 -11.8
12 -2.1 7.0 2.7 -48 -S.1 -6.2 42 =32 22.8 8.6 -9.1 -10.1 -10.7
13 0.0 13.0 6.6 -52 48 - 43 -5.8 132 3.0 -100 -11.2 -10.9
14 -0.5 12.7 4.1 -6.1 -6.3 -9.1 44 -4.6 6.9 -0.6 -8.8 -99 -133
15 -4.7 7.4 -14 -45 -49 -6.0 45 -5.0 7.6 -0.5 -9.2 -102 -142
16 -2.8 10.0 2.2 -5.6 -5.8 -7.7 46 -4.4 10.6 2.5 -98 -114 -11.8
17 -0.9 54 1.6 -60 -64 -8.1 Mean -7.0 -7.8 -9.9
18 -0.8 8.8 4.1 -6.1 -6.4 -84 47 0.2 9.3 4.6 - -5.6 -7.2
19 -0.7 154 S.5 -6.5 -6.7 -9.5 48 0.3 129 4.9 -5.7 -5.7 -8.0
20 1.1 3.8 2.5 -59 -6.6 -4.5 49 -4.8 11.0 2.1 -7.3 -7.6 -9.0
21 1.1 12.3 6.2 -70 -7.6 =53 50 -3.5 15.0 3.8 -8.3 -89 -113
22 1.2 17.6 8.5 -73 -86 -84 S1 -4.2 10.2 2.3 -7.4 -79 -10.6
23 29 7.0 5.6 -68 -7.2 -99 52 -3.7 7.8 0.8 -7.8 -8.1 -9.9
24 3.0 11.2 6.4 -7.1 -78 -103 83 -5.3 8.0 -13 -7.3 -8.0 -10.0
25 3.1 16.8 10.6 -80 -87 -9.8 54 -2.0 10.5 3.8 -8.5 -98 -11.3
26 0.1 224 9.3 -73 =73 -99 ss 0.0 9.7 5.2 -9.1 -103 -11.5
27 -6.2 15.5 3.5 -73 -86 -10.8 56 -1.9 14.1 2.9 -87 -11.0 -11.9
28 -6.7 17.7 4.4 -7.1 -78 -104 §7 -2.1 14.5 39 -8.6 -93 -11.9
29 -S.1 114 1.1 -76 -81 -112 S8 -2.0 18.3 6.4 -89 -9.6 -132
30 4.5 17.0 6.4 -6.4 9.3 -104

* Dashes indicate that no stacked local energy minima were located. The tautomers of 10 and 13 were also considered but no stacked minima were
located. Mean stacking interaction energies are for the training set (1-46).
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Figure 3. DLPNO-CCSD(T) interaction energies vs predicted inter-
action energies from equations 1 (A) and 2 (B) for global minimum
energy stacked dimers of Phe, Tyr, and Trp side chains with the train-
ing set (1-46). The strip plots on the right show the same computed
interaction energies grouped by amino acid.

AE,..q = Njj4 (—0.036ESBf{¢t, — 0.013ESBHSL, 1)
—0.095Nf£") — 1.36
AE,,cq = N4 (—0.032ESBEL — 0.087N/5) — 1.46 (2)
In these equations, N refers to the heavy atom count® of either
the amino acid (N44) or heterocycle (N/Y), while ESPHEL |
ESPSst e, and ESPEY are heterocycle descriptors™ based on the
mean, range, and maximum values of the ESP within the projection
of the van der Waals volume of the heterocycle in a plane 3.25 A
away. The three other fits differ from equation 1 by the replace-
ment of ESBY5E . with ESPYEY, ESPf*®! (the standard deviation of
the ESP in the plane 3.25 A from the heterocycle), or Ef¢L. (the
mean value of the electric field in this plane).

In essence, ESPfSy, ESP e, ESPft, and EflS,, all capture the
variation in the electrostatic potential due to the heterocycle in the
region of the stacked amino acid side chain. Any of these de-
scriptors, when paired with ESPHE | and NJI¢® result in robust
predictions of stacking interactions. Molecular dipole moments ()
provide similar information, and a functional form analogous to
equation 1 featuring p instead of ES Pfé,ﬁtge performs only slightly
less well (see SI figure S2). However, the ESP and electric-field
derived descriptors are arguably more versatile than dipole mo-
ments since they capture differences in electrostatic character

among rings with zero net dipole (e.g. benzene, pyrazine, and 1,3,5-

triazine).”" In equation 2, ESPJ¢L, and ESPASL . are replaced by

ESPHeL This single electrostatic descriptor captures the fact that
changing the maximum ESP can be accomplished independently
by either shifting all ESP values while keeping the range constant or
‘tilting’ the ESP surface while keeping the mean ESP value con-
stant. While we will focus on equations 1 and 2 below, the perfor-
mance and interpretation of the other fits is similar.

Predicted interaction energies from equations 1 and 2 for the train-
ing set are plotted against the DLPNO-CCSD(T) interaction ener-
gies in Figures 3A and 3B, respectively. These fits are both accurate
(RMSE of 0.7-0.8 kcal mol™) and robust to multiple levels of cross-
validation, including Leave-One-Out (LOO), 10-fold, 5-fold and 3-
fold (see Figure 3; full details of cross-validation are available in SI
Table S1).

Chart 2. Heterocycle test set.
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To probe the generality of equations 1 and 2, we considered an
external test set of 12 additional heterocycles (see Chart 2). Stack-
ing interaction energies of all unique stacked dimers of these heter-
ocycles with model Phe, Tyr, and Trp side chains were evaluated as
done for the training set (see SI Tables $10-S12). Figure 4 shows
the interaction energies for the global minimum energy stacked
dimers of the test set predicted using equations 1 and 2 versus
DLPNO-CCSD(T) data. The predictions from equations 1 and 2
are highly correlated with the computed interaction energies for
these 12 heterocycles and the RMSE values (0.5-0.6 kcal mol™) are
slightly smaller than for the training set.

For both the training set and test set, equations 1 and 2 provide
equally sound predictions across different classes of heterocycles.
For instance, predicted interaction energies are reliable for both
monocyclic and bicyclic heterocycles, as well as for heterocycles
containing two or more heteroatoms compared to those with one
or fewer heteroatoms. Plots of the data split across these categories
can be seen in SI Figures S6 and S7.

Often, quantitative predictions of heterocycle stacking are second-
ary to simply ranking stacking ability. To assess the ability of equa-
tions 1 and 2 to provide reliable rankings, we considered Spear-
man’s rank correlation coefficient (p*) and Kendall . Both equa-
tions 1 and 2 accurately predict the ranked order of heterocycle
stacking with Phe, Tyr, and Trp (see Figures 3 and 4); their per-
formance is similarly strong when ranking the stacking energies of
heterocycles with a single amino acid.



2 1 RMSE = 0.6 kcal mol’

i)

E 2

= 4 R*=0.91

L p’=0.81

3 g |t=084 X

=y

Q @ - O

G 8- 8o

s °§°

5 -10 o]

© ® @

Q

£ 12

o O

2L 4

3

o

g -16 T T T T T 170

© 6 14 42 10 8 6 4 2 F>
Predicted Interaction Energy / kcal mol’

B3 2 -

£ ] RMSE = 0.5 kcal mol’

7 , |R=092

2 p’=0.90

3 4 1=083 o o8

b=

] - @ . O

o -8 8o

5 k_‘.‘@\. ° g

5 10 & o8

g 0@ @ @

£ 12

he] 2

2 .14

3

Q

§ ’16 i I 1 I 1 1 Pon) =
-6 14 -2 -0 8 6 4 2 &>

Predicted Interaction Energy / kcal mol™!

Figure 4. DLPNO-CCSD(T) interaction energies vs predicted inter-
action energies from equations 1 (A) and 2 (B) for global minimum
energy stacked dimers of Phe, Tyr, and Trp side chains with the exter-
nal test set (47-58). The strip plots on the right show the same com-
puted interaction energies grouped by amino acid.

The robustness and generality of equations 1 and 2 indicates that
the potential stacking interactions of a given heterocycle with Phe,
Tyr, or Trp can be reliably predicted without resorting to expensive
QM computations of stacked dimers. Instead, one needs to simply
evaluate ESPHE  and ESBHSL or ESPHEL, which only require
simple computations on the isolated heterocycles. The result is a
~10° reduction in computational cost but minimal loss in accuracy.

B. Conceptual Model of Stacking Interactions

The simplicity of equations 1 and 2 lends itself to interpretation of
the factors that impact heterocycle stacking and the development of
qualitative guidelines for maximizing these interactions in the con-
text of design. The only descriptor of the amino acid side chain in
these two models is the heavy atom count, N44.° This simple
descriptor (7 for Phe, 8 for Tyr, and 10 For Trp) scales the strength
of stacking interactions to reflect the general observation that stack-
ing interactions with Tyr and Trp are, on average, ~10% and ~40%
stronger than with Phe, respectively. This enhanced stacking for
the larger amino acid side chains could be a result of dispersion-
driven interactions alone or could also be due in part to charge
penetration effects.”!

The heterocycle descriptors appearing in these equations
(ESBfistn, ESPhSe, ESPRS:, and N}25), on the other hand,
confirm a prominent role of electrostatic effects (possibly including
charge penetration effects)®" and dispersion interactions, in accord

with the SAPT data. Overall, each additional heavy atom in the
heterocycle leads to an approximate 0.7, 0.8 and 1.0 kcal mol™ in-
crease in the stacking interaction with Phe, Tyr, and Trp, respec-
tively. Regarding electrostatics, stacking interactions are enhanced
in heterocycles with both overall positive ESP values and a large
range of ESP values in the plane 3.25 A from the heterocycle as well
as those with large maximum ESP values in this plane. More pre-
cisely, equation 1 indicates that a 1 kcal mol™ increase in ESPHEL
and ESPTIZ%ZW provide ~0.3 and ~0.1 kcal mol™ enhancement in
stacking energies, whereas increasing ESPHEL by 1 kcal mol™
should enhance stacking interactions by ~0.3 kcal mol™. It should
be noted that ESP%¢y. and ESBJlS. are more sensitive to the
introduction of heteroatoms and other functionality than is
ESPHEL  (vide infra), and modulating the values of any of these
descriptors provide opportunities to tune the strength of stacking
interactions over a broad range.

We can consider specific examples of heterocycles in order to gain a
more intuitive understanding of these heterocycle descriptors and
the impact of changes in the number and distribution of heteroa-
toms on stacking interactions (see Table 1). For instance, the im-
pact of heterocycle size (as captured by NH£t) is demonstrated by
stacking interactions of pyrrole (1), indole (27), and carbazole
(43). These three heterocycles have similar values for ESPHSL |
ESP/i55e, and ESPyEY, but vary in size. Computed interaction
energies for these three heterocycles stacked with Trp, for example,
follow the trend in size, going from -4.5 kcal mol™ for 1, to -11.2

keal mol™ for 27, finally to ~14.2 kcal mol™ for 43.

Examination of the values for the electrostatic descriptors
ESBlst, ESPHeh ., and ESPEY across the heterocycles reveals
clear trends that can be distilled into simple rules for their estima-
tion, and thus the strength of stacking interactions. For example,
ESPHet  depends primarily on the number of S, O, imino N (-
N=), amino N (-NH-), and carbonyl groups present in the hetero-
cycle. Overall, each S, O, imino N, and carbonyl increases ESPHeL
by 0.5, 1.0, 2.0, and 3.5 kcal mol ', respectively. In contrast, each
amino nitrogen decreases ESPHEL by 1 kcal mol™. These effects
are additive, as seen through the consecutive addition of imino
nitrogens to benzene (15) to give pyridine (16), pyrimidine (18),
and 1,2,4-triazine (21). The ESPHEL values for these rings sys-
tematically increase from -4.7 to 1.1 kcal mol™, accompanied by an
improvement in interaction energy with Trp from -6.0 kcal mol™
for benzene to -9.9 kcal mol™ for 1,2,4-triazine. This dependence
of ESPHEL on the number of these different heteroatoms is the
origin of the general observation that electron deficient heterocy-
cles (e.g. those containing many imino nitrogens) tend to engage in
stronger stacking interactions,” ** and ESPHEL | provides a readi-
ly-computed means of quantifying the degree of electron deficient
character for a given heterocycle.

However, changes in ESBHEE, alone do not fully capture variations

in the strength of stacking interactions with heterocycles. For ex-
ample, despite the same number of heteroatoms in pyrazine (17),
pyrimidine (18) and pyridazine (19), and their correspondingly
similar ESBHEL, values (~0.8 £ 0.1 kcal mol™), the stacking inter-
actions of these three rings with Trp vary from -8.1 to -9.5 kcal
mol ™. This can be attributed to the variation in ESP/45, across
this series.



Unlike ESBHEL. , which depends only on the number of heteroa-
toms, the values of ESPB5" . and ESP,¢% depend on both the
number of heteroatoms as well as their relative position within the
heterocycle. Qualitatively, when a pair of ‘like’ heteroatoms (S, O,
imino N, and C=0 vs amino N) are on nearby positions, there is a
cooperative impact on these two descriptors. For instance, while
the addition of a single imino nitrogen to form pyridine (16) from
benzene (15) shifts ESBACL . and ESB/IEL by 2.6 and 3.6 keal mol”
!, respectively, the introduction of a second, adjacent imino N to
form pyridazine (19) has 2-3 times the effect. On the other hand,
when like heteroatoms are on opposite sides of a ring, their impact
on E SPTfoge cancels to a large degree. This can be seen by com-
paring pyrimidine (18) and pyrazine (17), which both have smaller
values of ESP/¢,. and ESP,i¢% than pyridine. In fact, ESP/5e
for pyrazine is even smaller than for benzene. Similar trends hold
for heterocycles containing any combination of S, O, amino N, and
C=0 groups.

For ‘unlike’ heteroatoms, the opposite trend occurs, with the im-
pact of adjacent heteroatoms canceling and opposing heteroatoms
exhibit positive cooperativity. This can be understood by recalling
that amino and imino nitrogens have opposite impacts on the ESP,
as demonstrated by the opposite sign of their impact on ESBHSE, .
For example, for pyrazole (8), which has amino and imino nitro-
gens at adjacent positions, the value of ESBf5", (12.2 keal mol™)
is lower than that of pyrrole (1, ES Prléffge =14.7 kcal mol™). At the
same time, the 1,3 amino-imino nitrogen pair in imidazole (9)
leads to an ESPTIZf{ge value of 17.7 kcal mol™".

Thus, ESP%5Y. and ESPi¢} are maximized when like heteroa-
toms and functional groups are grouped together on one side of the
ring and the ‘unlike’ types on the opposite side of the ring. For
example, the strongest stacking interaction predicted here is for 3,9-
dihydro-purine-2,6-dione (37) stacked with Trp (see Figure 2). In
this case, the presence of two C=0 groups, including one adjacent
to an imino nitrogen, overwhelms the modest effects of the three
amino nitrogens, leading to a substantial values of ESPféifqe and
ESBH?L 2 high ESPHEL  and very strong stacking interaction.
This tendency for heterocycles with certain heteroatom types clus-
tered on one side to stack more strongly is exhibited by the antifo-
late drugs pemetrexed, aminopterin, and methotrexate, which bind
to the human folate receptor a (hFRa) more weakly than folate.'®
Binding of these ligands is primarily modulated by the stacking of a
terminal heterocyclic fragment with Trp and Tyr residues (See
Figure 1C). The pteridin-4(3H)-one in folate features more imino
nitrogens and carbonyl groups clustered together than either the
pteridine in methotrexate and aminopterin or the 3,7-dihydro-4H-
pyrrolo[2,3-d]pyrimidin-4-one in pemetrexed, which is expected to
result in stronger stacking with both Trp and Tyr. While this is just
a single example, it portends the use of this conceptual model to
guide the judicious choice of heterocycle fragments to maximize
stacking interactions with binding side aromatic groups in drug

design.

Conclusions

We have developed simple predictive models (equations 1 and 2;
see also SI Figures $2-S5) of the maximum stacking interactions
between heterocycles found in biologically active molecules and
the amino acid side chains Phe, Tyr, and Trp based on readily

computed heterocycle descriptors. These models depend on the
size of the heterocycle (as captured by the heavy-atom count),” as
well as the electrostatic descriptors ESPfiSh,, ESP4sl., and
ESPHeL 3 These latter three descriptors follow simple, predictable
trends and can be modulated by varying the number and distribu-
tion of heteroatoms (including carbonyl groups) within the hetero-
cycle. This provides a clear conceptual framework for understand-
ing trends in stacking interactions between heterocycles and aro-
matic amino acid side chains and designing heterocycles that max-
imize such interactions.

Overall, stacking interactions with Phe, Tyr, and Trp are enhanced
by'éz
1. Increasing the numbers of S, O, imino N, and carbonyl groups,
with the size of this effect increasing across this series;

2. Grouping ‘like’ heteroatoms (S, O, imino N, and carbonyl vs.
amino N) on opposing sides of the heterocycle.

The former increases the mean ESP in the plane near the heterocy-
cle while the latter enhances the variation in the ESP in this region,
as captured by ESP/357 . and ESP¢%. Using these guidelines, het-
erocycles can be qualitatively ranked in their ability to stack with
Phe, Tyr, and Trp. For more quantitative predictions or rankings,
the descriptors appearing in equations 1 and 2 can be rapidly evalu-
ated using widely available computational tools.

Of course, in real biological systems stacking interactions rarely
occur in isolation, and simple dimer models such as those present-

S However,

ed above will not always provide a complete picture.
the conceptual and predictive models presented should provide a
sound starting point for understanding and optimizing stacking
interactions in complex environments. Similarly, the heterocycles
considered here do not contain substituents, which is atypical for
biologically active heterocycles. However, previous work®” ¥ 6+
has demonstrated that substituent effects on stacking interactions
are independent of the presence of heteroatoms on the substituted
ring. Consequently, the vast body of previous work on substituent

3 should be directly transferrable

effects in stacking interactions
to the qualitative and quantitative models presented above. Finally,
equations 1 and 2 concern the maximal possible stacking interac-
tions exhibited by a given heterocycle, which will not necessarily be
achievable in a given context. With these caveats in mind, this new
view of stacking interactions between heterocycles and aromatic
amino acid side chains should facilitate both a greater understand-
ing of stacking in biological systems and provide updated princi-

ples*” for maximizing stacking interactions in protein binding sites.

Computational Methods

Local energy minima were identified by systematically sampling six
(or 12, for non-symmetric heterocycles) orientations of the hetero-
cycle at each of nine initial points located in a 3 x 3 grid 3.6 A above
the heterocycle (fewer for Phe due to symmetry). Each of these
starting configurations was optimized in the gas phase at the
B97D/def2-TZVPP level of theory.” This dispersion-corrected
DFT functional paired with a triple-{ basis set should provide relia-
ble geometries for these stacked dimers.” The resulting energy
minima were then classified as either stacked or edge-to-face (T-
shaped) geometries. Stacked geometries were those for which the
centroid-centroid distance between the nearest two rings was less
than 4.1 A and the tilt angle between heterocycle planes was less



than 20°. For each heterocycle/amino acid combination, there were
up to 24 unique stacked energy minima based on an RMSD cutoff
of 0.4 A. DLPNO-CCSD(T)/cc-pVQZ single point energies”™”
were computed using ‘Normal’ PNO cutoffs for each unique
stacked energy minimum to obtain accurate interaction energies
(i.e. the energy difference between the optimized dimer and corre-
sponding optimized monomers). Benchmark computations reveal
that these DLPNO-CCSD(T) interaction energies are systemati-
cally 1.0 + 0.3 kecal mol” from the corresponding canonical
CCSD(T)/CBS values (see SI Table S2). Solution-phase interac-
tion energies (in diethyl ether) were computed by combining the
gas-phase DLPNO-CCSD(T) energies with solvation corrections
computed at the wB97X-D/def2-TZVPP level of theory.” While
the above focus is on the global minimum energy stacked dimer for
each heterocycle with the three amino acid side chain models, data
for all local stacked energy minima are available in the SI Tables S4-
S6. All DFT optimizations were performed using Gaussian09,”
while Orca 4.0”” was used for the DLPNO-CCSD(T) single point
energies. SAPT computations were performed at the SAPTO/jun-
cc-pVDZ level of theory**** 7 using Psi4.”

ASSOCIATED CONTENT

Additional computational details and data, energies, Cartesian coordi-
nates. This material is available free of charge via the Internet at
http://pubs.acs.org.
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