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ABSTRACT: This article describes direct photoalkylation of electron-rich aromatic compounds with 

diazo esters. C-2 alkylated indoles and pyrroles are obtained with good yields even though the 

photocatalyst (Ru(bpy)3Cl2) loading is as low as 0.075 mol %. For substrates bearing electron-

withdrawing substituents the addition of a catalytic amount of N,N-dimethyl-4-methoxyaniline is 

required. Both EWG-EWG and EWG-EDG substituted diazo esters are suitable as alkylating agents. 

The reaction selectivity and mechanistic experiments suggest that carbenes/carbenoid intermediates are 

not involved in the reaction pathway, instead radical formation is proposed 

Five membered heteroaromatic rings are common structural motifs in pharmaceuticals, agrochemicals, 

and functional dyes.1 Indoles and pyrroles exhibiting biological activity often possess at least one alkyl 

substituent attached to the aromatic ring either at 2 or 3 position. Consequently, mild and regioselective 

methods for C(sp2)-C(sp3) bond formation are of high importance. 

Classic methods for C-H alkylation of electron-rich heteroaromatic compounds such as Friedel-Crafts 

type reactions or metallation followed by reaction with electrophiles are suitable for functionalization 

of simple derivatives, as they often require conditions that are not compatible with many functional 

groups. Current procedures employing transition metal catalysis broaden the scope, yet due to the 

character of a catalyst, anhydrous conditions, and elevated temperatures are often required.2 For indole 

derivatives usually reactions lead to less challenging C3 alkylation products, if no directing group is 

present.3 

In recent years photoredox catalysis emerged as a facile synthetic tool4 for the formation of C-C bonds, 

also in alkylation of electron-rich heteroarenes.5 These reactions relay on ruthenium or iridium 

complexes which under light irradiation reduce electron-deficient alkyl halides to radicals easily reacting 

with electron-rich heteroaromatic compounds. Utilization of Au(I) photocatalyst allows similar reaction, 

yet this process inherently suffers from low selectivity due to instability of radicals.6 Very recently 

Glorius et al. reported visible light induced C2 alkylation of heteroaromatic compounds using 

pyridinium salts as radical precursors.7 However due to utilization of electron-donor-aceptor complexes 

scope of the method is limited to benzene-fused heteroarenes. 

Along this line, thermolysis of ethyl diazoacetate (EDA, 2) in neat N-methylindole (1) gives C3 

alkylated product resulting from the ring opening of the corresponding cyclopropane intermediates 

(Scheme 1A).8 Metal carbenoids as more stable entities insert into indole C-H bond,2b,3 in this case 

however selective C2 alkylation is assured by the presence of a directing group at the indole nitrogen 

atom (Scheme 1B).9 We have recently reported that under light irradiation diazo esters can act as 

alkylating agent towards in situ formed enamines,10 later similar approach was also utilized for 

enantioselective alkylation of 2-acylimidazoles by Meggers et al.11 We wondered whether and how the 



use of photoredox catalysts would change the reactivity of diazo reagents towards electron-rich 

heteroarenes.  

Herein, we report a new photocatalytic method for C2 alkylation of heteroarenes with diazo compounds 

(Scheme 1C). The reaction selectivity supported by mechanistic studies suggests that carbene/carbenoid 

intermediates are not involved in the reaction pathway. 

Scheme 1. Reactivity of Diazo Reagents Towards Indoles 

 
We initiated our studies with performing the model reaction of EDA (2) with N-methylindole (1) 

catalyzed by Ru(bpy)3Cl2 under light irradiation. Product 3 selectively alkylated at C2 position formed 

in 30% yield (Table 1). Background experiments revealed that the exclusion of ether the photocatalyst 

or light irradiation stopped the reaction completely (entries 2-3). Importantly the reaction required 

anaerobic conditions (entry 4). 

Table 1. Background Experimentsa 

 
Entry PC Solvent Yield (GC) /% 

1 Ru(bpy)3Cl2 CH3CN 30 

2 none CH3CN nr 

3b Ru(bpy)3Cl2 CH3CN nr 

4c Ru(bpy)3Cl2 CH3CN nr 
aReaction conditions: 1 (1.25 mmol, 5 equiv), 2 (0.25 mmol, 1 equiv), Ru(bpy)3Cl2 (2.5 mol %), CH3CN (2.5 mL), 

blue LED irradiation, 8 h. bNo light irradiation. cReaction mixture was not degassed. 

The proposed mechanism for the alkylation of indoles is shown in Scheme 2. We assumed that the 

crucial step of this photochemical alkylation involves single electron reduction of diazoethyl acetate. 

But a detailed mechanistic overview needed further exploration. The addition of TEMPO – a free radical 

scavenger halted the reaction completely proving that radical species are indeed involved. The Stern-

Volmer analysis indicated that only EDA (1) quenches luminescence of the Ru-catalyst. 

  



Scheme 2. Plausible Mechanism for the Alkylation of Indoles 

 

This result supports generation of electron-deficient radical B via single electron reduction of diazoethyl 

acetate. However, EDA (1) reduction potential (see SI) is too low to be accessible by any form of the 

photocatalyst used (*Ru2+/Ru3+ E= -0.78 V vs SCE),12 but in protic solvents, particularly in the presence 

of water, diazo compounds are in equilibrium with their protonated form (A),13 as a result their reduction 

potential should increase.14 In fact at pH = 3 emission-quenching rate constant of ethyl diazoacetate 

slightly increases from kq = 1.26·107 s-1 to 1.55·107 s-1 suggesting that the protonated form A of diazo 

ester may indeed be the actual quencher of the excited catalyst. As a consequence, after extrusion of 

nitrogen radical B is generated which reacts with N-methyl indole (1) giving radical C. Subsequent 

oxidation with Ru(bpy)3
3+ allows for the recovery of the catalyst. Deprotonation of cation D furnishes 

the desired alkylated product. The alternative pathway would involve carbene intermediates but both 

photolysis of benzyl diazoacetate (254 nm) or the reaction with N-methylindole in the presence of 

benzophenone (as a triplet sensitizer) yield only a mixture of O-H insertion, Wolff rearrangement 

products, and traces of C3 alkylation product suggesting that in our case their presence is not an option. 

In the next step we optimized the reaction conditions for the model reaction. None of common organic 

dyes or metal complexes broadly used in photoredox catalysis but Ru(bpy)3Cl2 were able to catalyze the 

model reaction (details can be found in SI). The catalyst loading could be as low as 0.075 mol %, 

however for the scope and limitations studies it was kept at 0.2 mol % level to ensure activity of the 

catalyst at longer reaction times. The use of protic solvents with the addition of water assured the 

formation of product 3 with the best result being obtained in a mixture of MeOH/H2O (10:1 V/V). With 

the optimal ratio of N-methylindole (1) to EDA (2) being 4:1, the reaction yielded product in 76% yield. 

An excess of heteroaromatic compound suppresses the formation of dialkylated product. The process 

could be scaled up to 5 mmol furnishing product with only slightly diminished yield (68%) after 26 

hours, in this case an excessive starting material was recovered (Scheme 3). 

With the optimized conditions in hand, we conducted scope and limitations studies. To this end a series 

of α-diazo esters was synthetized and tested in reaction with N-methylindole (1) (Scheme 3).  

  



Scheme 3. Reaction of N-Me-Indole with Diazo Esters 

 
Reaction conditions: 1 (1 mmol, 4 equiv), diazo compound (0.25 mmol, 1 equiv), Ru(bpy)3Cl2 (0.5 µmol, 0.2 mol 

%), MeOH/H2O (10:1) 2.75 mL, blue LED irradiation, 4.5-8 h. a 5 mmol scale, 73% of 1 was recovered, b no PC 

added, c MeCN instead of MeOH. 

In contrast to our previous reports,10 disubstituted diazo reagents reacted equally well with the yield and 

selectivity depending on the substitution pattern and their absorption characteristics. In general, 

acceptor-acceptor (EWG-EWG) diazo compounds were more reactive towards indole 1 than acceptor-

donor (EWG-EDG) substituted compounds. Along this line, triethyl-2-diazophosphonoacetate proved 

the most reactive giving alkylated derivative 6 in 81% yield. α-Diazo ketones – ethyl 2-diazoacetoacetate 

and 1-diazo-1-phosphono(diethyl)propan-2-one did not afford corresponding products as prior 

alkylation the carbonyl group transformed into acetal or hemiacetal hence changing the character of a 

diazo reagent. These, however, does not mean that all EWG-EDG disubstituted diazo compound are 

unreactive under developed conditions, ethyl 2-diazo-3-hydroxy-3-phenylpropanoate furnished the 

corresponding product 7 in 54% yield. 

Intriguingly, 2-diazo-2-phosphono(diethyl)acetonitrile and 2-phenyl-2-diazoacetate underwent 

selective alkylation at C3 position suggesting a possible parallel pathway. In 2018 Davies and coworkers 

showed that 2-phenyl-2-diazoacetate absorbing at approximately 450 nm (DCM) under blue light 

irradiation reacts with N-Me-indole (1) giving C-H insertion products exclusively at C3 position as a 

result of presumed carbene insertion.15 We observed that in a mixture of MeO/H2O C3-alkylation of 

indole and carbene O-H insertion products also formed. Changing the reaction media to MeCN/H2O and 

adding Ru-photocatalyst allowed selective functionalization at C-3 position (8, 44%). Similarly, the 

carbene might be also involved in reaction with 2-phosphono(diethyl)acetonitrile as both Ru-catalyzed 

and uncatalyzed alkylation gave the same product 9. Additionally, under blue light irradiation 2-diazo-

2-phosphono(diethyl)acetonitrile in MeOH photodecomposed to a mixture of 2-

phosphono(diethyl)acetonitrile (66%) and 2-methoxy-2-phosphono(diethyl)acetonitrile (11%) resulting 

from the reaction of the corresponding carbene with MeOH (see SI). These results corroborate that once 

the diazo compound absorbs within the wavelength region of the light used for irradiation, the 

regioselectivity of the alkylation reaction alters from C2 to C3, as a consequence of a different operating 

mechanism. 

In the next step, various indole and pyrrole derivatives were tested (Scheme 4). The method worked 

equally well for unprotected both indoles and pyrroles, giving products 10-12, 16, and 19 in high yields. 

Mild reaction conditions allowed to functionalize even substrate bearing fragile cyclopropyl group at 

C3 position without ring opening being observed. Electron-deficient heteroarene 14 remained intact 



under developed conditions, presumably due to increased oxidation potential of intermediate C 

inaccessible by Ru-photocatalyst. 

Scheme 4. Scope and Limitation Studies - Heteroarenesa 

 
aReaction conditions: heteroarene (1 mmol, 4 equiv), diazo compound (0.25 mmol, 1 equiv), Ru(bpy)3Cl2 (0.5 

µmol, 0.2 mol %), MeOH/H2O (10:1) 2.75 mL, blue LED irradiation, 4.5-8 h. b 2 equiv. of heteroarene were used. 

Not surprisingly, substitution pattern on the phenyl ring has a substantial impact on the reaction 

regioselectivity. While the reaction of 4-methoxy-1-methyl indole yielded C2 alkylated product 15 

selectively, 5-methoxy-derivative furnished a mixture of C4 and C2 regioisomers 16a,b, 17a,b in 

accordance with high nucleophilicity of the corresponding positions in the starting material. The method 

was also suitable for functionalization of sleep regulating hormone – Melatonin, giving the 

corresponding product 18 in 91% yield, even though the excess of the starting material was reduced two 

fold. N-Methylpyrrole afforded corresponding alkylated products 20 and 21 in good yields. But once 

the -Me substituent was replaced with the electron-withdrawing phenyl group the yield diminished 

substantially. 

Puzzled with poor reactivity of heteroarenes with diminished electron density, N-Boc-indole (24) and 

N-Boc-pyrrole, we wondered whether Ru(bpy)3
3+ is sufficiently strong electron acceptor for the 

oxidation of type C radical to the respective cation D (Scheme 2). If not, the catalytic cycle cannot close. 

Therefore, a variety of redox-active additives enabling closing the catalytic cycle were tested (see SI). 

The addition of a catalytic amount (10 mol %) of 4-methoxy-N,N-dimethylanilnie (25) facilitated the 

reaction for indole and pyrrole derivatives with diminished electron density. Quenching rate constant 

(kq = 1.46·109 s-1) of the fluorescence of the Ru-catalyst by aniline (25) was two orders of magnitude 

higher than for EDA (2) indicating that indeed a different mechanistic pathway should operate in this 

case (Scheme 5). We assumed that the excited state of Ru(bpy)3
2+ oxidizes amine 25 to the radical cation 

generating Ru(bpy)3
+ species. The reduced catalyst is able to generate radical B which reacts with 

heteroaromatic substrate giving radical C’. The final step involves hydrogen atom transfer between 

radical cation of the amine 25 and radical C’, what results in formation of the product. 



Scheme 5. The Effect of 4-Methoxy-N,N-Dimethylanilnie (28) Addition on the Plausible Mechanism 

 

As a consequence, a series of electron-deficient heteroarenes alkylated at C2 position was obtained. N-

Boc-indole (24) which was not reactive under standard conditions, after the addition of amine (25) 

furnished corresponding product 14 in 60% yield (Scheme 6). Other indole derivatives bearing electron-

withdrawing substituents are also suitable substrates for this reaction. 5-Bromo-indole provides a 

mixture of C2 26a and C4 26b alkylated derivatives while C2 substituted product 27 exclusively formed 

from the corresponding N-methyl-derivative. Regioselectivity increased for indoles bearing strong 

electron-withdrawing cyano- group, regardless the substitution pattern C2 product 28 was solely 

obtained. Also, alkylation of L-tryptophan methyl ester gave 67% of corresponding alkylated derivative 

29. 

The addition of amine 25 is particularly beneficial for pyrroles where substantial increase in yields was 

observed. Alkylation of N-Boc-protected pyrrole yielded product 23 in high yield (72%) while for N-

phenylpyrrole the yield increased almost 2.3-fold. Notably, even electron-rich N-

(dimethylamino)pyrrole afforded product 32 in decent yield. 

Scheme 6. Alkylation of Indole and Pyrrole Derivatives in  the Presence of Aniline 25 

 
Reaction conditions: heteroarene (1 mmol, 4 equiv), diazo compound (0.25 mmol, 1 equiv), 28 (25 µmol, 10 mol 

%), Ru(bpy)3Cl2 (0.5 µmol, 0.2 mol %), MeOH/H2O (10:1) 2.75 mL, blue LED irradiation, 4.5-8 h. 

In conclusion, a new photocatalytic method for C2 alkylation of indoles and pyrroles has been 

developed. The method requires unprecedentedly low catalyst loading (0.075 mol %), tolerates variety 

of functional groups in both heteroaromatic substrates and diazo compounds, and is easily scalable. The 



addition of N,N-dimethyl-4-methoxyaniline (25) enables the synthesis of alkylated derivatives even 

from electron-deficient indoles and pyrroles. 

Mechanistic studies corroborate the proposed reaction pathways involving radical species. However, for 

diazo compounds exhibiting strong absorption within the wavelength region of the light used for 

irradiation, the regioselectivity of the alkylation reaction alters from C2 to C3. 
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