
1 
 

Atropselective Disposition of 2,2',3,4',6-Pentachlorobiphenyl     1 

(PCB 91) and Identification of Its Metabolites in Mice with Liver-2 

specific Deletion of Cytochrome P450 Reductase 3 

 4 

 5 

Xianai Wu†, Guangshu Zhai‡,§, Jerald L. Schnoor†,‡,§, Hans-Joachim Lehmler†,§,*  6 

 7 
†Department of Occupational and Environmental Health; ‡Department of Civil and 8 

Environmental Engineering; §IIHR Hydroscience and Engineering, The University of Iowa, Iowa 9 

City, IA, 52242, USA 10 

 11 

 12 

 13 

 14 

Corresponding Author:   15 

Dr. Hans-Joachim Lehmler 16 

The University of Iowa 17 

Department of Occupational and Environmental Health 18 

University of Iowa Research Park, B164 MTF 19 

Iowa City, IA 52242-5000 20 

Phone: (319) 335-4981 21 

Fax: (319) 335-4290 22 

e-mail: hans-joachim-lehmler@uiowa.edu  23 

mailto:hans-joachim-lehmler@uiowa.edu


2 
 

TOC GRAPHIC 24 

  25 



3 
 

ABSTRACT 26 

Hepatic cytochrome P450 enzymes atropselectively metabolize chiral, neurotoxic 27 

polychlorinated biphenyls (PCBs) to potentially toxic hydroxylated metabolites (OH-PCBs). 28 

Transgenic animal models with impaired metabolism of PCBs are one approach to study how the 29 

atropselective oxidation of PCBs to OH-PCB metabolites contributes to toxic outcomes, such as 30 

neurodevelopmental disorders, following PCB exposure. We investigated the disposition of PCB 31 

91, an environmentally relevant, para substituted PCB congener, in mice with a liver-specific 32 

deletion of the cpr gene (KO mice). KO mice and congenic wild type (WT) mice were exposed 33 

orally to racemic PCB 91 (30 mg/kg b.w.). Levels and enantiomeric fractions of PCB 91 and its 34 

hydroxylated metabolites were determined in tissues and excreta three days after PCB exposure.  35 

PCB 91, but not OH-PCB levels were higher in KO compared to WT mice. The liver of KO mice 36 

accumulated a significant percentage of the total PCB 91 dose due to the high fat content in the 37 

liver of KO mice. Several OH-PCB metabolites were detected in blood, liver, and excreta 38 

samples, with 2,2',3,4',6-pentachlorobiphenyl-5-ol (5-91) being the major metabolite. A 39 

considerable percent of the total PCB 91 dose (%TD) was excreted with the feces as 5-91 (23 40 

%TD and 31 %TD in KO and WT mice, respectively). We tentatively identified glucuronide and 41 

sulfate metabolites present in urine samples. The PCB 91 atropisomer eluting first on the chiral 42 

column (E1-PCB 91) displayed genotype-dependent atropisomeric enrichment, with a more 43 

pronounced atropisomeric enrichment observed in WT compared to KO mice. E1-atropisomers 44 

of 5-91 and 2,2',3,4',6-pentachlorobiphenyl-4-ol (4-91) were enriched in blood and liver, 45 

irrespective of the genotype; however, the extent of the enrichment of E1-5-91 was genotype 46 

dependent.  These differences in atropselective disposition are consistent with slower metabolism 47 

of PCB 91 in KO compared to WT mice and the accumulation of the parent PCB in the fatty 48 

liver of KO mice.   49 



4 
 

INTRODUCTION  50 

PCBs were produced by chlorination of biphenyl, resulting in complex mixtures of 51 

structurally diverse PCB congeners. These mixtures were manufactured for a range of technical 52 

applications, including as dielectric fluids in transformers and capacitors. Depending on the 53 

degree of chlorination, the content of individual PCB congeners differs across PCB mixtures. For 54 

example, Aroclors, technical PCB mixtures manufactured and sold in the United States, contain 55 

anywhere from zero to one percent by weight of PCB 91. Approximately 1,000 metric tons of 56 

this PCB congener were produced globally.1  The production of PCBs was banned in the United 57 

States in the late 1970s due to environmental and human health concerns. However, PCBs are 58 

inadvertent byproducts of industrial processes and, as a result, can still be found in consumer 59 

products, including paint pigments2, 3 and polymer resins.4 PCBs persist in the environment 60 

because of their resistance to chemical and thermal degradation, and bioaccumulate and 61 

biomagnify in aquatic and terrestrial food chains. Because cytochrome P450 enzymes readily 62 

metabolize lower chlorinated PCB congeners to OH-PCBs,1, 5, 6 these PCB congeners have low 63 

detection frequencies in human biomonitoring studies; however, humans are continuously 64 

exposed to these congeners. 65 

Epidemiological and animal studies implicate exposure to PCBs in a range of adverse 66 

health outcomes, including neurodevelopmental disorders.7 In particular, PCB congeners with 67 

several ortho chlorine substituents are sensitizers of ryanodine receptors (RyRs),8, 9 intracellular 68 

calcium channels implicated in PCB-induced developmental neurotoxicity.10  Other proposed 69 

mechanisms of PCB neurotoxicity include altered neurotransmitter and calcium homeostasis, 70 

oxidative stress, and effects on the thyroid hormone system.11, 12  A recent study demonstrates 71 

that PCBs’ effects on RyRs, but not the thyroid hormone receptor are drivers of adverse 72 
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neurodevelopmental outcomes following PCB exposure.13 There is also evidence that PCB 73 

metabolites, in particular OH-PCBs, are toxic to the developing brain. OH-PCBs are potent 74 

sensitizers of RyRs9, 14 and can be present in the rodent brain.15, 16 Moreover, animal studies 75 

reveal adverse neurobehavioral outcomes following developmental exposure to OH-PCBs.17 18 76 

The oxidation of PCBs by cytochrome P450 enzymes forms OH-PCBs. PCB congeners 77 

without para chlorine substituents are more readily metabolized than PCB congeners with a para 78 

substituent. PCB 91, a PCB congener with a para chlorine substituent, is preferentially oxidized 79 

to a 1,2-shift metabolite with the hydroxy group in the meta position by human liver microsomes 80 

(HLMs).19, 20 Compared to PCB 91, distinctively different metabolite profiles are observed from 81 

PCB 95 (2,2',3,5',6-pentachlorobiphenyl) and PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl), PCB 82 

congeners without a para chlorine substituent, in metabolism studies with HLMs.19, 21-23 In 83 

rodents, CYP2B enzymes play an important role in the metabolism of neurotoxic PCBs to meta 84 

hydroxylated OH-PCBs.1, 24 A considerable percent of the total dose of PCB 136 is excreted as a 85 

meta hydroxylated metabolite with the feces of PCB exposed mice.25 These studies typically 86 

employed liver microsomes or liver tissue slices obtained from animals pretreated with 87 

phenobarbital, an inducer of hepatic CYP2B enzymes. Until now, the disposition of OH-PCBs in 88 

rodents and humans exposed to structurally diverse, ortho chlorinated PCBs (e.g., PCB 91) has 89 

received little attention. 90 

PCB 91, like several other RyR-active PCBs and OH-PCBs, displays axial chirality.  The 91 

presence of three or four ortho chlorine substituents hinders the rotation around the phenyl-92 

phenyl bond. Consequently, PCB 91 and its metabolites exist as two rotational isomers, or 93 

atropisomers, that are non-superimposable mirror images of each other. The atropselective 94 

metabolism of chiral PCBs results in an atropisomeric enrichment of the parent PCBs and their 95 
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metabolites.1, 26 This enrichment has toxicological implications because atropisomers can display 96 

different biological effects. For example, several studies have demonstrated atropselective effects 97 

of PCB 95 and PCB 136 atropisomers on RyRs and neuronal connectivity in primary neurons,27-98 

29 endpoints implicated in PCB developmental neurotoxicity. It is likely that the atropisomers of 99 

OH-PCBs and other PCB metabolites also display atropselective toxicities; however, this 100 

hypothesis has not been investigated to-date.   101 

Overall, the available evidence demonstrates that PCB and OH-PCBs atropisomers are 102 

present in the developing brain and affect cellular targets implicated in PCB developmental 103 

neurotoxicity, most likely in an atropselective manner. Therefore, it is important to assess how 104 

the atropselective oxidation of PCBs to OH-PCB metabolites contributes to neurotoxic outcomes 105 

on PCB exposed rodents and humans. The use of transgenic animal models with impaired 106 

hepatic metabolism of PCBs is one possible approach to address this question. Here, we 107 

investigate the atropselective disposition of PCB 91 in a well-established mouse model with a 108 

liver-specific deletion of the cpr gene (KO mice).30, 31  Our findings reveal genotype-dependent 109 

differences in the disposition of PCB 91 and its metabolites resulting from an impaired hepatic 110 

metabolism and the higher fat content in the liver and feces of KO compared to congenic WT 111 

mice. 112 

 113 

EXPERIMENTAL SECTION 114 

Analytical standards. 2,3,4',5,6-Pentachlorobiphenyl (PCB 117), 2,2',3,4,4',5,6,6'-115 

octachlorobiphenyl (PCB 204) and 2,3,3',4,5,5'-hexachlorobiphenyl-4'-ol (4'-159) were obtained 116 

from AccuStandard (New Haven, CT, USA). 2,2',3,4',6-Pentachlorobiphenyl (PCB 91) and the 117 

corresponding OH-PCB metabolites were synthesized as described earlier.32 The chemical 118 

http://www.chemicalbook.com/ChemicalProductProperty_EN_CB92583720.htm
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structures and abbreviations of the PCB 91 metabolites are shown in Figure 1. Diazomethane 119 

was synthesized as a solution in diethyl ether from N-methyl-N-nitroso-p-toluenesulfonamide 120 

(Diazald) with an Aldrich mini Diazald apparatus (Milwaukee, WI, USA).  121 

Animals. The Institutional Animal Care and Use Committee of the University of Iowa 122 

approved all animal procedures (protocol #: 1206120).  Alb-Cre +/-/Cpr lox+/+ mice with a liver-123 

specific deletion of the cytochrome P450 oxidoreductase gene (KO mice) and Alb-Cre -/-/Cpr 124 

lox+/+ mice (WT mice) were obtained from Dr. Xinxin Ding (School of Public Health, State 125 

University of New York, Albany, NY). Mice were maintained as described in the Supporting 126 

Information (also, see references 30, 31). To study the disposition of racemic PCB 91, female KO 127 

and WT mice (age 12 to 13 weeks; Table S1) were randomly divided into treatment and control 128 

groups.  WT (n=3) and KO (n=4)  mice received a single oral dose PCB 91 (30 mg/kg b.w.) on a 129 

Vanilla Wafer cookie (7.5 g/kg b.w.).33 This route of administration was selected to reduce the 130 

stress of the animal and to facilitate a comparison with similar disposition studies in mice.25, 33-36 131 

WT (n=2) and KO (n=2) control groups received the vehicle (Vanilla Wafer cookie; 7.5 g/kg 132 

b.w.) alone and were used to assess potential background contamination with PCB 91 and its 133 

metabolites. After eating the entire cookie, animals were transferred to metabolic cages, and 134 

urine and feces were collected daily for three days. The two KO mice exposed to vehicle were 135 

housed together. All other mice were housed individually. Mice were euthanized by carbon 136 

dioxide asphyxiation followed by cervical dislocation three days after PCB 91 administration. 137 

Blood and tissues (brain, liver, and adipose tissue) were collected, and their wet weights were 138 

determined (Table S1).  All samples were stored at -80 °C until further analysis. A discussion of 139 

phenotypes of KO vs. WT mice is provided in the Supporting Information.  140 
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Extraction of PCB 91 and its hydroxylated metabolites from tissue and blood 141 

samples. PCB 91 and its metabolites were extracted by pressurized liquid extraction from liver 142 

(0.57-0.93 g), brain (0.18-0.30 g), adipose (0.06-0.34 g), and feces samples (0.29-0.35g) using a 143 

Dionex ASE200 system (Dionex, Sunnyvale, CA).33 Briefly, the tissues were mixed with 144 

diatomaceous earth (2 g; Dionex) and placed in the extraction cell (33 mL) containing Florisil 145 

(60~100 mesh, 12 g; Fisher Scientific). PCB 117 (500 ng) and 4'-159 (137 ng) were added to 146 

each sample as surrogate recovery standards, and the cells were extracted with hexane-147 

dichloromethane-methanol (48:43:9, v/v/v) at 100 °C and 1500 psi (10 MPa) with pre-heat 148 

equilibration for 6 min, 60% of cell flush volume, and 1 static cycle of 5 min.37, 38 Sample blanks 149 

containing only Florisil and diatomaceous earth were extracted in parallel with each sample set.  150 

The extracts were concentrated to approximately 1 mL using a Turbo Vap® II (Biotage, NC, 151 

USA) and transferred with hexane to glass tubes. The samples were evaporated to dryness under 152 

a gentle stream of nitrogen and redissolved in 1 mL of hexane. After derivatization of the OH-153 

PCBs with a solution of diazomethane in diethyl ether, the organic extracts were subjected to a 154 

sulfur clean-up step, followed by treatment with concentrated sulfuric acid as described earlier.  155 

PCB 91 and its hydroxylated metabolites were extracted from blood samples (0.49 to 156 

0.87 g) by liquid-liquid extraction following a published method.37 Briefly, blood samples were 157 

diluted by 3 mL of 1% KCl and the surrogate recovery standards (PCB 117, 250 ng; 4'-159, 69 158 

ng) were added. Each sample was acidified with 1 mL of 6 M HCl, followed by addition of 3 mL 159 

2-propanol and 5 mL hexane : MTBE (1:1, v/v). After thoroughly mixing and centrifugation, the 160 

organic phase was transferred to the second tube, and each sample was extracted a second time 161 

with 3 mL of hexane. The combined organic phases were washed with 3 mL of KCl (1%). The 162 



9 
 

samples were evaporated to dryness, derivatized with diazomethane, and further treated as 163 

described above for tissue samples. 164 

β-Glucuronidase/sulfatase deconjugation of urine samples. Two aliquots of each urine 165 

sample (approximately 0.1 to 0.6 mL) were diluted with an equal volume of 0.2 M sodium 166 

acetate buffer (pH=5) to determine if glucuronide or sulfate conjugates of hydroxylated PCB 91 167 

metabolites were present in urine samples. Both aliquots were incubated in parallel with or 168 

without β-glucuronidase/sulfatase mixture (20 µL; type H-2 from Helix pomatia, 100,000 169 

units/mL; Sigma-Aldrich Co. St. Louis, MO, USA) for 12 h at 37 °C.25 Subsequently, PCB 91 170 

and its hydroxylated metabolites were extracted from urine samples as described above for 171 

blood. 172 

Gas chromatographic analysis of PCB 91 and its metabolites. PCB 91 and the 173 

methylated derivatives of hydroxylated PCB 91 metabolites were quantified either on a DB1-MS 174 

(60 m x 0.25 mm ID x 0.25 μm film thickness; Agilent, Santa Clara, CA) or an Equity-1 175 

capillary column (60 m x 0.25 mm ID x 0.25 μm film thickness; Supelco, Bellefonte, PA) using 176 

an Agilent 7890A gas chromatograph equipped with two 63Ni-µECD detectors.39 The levels of 177 

PCB and its metabolites were calculated using PCB 204 as internal standard (or volume 178 

corrector) and adjusted for tissue wet weight, lipid content or expressed as %TD (Tables S2-S6). 179 

Tissue levels are reported as %TD throughout the manuscript. The same trends in tissue levels 180 

were observed when levels were adjusted for tissue wet weight or extractable lipid content. 181 

Enantiomeric fractions, a measure of the atropisomeric enrichment of PCB 91 and its 182 

metabolites, were determined on the same instrument described above.40 PCB 91, 4-91 and 5-91 183 

atropisomers were separated using a ChiralDex BDM (BDM) column (30 m length, 250 µm 184 

inner diameter, 0.12 µm film thickness; Supelco, St. Louis, MO). The atropisomers of PCB 91 185 
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and 5-91 were separated on CP-ChiraSil-DEX CB (CD) column (30 m length, 250 µm inner 186 

diameter, 0.12 µm film thickness; Agilent Technologies, Santa Clara, CA). The temperature 187 

program for the atropselective analyses was as follows: 10 °C/min from 100 to 140 °C, hold for 188 

535 min, 10 °C/min to 200 °C, and hold for 15 min. Atropisomers of 4,5-91 (2,2',3,4',6-189 

pentachlorobiphenyl-4,5-diol) did not resolve on either atropselective column. As described 190 

previously, the elution order of PCB 91 atropisomers are inverted on the BDM and CD column 191 

(i.e., E1-PCB 91 on the BDM column and E2-PCB 91 on the CD column are the same PCB 91 192 

atropisomer; vice versa, E2-PCB 91 on the BDM column and E1-PCB 91 on the CD column are 193 

the same PCB 91 atropisomer).41 If not stated otherwise, PCB 91 atropisomers are identified 194 

based on the elution order on the BDM column. The EF values of PCB 91, 4-91, and 5-91 were 195 

determined as EF = Area E(1)/(Area E(1) + Area E(2)) and are summarized in Table S7. For 196 

information regarding the quality assurance/quality control of the chemicals analyses, including 197 

background levels of in tissues and excreta from control animals, see the Supporting Information 198 

and Tables S8 and S9. 199 

Extractable lipid content. Lipids were extracted from tissues and feces samples by 200 

pressurized liquid extraction as described earlier.33 Briefly, the samples were mixed with 2 g of 201 

diatomaceous earth and placed in 11 mL extraction cells. The cells were extracted with the 202 

Dionex ASE200 system mentioned above using a chloroform/methanol mixture (2:1, v/v) at 120 203 

°C and 1500 psi. The lipid content was determined gravimetrically after evaporation of the 204 

solvent. The extractable lipid content of each tissue or feces is summarized in Table S10.  205 

Conjugate identification by LC/MS/MS. In order to further identify potential 206 

glucuronide and/or sulfate conjugates of hydroxylated PCB 91 metabolites in urine (Figure 1), a 207 

urine sample, filtered through a 0.45 µm filter, was analyzed on an Ascentis Express C18 column 208 
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(15 cm length, 3.0 mm inner diameter, 5 µm particle size; Supelco, St. Louis, MO) using an 209 

Agilent 1260 Infinity liquid chromatograph equipped with an Agilent 6460 MS/MS detector. The 210 

source parameters for the MS/MS detector were as follows: gas temp at 325 °C, gas flow at 10 211 

L/min, nebulizer at 20 psi, sheath gas temp at 400 °C, sheath gas flow at 12 L/min, capillary 212 

negative at 3500 V. The mobile phases were 10 mM NH4Ac in water (pH=6.8) and acetonitrile, 213 

with a flow rate at 0.3 mL/min. The concentration of acetonitrile in mobile phase increased from 214 

30 % to 50 % from 5 to 30 min; increased to 85 % from 30 to 40 min; was maintained for 5 min, 215 

and finally decreased to 30 % from 45 to 50 min. The injection volume was 10 µL. MS 216 

electrospray in negative ionization mode was utilized. The presence of 5-91 and 4-91 were 217 

confirmed based on scan mode with a mass in the range of 100-800 amu and selective ion model 218 

(SIM) with m/z 341 and retention time matched to authentic standards.   219 

In order to detect unknown metabolites, such as glucuronides and sulfates, the theoretical 220 

isotope ratios of 0.617:1:0.648 and a SIM method with the following m/z were used to screen for 221 

metabolites: Dihydroxylated PCB 91 conjugated with a single sulfate moiety m/z at 434.82, 222 

436.82, and 438.82; dihydroxylated PCB 91 conjugated with a single glucuronide moiety m/z at 223 

530.89, 532.89, 534.89; hydroxylated PCB 91 conjugated with a sulfate moiety m/z at 418.8, 224 

420.8, 422.8; and hydroxylated PCB 91 conjugated with a glucuronide moiety m/z at 514.9, 225 

516.9, 518.9. The presence of glucuronide or sulfate metabolites of PCB 91 in urine was further 226 

confirmed in the multiple reaction monitoring (MRM) mode using transitions of m/z 516.9 > 175 227 

for hydroxylated PCB 91 glucuronides and m/z 218.5 > 79 for dihydroxylated PCB 91 sulfates. 228 

Other transitions were not confirmed. 229 

Statistical analyses. All data are reported as mean ± one standard deviation. Differences 230 

in levels and EF values between both genotypes were assessed using two-sample, two-tailed 231 
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Student’s t-test.  Differences between EF values of the racemate and the samples were evaluated 232 

using two-sample, one-tailed Student’s t-test. Differences were considered statistically 233 

significant for p < 0.05. Changes in the concentration of OH-PCB metabolites in the urine after 234 

β-glucuronidase/sulfatase treatment were assessed with interaction plots using R (Figures S1 to 235 

S3).42  236 

 237 

RESULTS  238 

PCB 91 tissue and excreta levels. PCB 91 levels in KO mice, expressed as %TD, 239 

followed the rank order adipose > liver > brain >> blood (Figure 2). The PCB 91 detected in 240 

these four tissues accounted for approximately 55 %TD (Table S6). In WT mice, PCB 91 levels 241 

followed a similar rank order; however, the PCB 91 residue in these tissues accounted for only 242 

20 %TD. Moreover, levels of PCB 91 were significantly higher in the blood, brain, liver, and 243 

excreta from KO compared to WT mice (Figure 2; Table S6). PCB 91 levels in adipose tissue 244 

were also higher in the adipose tissue of KO compared to WT mice; however, this difference was 245 

not statistically significant. It is noteworthy that PCB 91 levels in the liver were 30-times higher 246 

in KO compared to WT mice, with 9 %TD and 0.3 %TB of PCB 91 being retained in the liver of 247 

KO and WT mice, respectively.   248 

The amount of PCB 91 excreted with the feces was one order of magnitude higher in KO 249 

(4 %TD) compared to WT mice (0.4 %TD) and decreased from day 1 to day 3. Levels of PCB 250 

91 decreased from 3 %TD to 0.2 %TD in KO mice and from 0.3 %TD to 0.05 %TD in WT mice 251 

in this period (Figure 2). It is noteworthy that despite the larger %TD of PCB 91 excreted with 252 

the feces in KO mice, the amount of PCB 91 retained in the liver was also much higher in KO 253 

compared to WT mice. This observation is consistent with impaired metabolism of PCB 91 in 254 
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KO mice. The amount of PCB 91 excreted with the urine was also higher in KO compared to 255 

WT mice (Figure 2). Briefly, KO mice excreted 4 %TD, and WT mice excreted 0.3 %TD with 256 

the urine over the three-day study period. In KO mice, the amount of PCB 91 in the urine 257 

decreased from 2 %TD on day 1 to 0.8 %TD on day 3. Levels of PCB 91 decreased from 0.2 258 

%TD on day 1 to 0.02 %TD on day 3 in the urine from WT mice. 259 

Levels of OH-PCB 91 metabolites. The disposition of OH-PCB metabolites of PCB 91 260 

has not been investigated in vivo to-date. We, therefore, measured the levels of the OH-PCB 91 261 

metabolites shown in Figure 1 in selected tissues and excreta. Four OH-PCB 91 metabolites, 262 

including 3-100 (2,2',4,4',6-pentachlorobiphenyl-3-ol; 1,2-shift product), 5-91, 4-91 and 4,5-91, 263 

were detected in blood, liver, feces, and urine collected from both KO and WT mice (Figure 2; 264 

Table S6). 5-91 was the major metabolites detected in blood, liver, feces, and urine, with 5-91 265 

levels decreasing in the rank order feces > urine > liver > blood. The sum of 5-91 in these four 266 

compartments accounted for approximately 23 %TD and 31 %TD in KO and WT mice, 267 

respectively (Table S6). The sum of the minor metabolites, including 3-100, 4-91 and 4,5-91, in 268 

the same compartments represented only 1.1 %TD and 2.3 %TD in KO and WT mice, 269 

respectively.   270 

Feces was the major and urine a minor route of excretion of OH-PCB 91 metabolites 271 

(Figure 3). In WT mice, the amount of 5-91 decreased from 17 %TD to 5 %TD in feces and 0.05 272 

%TD to 0.01 %TD in urine from day 1 to day 3. In KO mice, the amount of 5-91 decreased from 273 

12 %TD to 4 %TD in feces and 0.3 %TD to 0.07 %TD in the urine. Although more OH-PCBs in 274 

both excreta were generally lower in excreta from KO compared to WT mice, these differences 275 

did not reach statistical significance.  276 
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Preliminary characterization of urinary OH-PCB conjugates. To assess the formation 277 

of phase II metabolites, aliquots of urine samples were incubated in parallel with and without 278 

a  β-glucuronidase/sulfatase mixture. Levels of 5-91 and 4,5-91, but not 4-91 were higher in 279 

urine samples collected on day 1 to day 3 urines after deconjugation (Figure 4; Table S6, Figure 280 

S1-S3). These findings provide indirect evidence that OH-PCB metabolites of PCB 91 are 281 

metabolized to OH-PCB conjugates that are eliminated with the urine. Liquid chromatography–282 

tandem mass spectrometry (LC-MS/MS) was used to further screen for the presence of OH-PCB 283 

91 metabolites and their conjugates in a representative urine sample. The hydroxylated 284 

metabolites of PCB 91 eluted with a retention time of ~42 min, as determined with authentic 285 

standards of 4-91 and 5-91. Consistent with our quantitative analysis (Figure 3; Table S6), 5-91 286 

was a major and 4-91 a minor metabolite (Figures 4A and 4B). The other two OH-PCB 91 287 

metabolites could not be identified because of the low levels of these metabolites in urine 288 

samples, and no authentic hydroxylated standard was available.  289 

Several OH-PCB 91 conjugates were detected at retention times < 20 min (Figures 4C 290 

and 4D). Two peaks with m/z 514.9, 516.9 and 518.9 in an isotope ratio matching the theoretical 291 

isotope ratio of a pentachlorinated compound (i.e., 0.617:1:000:648) were observed at retention 292 

times of 7.538 and 13.863 min. Both peaks were tentatively identified as OH-PCB 91 293 

glucuronides (Figure 4D). Analysis in the MRM mode with a transition of m/z 516.8 > 175.0 294 

further confirmed the identification of both metabolites as OH-PCB 91 glucuronides (Figure 295 

4D). A peak of a pentachlorinated metabolite with m/z 434.82, 436.82, and 438.82 was observed 296 

at a retention time of 3.125 min (not shown). This peak corresponds to a dihydroxylated PCB 91 297 

metabolite conjugated with a single sulfate moiety; however, we could not confirm the presence 298 

of this metabolite in the MRM mode. 299 
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Enantiomeric fractions of PCB 91. Only limited information is available about the 300 

atropisomeric enrichment of PCB 91 in rodents. To address this knowledge gap, we investigated 301 

the genotype-dependent atropisomeric enrichment of PCB 91 in selected tissues and excreta of 302 

mice (Figure 5). The PCB 91 atropisomer eluting first on the BDM column (E1-PCB 91) was 303 

significantly enriched in adipose, blood, brain, and liver in both of KO and WT mice (Figure 5A; 304 

Table S7). The same PCB 91 atropisomer was enriched in the liver, and blood samples analyzed 305 

on the CD column, and the extent of the atropisomeric enrichment, determined using the EF 306 

values, was comparable for analyses on both columns (Table S7).  EF values of PCB 91 ranged 307 

from 0.74 in adipose tissue to 0.94 in the liver of WT mice exposed to racemic PCB 91 (Table 308 

S7). A less pronounced atropisomeric enrichment was observed in tissues from KO mice, with 309 

EF values of PCB 91 ranging from 0.60 in adipose tissue to 0.69 in brain and liver. EF values of 310 

PCB 91 followed the rank order liver > brain ~ blood > adipose in WT mice, and liver ~ brain ~ 311 

blood > adipose in KO mice. E1-PCB 91 was also enriched in feces samples from all time points 312 

investigated. The EF values in feces increased from day 1 to day 3. In day 3 samples, the EF 313 

values of PCB 91 in feces were close to those observed in the liver (Table S7). Moreover, the 314 

extent of the atropisomeric enrichment of E1-PCB 91 in feces samples was less pronounced in 315 

KO compared to WT mice. 316 

Enantiomeric fractions of OH-PCB 91 metabolites. Atropselective analyses of 5-91 317 

and 4-91 in blood and liver were performed in the BDM column (Figures 5B and 5C). Analyses 318 

on the CD column confirmed the extent and direction of the atropisomeric enrichment of 5-91 319 

observed on the BDM column (Table S7). E1-5-91 was enriched in blood from both KO and WT 320 

mice, with more pronounced atropisomeric enrichment in WT compared to KO mice (Figure 321 

5B). E1-5-91 was also enriched in the liver from WT mice, but the atropisomeric enrichment was 322 
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less pronounced compared to blood. Near racemic chiral signature of 5-91 were observed in the 323 

liver of KO mice. A marked enrichment of E1-4-91 was observed in liver and blood from both 324 

KO and WT mice, and no significant differences in EF values were found by genotype (Figure 325 

5C).  326 

In contrast to the enrichment observed in tissues, E2-5-91 was enriched in feces from KO 327 

mice (Figure 5B). The atropisomeric enrichment of E2-5-91 became less pronounces from day 1 328 

to day 3, resulting in a near racemic EF value of 0.45 on day 3 in KO mice. In WT mice, E2-5-91 329 

was enriched in feces samples collected on day 1 after PCB exposure, whereas E1-5-91 was 330 

enriched in feces samples collected on day 2 and day 3. As a result, the EF values of 5-91 in 331 

feces samples were always significantly lower in KO mice than WT mice. E2-5-91 was enriched 332 

considerably in urine samples from KO mice (all days) and WT mice (day 1 only) (Table S7). 333 

Similar to feces, EF values of 5-91 in urine samples also increased from day 1 to day 3 in both 334 

KO and WT mice, as determined on the CD column (Table S7). However, a more pronounced 335 

atropisomeric enrichment of E2-5-91 was observed in KO compared to WT mice. 336 

Consistent with the enrichment of E1-4-91 in tissues, E1-4-91 was enriched in feces 337 

samples collected on days 1 to 3.  The extent of the enrichment of E1-4-91 increased from day 1 338 

to day 3. Similar EF values were observed in day 1 feces samples from KO and WT mice. 339 

Statistically significant differences in the EF values of KO compared to WT mice were found in 340 

day 2 and day 3 feces samples, with a more pronounces atropisomeric enrichment of E1-4-91 341 

being present in feces samples obtained from WT mice. 342 

 343 

DISCUSSION 344 

Disposition of PCB 91 in KO and WT mice. In this disposition study, levels of PCB 91 345 

were significantly higher in blood and tissues from female KO compared to age-matched 346 
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congenic WT mice exposed orally to PCB 91. We observed a similar difference in the 347 

disposition of PCB 136 in tissues from KO and WT exposed to racemic PCB 136 using the same 348 

dosing paradigm.25, 43 In both studies, a considerable percentage of the total dose of both parent 349 

PCBs was accumulated in the liver of KO mice. The accumulation of PCBs, such as PCB 91, in 350 

the liver of KO, but not WT mice, is an indirect result of the liver-specific deletion of crp. 351 

Briefly, KO mice have an impaired metabolism of bile acids and lipids in the liver and, 352 

consequently, have livers with higher levels of extractable lipids and hepatic P450 proteins 353 

compared to congenic WT mice.25, 30, 44, 45  Studies in rats demonstrate that fatty liver results in a 354 

redistribution of PCBs, such as PCB 126, from the adipose tissue to the liver, potentially with 355 

higher levels of PCBs in the liver compared to adipose tissue.46, 47 Other lipophilic compounds 356 

also accumulate in the liver in models of non-alcoholic fatty liver disease.48 Moreover, ortho 357 

chlorinated PCB congeners bind to hepatic P450 enzymes49 and, as a result, can be sequestered 358 

into the liver in the absence of hepatic metabolism. Similarly, dioxin-like PCB congeners (i.e., 359 

PCB 126) are retained in the rodent liver due to binding to CYP1A enzymes.50, 51 Together, the 360 

hepatic accumulation of PCB 91 and the impaired hepatic PCB metabolism result in changes in 361 

the toxicokinetics of PCB 91 in KO compared to WT mice that, as we described recently for 362 

PCB 136,43 result in higher PCB levels in blood and tissues from KO mice at later time points 363 

(i.e., 72 h after PCB administration). 364 

Feces is a route of elimination of PCBs, such as PCB 136, in mice25, 34-36 and rats.52  365 

Typically, less than 2 % of the total dose is eliminated with the feces over a three-day period in 366 

C57Bl/6 mice exposed orally to PCBs.19, 29-31 Mice exposed by oral gavage to a PCB mixture, 367 

however, excreted > 10 %TD of PCB 91 within 12 h.53 The excretion of a higher %TD of 368 

unresorbed PCBs in this earlier study is likely due to differences in the mouse strain and the 369 
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mode of administration (cookie in this study vs. oral gavage in our earlier study53).  In the 370 

present study, feces was also a route of excretion of PCB 91 in both KO and WT. Moreover, 371 

there were clear differences in the extent of fecal excretion between genotypes, with KO mice 372 

excreting 10-times more PCB 91 than WT mice based on the total PCB 91 dose. In contrast, only 373 

5-times more PCB 136 was excreted with the feces in KO than WT mice (4.9 %TD vs. 0.95 374 

%TD, respectively) following oral exposure to PCB 136.25 Overall, the more pronounced fecal 375 

excretion of PCB 91 and PCB 136 in KO mice is due to the higher fat content of the feces of KO 376 

mice. The higher fecal fat content in KO mice has been reported previously and is the result of 377 

an impaired bile acid metabolism in KO mice caused by the liver-specific deletion of cpr, which 378 

in turn reduces the absorption of fats from the gastrointestinal tract.54 The larger amount of non-379 

resorbed fats in KO mice not only reduces the oral bioavailability of PCBs (i.e., increases their 380 

elimination without absorption),55 but also increases their elimination from the gastrointestinal 381 

tract (i.e., their diffusion from the bloodstream into the gastrointestinal tract).56 Our earlier PCB 382 

disposition study also demonstrated that a higher fecal fat content was associated with higher 383 

fecal PCB levels.53 384 

The present study revealed differences in the distribution of PCB 91 and PCB 136 in KO 385 

mice. We observed 60-fold higher levels of PCB 136,25 but only 30-fold higher levels of PCB 91 386 

in the liver of KO compared to WT mice. At the same time, much less PCB 136 was present in 387 

the liver of exposed KO mice (4.2 %TD of PCB 136 compared to 9 %TD of PCB 91). The 388 

differences in the hepatic accumulation of both PCB congeners are consistent with differences in 389 

the toxicokinetics of both congeners that, in turn, are the result of differences in their 390 

extrahepatic metabolism. To the best of our knowledge, no studies have investigated how an 391 

impaired hepatic metabolism, for example, due to mutations or deficiencies in CPR expression, 392 
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or genetic polymorphisms of P450 enzymes involved in the metabolism of PCBs (e.g., CYP2A6 393 

and CYP2B6) alters the PCB profiles and levels in the human liver. It is also unknown how fatty 394 

liver affects the disposition of PCBs in humans. It seems likely that congener-specific differences 395 

in the distribution of PCBs in the normal versus diseased liver play an overlooked role in the 396 

progression of alcoholic or non-alcoholic fatty liver disease.  For example, the activation of 397 

human nuclear transcription factors implicated in non-alcoholic fatty liver disease is complex 398 

and highly congener specific.57 Thus, higher hepatic PCB levels are expected to alter the 399 

expression of drug metabolizing enzymes in an already diseased liver, a hypothesis that warrants 400 

further attention, especially considering the high global prevalence of alcoholic and non-401 

alcoholic liver disease.58 402 

Disposition of OH-PCB 91 metabolites in KO and WT mice. Although a large body of 403 

evidence demonstrates that PCB metabolites are toxic,5, 6 only limited information about the 404 

metabolism of structurally diverse PCB congeners, including PCB 91, is available. In the present 405 

study, hydroxylated metabolites of PCB 91 were present in blood, liver, and excreta of KO and 406 

WT mice. These observations are consistent with studies of the disposition of PCB 95 and PCB 407 

136 in mice.37, 59 Levels of OH-PCBs were below the limit of detection in the adipose and brain 408 

tissue, irrespective of the genotype. In a separate study, we reported congener-dependent OH-409 

PCBs profiles in the brain of neonatal mice and the corresponding dams exposed 410 

developmentally to racemic PCB 95 and PCB 136 via the maternal diet.15 OH-PCBs were also 411 

detected in the brain of wildlife (i.e., cetaceans60 and polar bears61) and rats.16 Feces was a major 412 

route of excretion of OH-PCB 91 metabolites. It is noteworthy that hydroxylated PCB 91 413 

metabolites accounted for 24 %TD and 33 %TD of PCB 91 in the feces of KO and WT mice, 414 

respectively. Similarly, feces was a major and urine a minor route of excretion of hydroxylated 415 
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metabolites of PCB 136 in mice.25 In contrast, two lower chlorinated PCB congeners, PCB 3 and 416 

PCB 11 were rapidly eliminated as metabolites with both the urine and feces in rats exposed by 417 

inhalation to the respective PCB congener.62-64 418 

The distribution of OH-PCB metabolites revealed differences compared to our previous 419 

study with PCB 136 in the same mouse model.25 Briefly, 5-136 accounted for 26 %TD of PCB 420 

136 in WT mice in the earlier study, whereas the structurally related 5-91 accounted for 31 %TD 421 

of PCB 91 in this study. In KO mice, both meta hydroxylated metabolites accounted for a 422 

comparable %TD in the blood, liver, feces, and urine (i.e., 24 %TD of PCB 136 vs. 23 %TD 423 

PCB 91). The %TD of 4-136, a para hydroxylated metabolite, was 4.6-times and 3.9-time higher 424 

compared to the %TD of the structurally analogous 4-91 in KO and WT mice, respectively. 425 

Unlike our previous study with PCB 136,25 we observed no statistically significant differences in 426 

the tissue levels of PCB 91 metabolite between WT and KO mice. In contrast, liver and blood 427 

levels of OH-PCB 136 metabolites were typically significantly higher in KO compared to WT 428 

mice after oral exposure to PCB 136.25 In vitro metabolism studies with precision-cut liver tissue 429 

slices also demonstrate congener-specific differences in the metabolism of PCBs, with PCB 91 430 

being more rapidly oxidized in meta, but not para position compared to PCB 136. These 431 

differences in the metabolism of PCB 91 and PCB 136 may be toxicologically important 432 

because, depending on their substitution pattern, OH-PCBs display different toxicities.5, 6  433 

OH-PCBs are further metabolized to glucuronide and sulfate metabolites in rodent 434 

models52, 62, 65 and humans.66 Because conjugates of OH-PCBs are potential biomarkers of PCB 435 

exposure,63 we screened urine samples for the presence of OH-PCB 91 conjugates. Only 5-91 436 

and 4,5-91 conjugates were excreted with the urine based on our deconjugation experiments. 437 

Similarly, 5-136 and 4,5-136, but not 4-136 were excreted with the urine as OH-PCB 136 438 
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conjugates following exposure of WT and KO mice PCB 136.25 Our screening of a 439 

representative urine sample by LC-MS/MS for metabolites identified an OH-PCB 91 440 

glucuronide. Besides, we observed a dihydroxylated PCB 91 metabolite conjugated with a single 441 

sulfate moiety; however, we could not confirm the presence of this metabolite in the MRM 442 

mode. The detection of these metabolites in urine is not entirely unexpected. For examples, 443 

several studies have shown the presence of mono- and di-hydroxylated PCB conjugates in urine 444 

for rats exposed to lower chlorinated PCBs.62, 63, 67 A recent study reported complex PCB 445 

metabolite profiles, including dihydroxylated PCB metabolites conjugated with a single sulfate 446 

moiety,  in serum from polar bears and feces from mice exposed to a complex PCB mixture.68 447 

Further accurate mass determinations and MS/MS experiments are therefore warranted to 448 

confirm the formation of these OH-PCB 91 metabolites and study their disposition in mice. 449 

Atropisomeric enrichment of PCB 91 and its OH-PCB metabolites. Chiral PCBs, 450 

such as PCB 91, are atropselectively oxidized by P450 enzymes, resulting in an atropisomeric 451 

enrichment of both the parent PCB and its hydroxylated metabolites.1, 26 Moreover, several 452 

studies reveal differences in the hepatotoxicity and neurotoxicity of pure PCB atropisomers.26 453 

For example, PCB 91 causes atropselective metabolic and lipidomic responses in earthworms in 454 

vivo.69  Based on the elution order of PCB 91 atropisomers on the BDM column, the enrichment 455 

of E1-PCB 91 in mice was consistent with in vitro studies with mouse liver tissue slices40 and 456 

disposition studies in mice exposed orally to a PCB mixture containing PCB 91.53, 70  E1-PCB 91 457 

was also enriched in studies with recombinant rat CYP2B1 and rat liver microsomes41, 71, 72 and 458 

human liver microsomes.20 Similarly, fish species, seabirds and ringed seals typically showed 459 

enrichment of E1-PCB 91.73, 74 An enrichment of E2-PCB 91 was reported only in a few seabirds 460 

and human breastmilk samples.75 Unlike PCB 91, the direction of the atropisomeric enrichment 461 
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of several toxicologically relevant PCB congeners, in particular, PCB 95 and PCB 136, is 462 

different in mice compared to other mammalian species.  For example, in vitro, and in vivo 463 

studies demonstrate that (-)-PCB 136 is more rapidly eliminated in mice. In contrast, (+)-PCB 464 

136 is more rapidly metabolized in other mammalian species, resulting in an enrichment of (-)-465 

PCB 136.1  466 

The enrichment of PCB 91 in this study was genotype-dependent, with a more 467 

pronounced atropisomeric enrichment observed in WT compared to KO mice. This difference in 468 

the atropisomeric enrichment is consistent in the slower metabolism of PCB 91 in KO compared 469 

to WT mice.  In contrast, we did not observe significant differences in the EF values in tissues 470 

from KO and WT mice is our earlier disposition studies with PCB 136 at 48 and 72 h time 471 

points,25, 43 an observation that further highlights the congener-specific differences in the 472 

disposition of PCBs (i.e., PCB 91 vs. PCB 136) in KO mice discussed above.  The higher fat 473 

content in the liver of KO mice does not directly contribute to different EF values in WT 474 

compare to KO mice because the partitioning of PCB into fatty tissues is a physicochemical 475 

process that is not atropselective. However, the storage of a significant percentage of the total 476 

dose of PCB 91 in the liver of KO mice will distribute the PCB away from the site of metabolism 477 

and contribute to a reduced elimination of PCB 91, which in turn will influence the atropisomeric 478 

enrichment of PCB 91 in target tissues and affect toxic outcomes.  479 

The two major PCB 91 metabolites, 5-91 and 4-91, were formed with significant 480 

atropisomeric enrichment in KO and WT mice. Typically, the E1-atropisomers of 5-91 and 4-91 481 

displayed enrichment in the compartments investigated, irrespective of the genotype. The 482 

enrichment of E2-5-91 in day 1 feces samples from WT mice and day 1 and day 2 feces samples 483 

from KO was a notable exception. In contrast, E2-5-91 and E2-4-91 are preferentially formed in 484 
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studies with mouse liver tissue slices.40 These findings demonstrate that in vitro metabolism 485 

studies do not necessarily predict the atropisomeric enrichment of OH-PCB in vivo. This 486 

observation is not entirely surprising because in vitro models do not recapitulate the complex 487 

metabolism and transport processes present in vivo, including the metabolism of PCB 488 

metabolites by the intestinal microbiome. It is likely that further metabolism of OH-PCBs to the 489 

corresponding sulfates and glucuronides as well as the transport of these PCB metabolites is 490 

atropselective, thus resulting in complex chiral mixtures of the OH-PCBs. Consistent with this 491 

interpretation of our results; we observed the presence of conjugated PCB 91 metabolites in 492 

urine. Moreover, the altered direction of the enrichment of the atropisomers of 5-91 in day 1 493 

compared to day 2 and day 3 samples in WT mice could be due to the atropselective phase II 494 

metabolism or transport of OH-PCB 91 metabolites. Further studies of the atropselective 495 

metabolism of OH-PCBs to sulfate, glucuronide and other conjugates are needed to confirm this 496 

hypothesis.  497 

Overall, our study demonstrates differences in the atropselective disposition of PCB 91 498 

and its hydroxylated metabolites in KO compared to WT mice. Moreover, there are congener-499 

specific difference in the disposition of PCB 91 compared to our earlier study with PCB 136. 500 

These differences in the disposition of PCB and their metabolites are not only due to the 501 

impaired hepatic metabolism of PCBs caused by the lack of cpr expression in the liver, but also 502 

the accumulation of the parent PCB in the liver. Because the deletion of cpr in the liver does not 503 

appear to alter the neurodevelopment in KO compared to WT mice, KO mice are a model that 504 

could be used to study how an altered disposition of chiral PCBs and OH-PCBs affects 505 

neurotoxic outcomes. However, it will be challenging to determine how impaired PCB 506 

metabolism vs. PCB sequestration in the fatty liver contribute to toxic outcomes. Moreover, there 507 
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are significant differences in the atropselective metabolism of PCBs in mice and humans.19 508 

Humanized mouse models, such as mice expressing human CYP2B6 enzymes in the liver,76 are 509 

alternatives for studies of the role of PCB metabolism in PCB-induced developmental 510 

neurotoxicity and other adverse outcomes associated with exposure to PCBs. 511 
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Figure 1: Simplified metabolism scheme of PCB 91.  Only one atropisomer of PCB 91 and its metabolites are shown for clarity 

reasons. 
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Figure 2. Mice with a liver-specific deletion of the cpr gene (KO mice) have significantly higher 

levels of PCB 91 compared to the corresponding congenic wild type mice (WT mice). PCB 91 

levels are expressed on a logarithmic scale as a percent of the total PCB 91 dose (see Table S6 

for additional details). *Significantly different from WT (p<0.05) analyzed by Student’s t-test; $ 

(0.05≤p<0.1) analyzed by Student’s t-test; nd, not detected. 
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Figure 3. Levels of (A) 3-100, (B) 5-91, (C) 4-91, (D) 4,5-91 in tissues and excreta show little differences between mice with a liver-
specific deletion of the cpr gene (KO mice) and the corresponding congenic wild type mice (WT mice). OH-PCB metabolite levels are 
expressed on a logarithmic scale as a percent of the total PCB 91 dose (see Table S6 for additional details). nd, not detected.
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Figure 4: Analysis of a urine sample from a representative mouse dosed with PCB 91 by LC/MS 
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demonstrates the presence of PCB 91 metabolites. The presence of (A) 5-91 and (B) 4-91 was 

confirmed in the scan mode with a mass in the range of 100-800 amu in the negative mode. (C) 

Analysis in the SIM mode showed two peaks at retention times of 7.5 and 13.9 min. The 

theoretical isotope ratios 0.617:1:0.648 of m/z at 514.9, 516.9, and 518.9 is consistent with the 

presence of monohydroxylated PCB 91 metabolites present in the urine sample. (D) Further 

confirmation of monohydroxylated PCB 91 operated by MRM mode with transitions of m/z 

516.9 >175.0 showed two peaks with the same retention times. The instrument parameters are 

described in the Experimental section. 
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Figure 5. Comparison of the enantiomeric fractions (EFs) of (A) PCB 91, (B) 5-91 and (C) 4-91 

in tissues and feces reveals significant differences in the atropisomeric enrichment between KO 

and WT mice following oral administration of PCB 91. EF values greater than 0.5 represent an 

enrichment of the first eluting atropisomer (E1), and EF values less than 0.5 represent an 

enrichment of the second eluting atropisomer (E2). Atropselective separations were performed 
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on a BDM column as described in the Experimental section. The dotted line indicates the EF 

values of the respective racemic standard. * Significantly different from WT (p<0.05) analyzed 

by Student’s t-test; $ p<0.1 analyzed by Student’s t-test; nd, not detected.  
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