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Abstract

The structured nature of chemical data means machine learning models trained to predict protein-
ligand binding risk overfitting the data, impairing their ability to generalise and make accurate predic-
tions for novel candidate ligands. To address this limitation, data debiasing algorithms systematically
partition the data to reduce bias. When models are trained using debiased data splits, the reward
for simply memorising the training data is reduced, suggesting that the ability of the model to make
accurate predictions for novel candidate ligands will improve. To test this hypothesis, we use distance-
based data splits to measure how well a model can generalise. We first confirm that models perform
better for randomly split held-out sets than for distant held-out sets. We then debias the data and
find, surprisingly, that debiasing typically reduces the ability of models to make accurate predictions
for distant held-out test sets. These results suggest that debiasing reduces the information available to
a model, impairing its ability to generalise.

Introduction

The accurate identification of ligands that bind
tightly and specifically to a given protein tar-
get is a crucial step in drug discovery. Exper-
imental high-throughput screening is expensive,
time-consuming, and far from comprehensive due
to the numerous potential ligands in chemical
space.1,2 Physics-based methods such as docking
and Molecular Dynamics can be inaccurate and are
computationally expensive.3–5 Databases such as
ChEMBL6 are growing rapidly, increasing the pop-
ularity of machine learning (ML)-based approaches
to molecular property prediction.7,8 In this pa-
per, we focus on data-driven approaches to virtual
screening, i.e. using data from high-throughput
screening experiments to train models that predict
whether ligands will have activity against a partic-
ular protein target.9

Many recent ML approaches have achieved out-
standing success on benchmark datasets that are
randomly partitioned into train and validation sets,
with AUCs (area under the Receiver Operator
Characteristic curve) routinely exceeding 0.9.10–17

However, it is unclear whether this impressive per-
formance indicates that a model that can truly
generalize across chemical space, or instead sim-

ply overfits the training data.18–23 Since chemical
space contains clusters of molecules around scaf-
folds, memorizing the properties of a few scaffolds
can be sufficient to perform well, masking the fact
that the model may not generalize beyond close
analogues.24,25 Further, molecules tested experi-
mentally are generally designed by humans and
therefore likely to be easy to synthesize and similar
to previously known binders.19,26

To counter this limitation, data bias definitions
and corresponding debiasing algorithms have been
introduced.20,22,27,28 Two popular bias measures,
Maximum Unbiased Validation (MUV) and Asym-
metric Validation Embedding (AVE), are illus-
trated in Fig. 1.20,22 In each case the bias mea-
sure is used by a genetic algorithm to rearrange
the train/validation split such that the bias is re-
duced. Specifically, MUV ensures that active lig-
ands are uniformly embedded among inactive lig-
ands according to some distance metric, while AVE
adds the requirement that inactive ligands are not
tightly clustered. Across benchmark datasets for
multiple protein targets, both bias metrics were
shown to correlate to model performance, suggest-
ing that heavily biased datasets provide a falsely
optimistic picture of the predictive ability of the
trained model. Furthermore, debiasing was shown
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Figure 1: Definition of AVE and MUV Bias. (a) This set is considered biased by MUV because actives are
clustered and not uniformly embedded in the inactive decoys. (b) This set is considered biased by AVE,
because the inactives are tightly clustered relative to the active-inactive distance.

to decrease classification accuracy for the debiased
validation set, presumably because the resulting
models could not perform well by simply memo-
rising the training data.20,22

The purported advantage of models trained us-
ing debiased data splits is that they overfit less, so
generalise better to make accurate predictions for
novel candidate ligands. In this paper, we develop
a framework to measure generalisation ability, and
explicitly test this hypothesis. We assemble data
for 189 targets with > 500 reported active ligands,
and split each dataset into a train set and a dis-
tant held-out test set used to define the far-AUC,
a metric of model generalisation (see Fig. 2a). We
then randomly split the train set to produce a ran-
dom held-out validation set, which is used to mea-
sure the standard AUC. Despite achieving state-
of-the-art AUCs on the held-out validation sets,
our trained ML models struggle to generalise effec-
tively when challenged with the distant held-out
test sets. We then apply MUV and AVE debiasing
to our 189 random train/validation splits, and use
the resulting debiased train sets to build new mod-
els. We find that counter to the stated aim, the
debiased models make less accurate predictions for
novel candidate ligands, as illustrated by their per-
formance on the distant held-out test sets.

Methods

We filter protein-ligand binding data from
ChEMBL 24.1,6,29 acquiring active ligands (IC50,
Ki, Kd, or EC50 of less than 1 µM) for each protein
target. We acquired data for inactive ligands from
PubChem indexed by UniProt Protein ID.30,31

The handful of cases where ligands were marked

both active and inactive by different assays were
eliminated. Some targets have fewer inactives than
actives, in which case we randomly drew inactives
from ChEMBL to achieve an even split for every
target. This procedure was repeated every time
the algorithm was run, contributing to the error
bars shown in the figures.

We use ECFP6 fingerprints with 2048 bits as
the feature set for all models.32 For consistency
we use Tanimoto similarity as the distance met-
ric throughout, computed as 1 − d where d is the
Jaccard distance metric from Scipy33 (note this dif-
fers from the specific metric used in MUV20). We
first randomly split both the actives and inactives
for each protein target into a 70% set and a 30%
set. Each 30% set is filtered to build distant held-
out test-sets that contain approximately 10% and
approximately 25% of the total active and inac-
tive ligands respectively, wherein all ligands are at
least 0.4 from every ligand in the 70% set. Our far-
AUC metric measured the performance of models
on this distant held-out test set, which only con-
tains molecules distant from any molecules (active
or inactive) that the model has previously seen.

We further randomly split the remaining 70%
set for each target into train (80%) and validation
(20%) sets and train Naive Bayes, Logistic Regres-
sion, and Random Forest models using these data
splits. All models used were implemented with
scikit-learn.34 We use no prior for Naive Bayes,
C = 1 for Logistic Regression, and 100 trees with a
maximum depth of 10 for Random Forest. We do
not tune model hyperparameters since the focus of
our work is the debiasing algorithms. The 3-way
train/validation/test split and the requirement for
data points far from the training set restricted us
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Figure 2: (a) Definition of the far-AUC, the AUC using a held-out test set with minimum distance of 0.4
from all elements of the training or validation set. (b) Comparison of the standard model AUC and the
far-AUC, a measure of generalization. Model predictions are less accurate for the distant held-out test set
than for the validation set, showing that these models do not generalise.

to the 189 protein targets with > 500 active lig-
ands. All AUCs are measured over 50 replicates to
determine error bars. Randomness comes from the
train/validation/test split and (where needed) the
selection of inactives. All error bars are SEM and
indicated to 1 σ precision.

We follow the original definitions of AVE and
MUV bias.20,22 Specifically, given a set V of val-
idation molecules and T of training molecules with
a similarity threshold d ∈ [0, 1], we define a nearest-
neighbor function

S(V,T,d) =
1

||V ||
∑
v∈V

Id(v, T ) (1)

where Id(v, T ) = 1 if the distance from the valida-
tion molecule v to its nearest neighboring training
molecule is smaller than d. We then define a dis-
tance function on sets

H(V,T ) =
1

||D||
∑
d∈D

S(V, T, d) (2)

with D = {0, 0.01, . . . , 1}. For convenience, let
Va, Vi, Ta, Ti be the sets of validation actives, val-
idation inactives, test actives, and test inactives,
respectively. Then the AVE bias is defined as

BAVE = H(Va,Ta)−H(Va,Ti)+H(Vi,Ti)−H(Vi,Ta) (3)

and the MUV bias is defined as

BMUV = H(Ta,Ta) −H(Ta,Ti) +H(Va,Va) −H(Va,Vi).
(4)

To minimise MUV or AVE bias we use the im-
plementation developed in,22 which largely fol-
lows that in.20 A number of random initial
train/validation splits are generated; then the mu-
tation phase of the genetic algorithm involves ran-
domly merging two train/validation splits, mov-
ing compounds between the training and valida-
tion sets, and deleting compounds from either set.
The algorithm ran for 300 iterations or until bias
was < 0.01, whichever occurred first, and then pro-
duced the least biased split.

Results

We first use our framework to test the extent
to which ML models are able to generalise and
make accurate predictions for novel candidate lig-
ands. To assess this we compare the ability of each
trained model to accurately classify ligands in (i)
the random held-out validation set, reported by the
standard AUC and (ii) the distant held-out test
set, reported by the far-AUC. The distant held-out
test sets mimic the real-world need to make accu-
rate predictions for novel candidate ligands that are
distinct from the training data. The results of our
analysis for Naive Bayes, Logistic Regression and
Random Forest models are shown in Fig. 2b. We
find that the far-AUC is significantly lower than the
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Figure 3: Impact of debiasing on the far-AUC; points below the diagonal indicate targets for which
debiasing decreased the far-AUC. (a) AVE debiasing reduces the ability of the models to generalise. (b)
MUV debiasing does not consistently help the models to generalise. These results suggest that debiasing
does not improve the ability of the models to generalise to novel candidate ligands.

standard AUC for all models tested across all 189
target datasets, indicating that our models do not
generalise well. This confirms the hypothesis that
generalisation is a challenge for ML models trained
on protein/ligand binding datasets. Although we
have not tested more complex models, it is likely
that as the complexity of the ML model increases,
overfitting to the training data will increase.

We next assess the extent to which MUV and
AVE debiasing alleviate this issue. The key ques-
tion is whether these algorithms remove data bi-
ases that prevent the models from generalising or
instead remove useful information that is necessary
for the model to learn. This is a nontrivial ques-
tion, as both MUV and AVE rely on the inherent
assumption that the metrics being used to measure
distances between ligands do not correlate strongly
with the binding activity of the ligand. The ulti-
mate goal of a ML model is to learn a function
of the data features that distinguishes ligands that
bind to a given protein from those that don’t. In
contrast, the goal of debiasing is to ensure that
actives and inactives are well-mixed according to
some distance metric, which is itself a function of
the data features. If this distance metric happens
to be correlated with the physico-chemical criteria
required for binding, then debiasing will remove
important information from the training data, po-
tentially harming the performance of the model.

To address this question we use the distant held-
out test sets to compare the existing models with

versions trained using debiased train/validation
splits. We evaluate the effect of debiasing by com-
puting the change in the far-AUC score between
the models trained on the debiased data, and the
models trained on the original data for each target.
As shown in Fig. 3, neither AVE nor MUV debias-
ing improve the generalisation ability of the trained
models. On average, AVE decreases the far-AUC
of Logistic Regression by 0.024 ± 0.030 (mean ±
standard deviation) and that of Random Forests
by 0.021 ± 0.029, while MUV debiasing decreases
the far-AUC of Logistic Regression by 0.004±0.034
and of Random Forest by 0.002± 0.036.

To check whether the far-AUC depends on the
extent to which the data were debiased by either
MUV or AVE, Figs. 4a and 4b show the change
in far-AUC as a function of the final dataset bias
achieved by AVE and MUV respectively. We find
no correlation in each case. Supplementary Fig. S1
confirms that this still holds if we instead consider
the change in MUV bias, to account for the initial
MUV bias measured.

We further probe if the number of active lig-
ands for a target indicates whether debiasing will
prove effective. Figs. 4c and 4d show no correla-
tion between the number of active ligands and the
change in far-AUC achieved by debiasing. How-
ever, the magnitude of the change in far-AUC de-
creases slightly as the number of active ligands in-
creases, suggesting that debiasing has a smaller ef-
fect for large datasets. In addition, we checked
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Figure 4: Relationship between the change in far-AUC achieved by debiasing and either (a) the final AVE
bias or (b) the final MUV bias; we find no correlation. Furthermore we see no improvement in the resulting
generalisability as a function of the number of active ligands per target for (c) AVE or (d) MUV debiasing.
These results suggest that neither approach has much effect for large datasets.

whether there was any relationship between the
change in the far-AUC and the number of decoy
molecules added for a given target to achieve equal
numbers of active and inactive ligands. Supple-
mentary Fig. S2 confirms that there is no correla-
tion.

To better understand these findings, and ask
whether there are situations in which debiasing
does improve the ability to generalise, we exam-
ine the data generated by our experiment in more
detail. We first examine far-AUC trajectories mea-
sured during debiasing. Supplementary Figs. S3
and S4 suggest that there is no positive correla-
tion between the far-AUC achieved and reduction
of either the MUV or AVE bias. The jagged be-
haviour seen for both algorithms suggests that cer-
tain moves that significantly decrease the far-AUC
are sometimes preferred.

We hypothesised that moves in these trajecto-

ries that decrease the far-AUC correspond to data
deletion, a move allowed by the genetic algorithm.
For example, Supplementary Fig. S5 shows how
the size of the dataset for ChEMBL 5508 decreases
during the debiasing process. To evaluate debias-
ing in the absence of data deletion, we modified
the genetic algorithm to prevent data from being
deleted. Supplementary Fig. S5 shows that the
modified versions of both MUV and AVE debias-
ing still succeed at reducing the bias of the dataset.
Could this provide an approach that better enables
the models to generalise? To test this we repeated
our earlier analysis with the modified debiasing al-
gorithms.

As shown in Fig. 5, we find that forbidding dele-
tion does slightly improve the generalisation abil-
ity of the resulting debiased models for both AVE
and MUV compared to the versions with deletion.
However, even without deletion, AVE decreases the
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Figure 5: Debiasing without deletion. When deletion is forbidden for the (a) AVE or (b) MUV debiasing
algorithms, performance improves slightly over that obtained with the standard version of each algorithm.
However, (c) and (d) show that for both algorithms, debiasing without deletion is worse, on average, then
the performance obtained by the models before debiasing.

Figure 6: There is no clear relationship between the change in far-AUC achieved when deletion during
debiasing is forbidden and either (a) the final AVE bias or (b) the final MUV bias.
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far-AUC of Logistic Regression by 0.016 ± 0.041
and of Random Forest by 0.017 ± 0.044 on av-
erage across the 189 datasets, while MUV debi-
asing decreases the far-AUC of Logistic Regres-
sion by 0.0006 ± 0.037 and of Random Forest by
0.001 ± 0.038. As in the case where deletion is al-
lowed, Figs. 6a and 6b confirm that there is no rela-
tionship between the extent to which the data were
debiased, and the change in far-AUC obtained.

Overall, our results indicate that it is difficult to
predict when AVE or MUV debiasing will improved
generalisation. Further work is needed to deter-
mine the conditions under which debiasing has the
potential to improve the ability of a model to gen-
eralise and make accurate predictions for novel can-
didate ligands.

Discussion

In this paper we develop a simple far-AUC met-
ric that measures the ability of a protein-ligand
binding model to generalise and make accurate pre-
dictions for novel candidate ligands. We use this
metric to evaluate the AVE and MUV debiasing al-
gorithms that were designed to reduce overfitting
to the training data, and thus potentially improve
the ability of models to generalise. Our analysis
for both AVE and MUV debiasing in Fig. 3 finds
that debiasing does not systematically improve the
ability of the trained models to generalise, despite
the fact that Fig. 2b shows there is significant room
for improvement.

This suggests that debiasing algorithms are not
able to accurately distinguish signal from bias, and
in many cases remove relevant information from
the training data. Our analysis of the debiasing
trajectories suggests that the deletion operation
used by the genetic algorithm in both MUV and
AVE debiasing may exacerbate this loss of useful
information or signal from the data. To address
this we implemented versions that did not allow
data points to be deleted. This did not result in
models that were better able to generalise com-
pared to those built without debiasing.

Dataset bias is clearly an important issue, par-
ticularly in chemistry; however, current debiasing
approaches need to be applied carefully to ensure
that they do not eliminate relevant information.
Indeed, some clustering among actives is to ex-
pected in fingerprint space, since active ligands for
a given protein can have structurally similar fea-
tures. It is important to distinguish between this

clustering and artificial clustering that may result
from the fact that only portions of chemical space
have been explored by synthetic chemists, or other
potential sources of bias.

Another approach is to better understand the
regions of chemical space in which protein-ligand
binding models trained using a particular dataset
are able to make accurate predictions. Generalisa-
tion is challenging for ML models across many con-
texts, even when trained with unbiased datasets,
so given the highly biased nature of chemical data,
expecting protein-ligand binding models to gener-
alise may be ambitious. Methods that establish the
domain of applicability for trained models need to
be developed to provide confidence in those predic-
tions that fall within this domain. This approach
would have the advantage of avoiding the infor-
mation/bias distinguishability problem described
above while still allowing the resulting models to
generalise to some degree.
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