A Convenient Two-Step Synthesis of Coenzyme Q1

Yi-Yu Yan^{a#}, Wan-Yue Luo^{a#}, Yan Zhao^a, Jian-Hua Tian^a, Jin Wang^a*

^aSchool of Pharmacy, Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Hope Avenue South Road No.2, Yancheng, 224007, Jiangsu Province, P. R. China

[#] These authors contributed equally to this work Corresponding authors e-mail: wangj01@yctu.edu.cn (Jin WANG)

total yield 60%; Redox Chain Reaction; gram-scale synthesis

Abstract

A convenient method for the preparation of Coenzyme Q_1 from the cheap and readily available 3,4,5-Trimethoxytoluene was developed. Co Q_1 was synthesized in moderate yield by a two-step procedure involving the key reaction of allyl bromide with Co Q_0 through a redox chain reaction. The reaction is efficient and could be used for the synthesis of other CoQ compounds.

Keywords: Coenzyme Q, 3,4,5-trimethoxytoluene, chain reaction

Introductions

Coenzyme Q_{10} (Co Q_{10} , **Fig.1**) is a isoprenoid quinones compound^[1] and play a pivotal role in the electron transport chain in respiratory processes.^[2] Co Q_{10} is a natural antioxidant that scavenges free radicals.^[3] It is widely used in the treatment of cardiovascular disease and mitochondrial disorders.^[4] Coenzyme Q_1 (Co Q_1 , **Fig.1**) is an important fragment of Coenzyme Q series which function in the electron transport and oxidative phosphorylation processes in mitochondria. Co Q_1 also acts as a key intermediate in the synthesis of higher CoQ analogues.^[5]

Fig. 1 Structures of CoQ_{10} and CoQ_1

There have been several methods published for the preparation of Coenzyme Q₁, most of methods involved a Lewis acid-catalyzed reaction between the allylic alcohol and hydroquinone, followed by oxidation to the quinones. Hegedus *et al*^[2] and Sato *et* $al^{[6]}$ synthesized the CoQ₁ by reaction of π -allylic nickel complexe with quinones in 26% yield (**Scheme 1, eq.1**). Yamago *et al*^[7] reported a radical-mediated synthesis of substituted quinones with organotellurium compounds.^[8] However, these reactions were quite sensitive to reaction conditions, the key reagents π -allylnickel bromide complex and organotellurium were difficult to prepare. Tabushi *et al*^[9] reported a β -cyclodextrin catalyzed allylation-oxidation of hydroquinone to form CoQ₁ in 11% yield (**Scheme 1, eq.2**). Recently, Chen *et al*^[5] and Bovicelli *et al*^[10] started from 3,4,5-tetramethoxytoluene (**TMT**) to obtain CoQ₁ in multiple-steps (**Scheme 1, eq.3**). Unfortunately, all these methods generally gave low yields and complex by-products. Therefore, a general and practical method for efficient CoQ₁ synthesis is highly demanded. Here, we reported a two-step synthesis of CoQ₁ by starting from 3,4,5-trimethoxytoluene (**TMT**) with a total yield of 60% (**Scheme 1, eq.4**).

(a) previous work

Scheme 1. Various methods for CoQn

Results and Discussion

Firstly, a single-step synthesis of CoQ₀ was shown in **Table 1**, this oxidation reaction of **TMT** is conducted in acetic acid at 50 °C in less than 2 h and without using any metal catalyst. This environmentally friendly procedure is based on the oxidant as an oxygen atom donor, and the acidic solvent acetic acid played an important role in this transformation. The traditional method employing 30% H₂O₂ as oxidant give a yield of 50% (entry 1, **Table 1**). The use of Na₂S₂O₈ and (NH₄)₂S₂O₈ can improve the reaction yield (entry 3-4, **Table 1**). The best yield was obtained using K₂S₂O₈ as oxidant to afford the desired product CoQ₀ in 85% yield (entry 2, **Table 1**). However, when utilize Ammonium Cerium Nitrate (CAN) as oxidant we did not observe any product CoQ_{0.} (entry 5, Table 1).

Table 1 Single-step synthesis of COQ0								
		CH ₃ COOH oxidant, air						
	ТМТ		CoQ ₀					
Entry	oxidant	Solvent	Temp (°C)	Yield (%)				
1	30% H ₂ O ₂	CH ₃ COOH	50	50				
2	$K_2S_2O_8$	CH ₃ COOH	50	85				
3	$(NH_4)_2S_2O_8$	CH ₃ COOH	50	70				
4	$Na_2S_2O_8$	CH ₃ COOH	50	60				
5	CAN	CH ₃ COOH	50	0				

Table 1 Single-step synthesis of $C_0 O_0$

Reaction Conditions: TMT (0.01mol), oxidant (1.5 equiv), 2 hour under open air

Inspired by Li'work on the alkylation of p-Quinones by a redox chain reaction,^[11] herein tried synthesize CoQ_1 by allylation of CoQ_0 we to with 1-bromo-3-methyl-2-butene (1), the results were shown in Table 2. Diethyl 1,4-dihydro-2,6-dimethy-3,5-pyridinedicarboxylate (Hantzsch ester) was selected as initiator according to literature,^[12] and the reaction works with many Lewis as catalysts in dichloromethane solvent at room temperature. Normal Lewis acids catalysts were screened in the reaction, AlCl₃, ZnCl₂ and FeCl₃ could not catalyze the reaction (Table 2, entries1-3). Solvents were crucial for this reaction, using Acetone, THF, CH₃CN or Toluene as solvent led to a low yield of CoQ_1 (Table 2, entries 5-8). On the basis of these screening studies, the optimal condition was using BF₃Et₂O as catalyst and dichloremethane as solvent.

Entry	initiator	Lewis acids	solvents	Yield (%)
1	Hantzsch ester	AlCl ₃	CH_2Cl_2	N.R.
2	Hantzsch ester	$ZnCl_2$	CH_2Cl_2	N.R.
3	Hantzsch ester	FeCl ₃	CH_2Cl_2	N.R.
4	Hantzsch ester	BF ₃ ·Et ₂ O	CH_2Cl_2	70
5	Hantzsch ester	BF ₃ ·Et ₂ O	Acetone	8
6	Hantzsch ester	BF ₃ ·Et ₂ O	THF	32
7	Hantzsch ester	BF ₃ ·Et ₂ O	CH ₃ CN	20
8	Hantzsch ester	BF ₃ ·Et ₂ O	Toluene	10

Reaction Conditions: CoQ_0 (0.01 mol), Compound **1** (0.01 mol), Hantzsch ester(1 mmol), Lewis acid (0.01 mol), r.t., under N₂ atmosphere; N.R.= no reaction.

Conclusion

In summary we have developed a convenient synthetic protocol for the preparation of Coenzyme Q_1 from the cheap and readily available 3,4,5-Trimethoxytoluene **TMT** within two steps. The overall yield of Co Q_1 is 60%. The intermediate Co Q_0 was also obtained in 85% yield in the first step. The second redox chain reaction between allyl bromide and Co Q_0 provided a one-step procedure for the direct introduction of allyl groups into quinones in good yield. The reaction is efficient, clean and easy work-up. This method could be used for the synthesis of other coenzyme Q compounds.

Experimental Section

All reactions were monitored by TLC (SiO₂, petrol ether/EtOAc 5:1), Melting points were measured on Melting Point M-565 (BUCHI). NMR and mass spectra were recorded on a Bruker Avanc III-HD 400 NMR and a TripleTOF Mass spectrometers, respectively. All reagents: e.g. Potassium Persulfate, Ammonium persulphate, Hantzsch ester, BF₃:Et₂O were purchased from Adamas, P. R. China, and used without further purification.

General method for preparation of CoQ₀

3,4,5-Trimethoxytoluene (1.82 g, 10 mmol) was dissolved in a mixture of acetic acid (10 mL) and catalytic H₂SO₄, then a solution of oxidant (15 mmol) was added dropwise over 10 minutes. The mixture was stirred and heated at 50 °C for 1 hour and extracted with CH₂Cl₂ (3 x 10 mL). The combined organic phases were washed with

 H_2O and NaHCO₃, then dried over anhydrous Na₂SO₄, and evaporated under reduced pressure. The residue was purified by a silica-gel column chromatography (PE/EtOAc 5:1) to give coenzyme Q_0 .

Coenzyme Q₀, red-colored needles, m.p. 55-58 °C (Lit.^[13] 57-59 °C). ¹H NMR (400 MHz, CDCl₃) δ 6.44 (q, *J* = 1.7 Hz, 1H), 4.02 (s, 3H, OCH₃), 4.00 (s, 3H, OCH₃), 2.04 (d, *J* = 1.6 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 184.4 (C=O), 184.2(C=O), 145.0, 144.8, 144.0, 131.2, 61.2 (OCH₃), 61.1 (OCH₃), 15.4 (CH₃). MS (ESI): m/z = 205 [M+Na]⁺.

The spectroscopic data is in accord with literature ^[13].

General method for preparation of CoQ1

1-bromo-3-methyl-2-butene (1) (1.49g, 0.01mol), Hantzsch ester (0.25g, 1 mmol) and CoQ₀ (1.82g, 0.01mol) were dissolved in dichloromethane (10 mL) under a nitrogen atmosphere. After stirring for 30 minutes, a solution of Lewis acids (0.01mol) was added and the mixture solution was stirred at r.t. for 2 hour and extracted with CH_2Cl_2 (3 x 10 mL). The combined organic phases were washed with H_2O and brine, then dried over anhydrous Na₂SO₄, and evaporated under reduced pressure. The residue was purified by a silica-gel column chromatography (PE/EtOAc 8:1) to give **CoQ**₁.

¹H NMR (400 MHz, CDCl₃) δ 1.65 (s, 3 H, CH₃), 1.75 (s, 3 H, CH₃), 2.14 (s, 3 H, CH₃), 3.12 (d, 2 H, *J* = 7.0 Hz, CH₂), 3.96 (s, 3 H, CH₃O), 3.94 (s, 3 H, CH₃O), 4.32 (t, 1 H, *J* = 7.0 Hz, C=CH).

¹³C NMR (101 MHz, CDCl₃) δ 180.0 (C=O), 175.6(C=O), 144.1, 143.0, 142.7, 132.6, 126.5, 123.4, 60.5 (OCH₃), 60.3 (OCH₃), 30.4, 29.1, 25.4, 15.7(CH₃). MS (ESI): m/z = 251 [M+H]⁺.

The spectroscopic data is in accord with literature ^[5].

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 31600740 and 81803353), the Natural Science Foundation of Jiangsu Province (BK20160443), the Six Talent Peaks Project in Jiangsu Province (SWYY-094), the Jiangsu Provincial Key Laboratory for Bioresources of Saline Soils (Nos. JKLBS2016013 and JKLBS2017010) and the College students practice innovation training program of Yancheng Teachers University (Provincial key projects).

References

- [1] J. Wang, J. Yang, B. Yang, X. Hu, J. Q. Sun, T. Yang, *Journal of Chemical Research* 2010, 34, 717.
- [2] L. S. Hegedus, E. I. Waterman, *Journal of the American Chemical Society* **1972**, *94*, 7155.
- [3] A. Khattab, L. Hassanin, N. Zaki, AAPS PharmSciTech 2017, 18, 1657.
- [4] M. Hirano, C. Garone, C. M. Quinzii, *Biochimica et Biophysica Acta (BBA) General Subjects* 2012, 1820, 625.
- [5] F. Chen, *Synthetic Communications* **2004**, *34*, 4049.
- [6] K. Sato, S. Inoue, R. Yamaguchi, *The Journal of Organic Chemistry* **1972**, *37*, 1889.
- [7] S. Yamago, M. Hashidume, J.-i. Yoshida, *Tetrahedron* **2002**, *58*, 6805.
- [8] S. Yamago, M. Hashidume, J. I. Yoshida, *Chemistry Letters* **2000**, *36*, 1234.
- [9] I. Tabushi, Y. Kuroda, K. Fujita, H. Kawakubo, *Tetrahedron Letters* **1978**, *19*, 2083.
- [10] G. Borioni, D. Fabbrini, M. Barontini, *Synthetic Communications* **2008**, *38*, 391.
- [11] X.-L. Xu, Z. Li, Angewandte Chemie International Edition **2017**, *56*, 8196.
- [12] X.-L. Xu, Z. Li, Synlett **2018**, *29*, 1807.
- [13] J. Wang, S. Li, T. Yang, J. Yang, *European Journal of Medicinal Chemistry* **2014**, *86*, 710.