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Abstract 

In medicinal chemistry programs it is key to design and make compounds that are 

efficacious and safe. This is a long, complex and difficult multi-parameter optimization 

process, often including several properties with orthogonal trends. New methods for 

the automated design of compounds against profiles of multiple properties are thus of 

great value. Here we present a fragment-based reinforcement learning approach based 

on an actor-critic model, for the generation of novel molecules with optimal properties. 

The actor and the critic are both modelled with bidirectional long short-term memory 

(LSTM) networks. The AI method learns how to generate new compounds with desired 

properties by starting from an initial set of lead molecules and then improve these by 

replacing some of their fragments. A balanced binary tree based on the similarity of 

fragments is used in the generative process to bias the output towards structurally 

similar molecules. The method is demonstrated by a case study showing that 93% of 

the generated molecules are chemically valid, and a third satisfy the targeted 

objectives, while there were none in the initial set. 
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Introduction 

The goal in drug discovery is to identify new compounds with desirable properties suitable 

to become an approved drug. The process is long and demanding, both in terms of money 

and time. There is a large risk (>90%) that a promising compound fails in clinical trials, 

resulting in needlessly spent resources. The quest for discovering a small-molecule drug is 

non-trivial and the chemical space to search is mind-blowingly vast.1 Hence, it is an infeasible 

task to screen all these molecules and subsequently select the molecules with the best 

properties. The search must therefore be concentrated to smaller subsets of compounds that 

are promising according to some heuristics. One way to approach that problem is to perform 

a directed search to identify novel compounds which fulfil a set of relevant criteria and to, 

for example, focus on the chemical space close to known actives. This well-understood 

approach is based on the premise that similar molecules exhibit similar behavior.2 An 

example of this is the opioids morphine, codeine and heroin. These three drugs have very 

similar structure and are all, to some extent, used to treat pain. There are plenty of cases 

where natural product scaffolds have served as leads to drugs. Indeed, designing and making 

structurally similar compounds can be a very successful strategy. For example, there are 

numerous so-called “me-too” drugs, where as many as 70% of the pairs of me-too drugs are 

structurally very similar.3 Moreover, it was recently shown that a significant fraction of 

candidate drugs is structurally close to their corresponding lead molecule.4 Despite past 

successes, there seems to be a limited interest on how to confine the search space of in silico 

design methods. Instead, many recent approaches focus on “novelty”, and how to design 

structurally “diverse” compounds. These terms are non-trivial to define, and the rationale for 

this behavior is probably driven by assumed advantages with respect to intellectual property 

(IP). However, following the advice from Murcko,5 great medicinal chemists “do not worry 

over IP” in the discovery phase, but stay on top of the competitive landscape. In addition, 

given the current state of computer-aided molecular design (i.e. we cannot make perfect 
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prospective predictions), it is often an advantage to start projects using known active 

compounds, if there are any.4 

Current strategies to constrain the search space predominantly lie in virtual screening of 

chemical libraries.6 These may be very large virtual libraries, generated from available 

chemical reagents.7,8 An issue with this approach is that the search is then limited to 

molecules that can be constructed from the initial set of reagents. And, obviously, it is not 

possible to find something that is not there. Hence, the outcome of a virtual screening is very 

dependent on the library size and how it was constructed. In a virtual screen, molecules are 

filtered successively at an increasing computational cost, using for example, ultrafast shape-

based similarity tools9 or machine learning methods than can estimate properties of the 

targeted molecules. There is a large variety of machine learning methods being used for this 

purpose, examples include k-nearest neighbors, random forest and artificial neural 

networks.10–12  

The term de novo design describes the application of computational methods to generate 

new compounds in an automated fashion.13 One such approach is to identify promising 

compounds through inverse design.14 Here the desired molecular properties are specified a 

priori, and the aim is to generate compounds that fit the description. This has been 

considered a very difficult problem in the past. But, thanks to advances within the field of 

machine learning and artificial intelligence the approach is becoming popular. This type of 

approach is typically either based on evolutionary algorithms15 or reinforcement learning 

algorithms.16 Olivecrona et al.17 and Popova et al.18, for example, use the REINFORCE 

algorithm19 to generate new molecules by the generation of SMILES strings. The SMILES 

concept of representing molecules as a line notation, similar to natural language, is as simple 

as elegant.20 The power of using fragmented SMILES strings for similarity searching has been 

demonstrated with the text-based molecular LINGO approach,20 just to name one example. 

In inverse design,16-18 new SMILES strings are generated from an underlying distribution of 
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characters, where the probability distribution of the next character in the string is given by 

the previous characters. This roughly corresponds to generating molecules atom by atom. 

With this approach, it is generally claimed that models can generate >90% valid molecules 

and bias the generation towards a given property. However, this type of generative methods 

requires that the model is trained in advance against very large databases. Besides taking 

heaps of compute resources (i.e. a long time) to train such a model, it assumes that molecules 

with similar SMILES strings have similar properties. Thus, it can introduce a bias towards 

specific ways of constructing SMILES strings (e.g. canonical SMILES). This can be unfortunate 

since two molecules that have similar structure can have multiple completely different 

SMILES strings. Also, since new molecules are generated through a sampling process there is 

a risk for an unlucky event (brackets or numbers placed in an erroneous way) that may make 

the generated molecule not valid. Generative models therefore favor safer sampling steps, 

often causing long carbon chains and other easy-to-generate structures to be part of the final 

molecules. A few issues with using SMILES string in generative models have been revealed. 

Arús-Pous et al. recently demonstrated issues due to the SMILES syntax with respect to the 

ability to generate molecules with many rings and heteroatoms.22 Slightly more serious is 

that such contemporary methods generate SMILES strings lacking chiral information,17 and 

thus neglect the significance of stereoisomers in drug design.23 To alleviate these problems, 

promising work is on-going to develop improved string representations of molecules. One 

such attempt is due to O’Boyle and Dalke who created the DeepSMILES representation,24 

which does not produce the same problem with brackets and rings as the regular SMILES 

when generating new molecules character by character. 

Inverse design is not limited to methods working on SMILES strings. There are several 

approaches that work directly on the underlying graph structure of the molecule. This is well-

explained in the review by Elton et al.,25 who describe the current state of the art and note 

that there currently is a shift away from SMILES strings towards more sophisticated 
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representations. Gómez-Bombarelli et al.26 and Kang and Cho,27 for example, apply 

variational auto-encoders (VAE)28 on graphs representing the structure of molecules to 

generate drug-like molecules. These works aim to find a bi-directional mapping between 

molecules and a latent space, representing some abstract features of the molecule. Small 

changes can then be applied to the latent representation of the molecule, which then would 

map to another molecule with similar latent features. Another deep learning approach is by 

Li et al.,29 which uses a generative adversarial network (GAN).30 In this approach, one model 

is used to generate molecules while the other is used to discriminate between generated 

molecules and molecules from a given dataset. The two models compete against each other, 

and both must improve to win over the other. The assumption is that the generative model 

will win and be able to generate novel molecules that are largely indistinguishable from the 

ones in the original dataset. However, it has been shown that GANs are difficult to train and 

that the distribution of samples from the generative model is unstable and easily collapse.31,32 

A third approach that also works directly on graph structures and searches for novel 

compounds close to existing ones has recently been presented by Li et al.29 They use several 

different deep learning models to predict beneficial modifications to a given model. Methods 

exploiting molecular conformations and 3D shapes are also underway.33 However, it has 

proven problematic to fully realize advantages of 3D based techniques, mainly due to the 

difficulty of obtaining accurate descriptions of molecules bioactive conformations. 

In this paper, we present a reinforcement learning approach that is based on an actor-

critic model for the generation of novel molecules. The model learns how to modify and 

improve molecules for them to have desired properties. The approach therefore 

distinguishes itself from previous reinforcement learning approaches in that it focuses on 

how to generate novel compounds structurally close to existing ones by transforming 

fragments in lead molecules. Thus, the presented approach does not attempt to search the 

entire chemical space to find optimal drug candidates. Instead, it focuses the search on 
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molecules structurally similar to lead molecules, with desirable “sweet spot” properties. 

Even though it may look like such an approach would be very limited, and only a few unique 

molecules could be created, this is not necessarily the case. Since every fragment can be 

replaced with several similar fragments and each molecule consists of multiple fragments 

there is an abundance of combinations. Say, if a molecule is split up into six fragments and 

each fragment is replaced with ten similar fragments, it is then possible to generate almost 

two million unique molecules with this approach, which is comparable to the size of Big 

Pharma high-throughput screening (HTS) collections.34 Because the search starts from an 

initial set of molecules and is expanded around these, it means that the number of searched 

molecules will be smaller than in a modern virtual screening approach,7,8 but the library of 

fragments can be much larger since the generation of new potential candidates is conducted 

in a smart way (e.g. it remembers which bonds were broken, and uses that information when 

piecing together new molecules), and far from all candidates are investigated. Hence, our 

approach uses inverse design, but uses a fragment library when generating molecules and 

only focus on molecules that are structurally close to known lead molecules. 

 

Deep reinforcement learning 

The methods presented in this paper are based on deep reinforcement learning (RL), which 

is further described in this section. Within the reinforcement learning framework is an agent 

that interacts with molecules and replaces their fragments with other similar fragments. The 

actions of this agent are controlled by a recurrent neural network, and this kind of network 

is described in the next section. Our work distinguishes itself from previous works by using 

an actor-critic approach. This is high-lighted in the end of this section, where actor-critic 

models are described. 
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Recurrent neural networks 

A recurrent neural network (RNN)35 is a special type of artificial neural networks where 

there are cyclic connections between neurons, unlike basic feed forward networks that are 

acyclic. Cyclic connections enable the network to have an inner representation of the current 

state. This gives the network the ability to remember information from previous steps in a 

sequence, which makes it advantageous to use RNNs for the analysis of sequential data, such 

as text or a molecule represented as a sequence of fragments. 

RNNs work in a sequential fashion and process one step in a series at a time. Standard 

RNN networks can therefore only take decisions based on previous steps in the sequence 

that is analyzed. This shortcoming can, however, be resolved by using bidirectional 

networks.36 A bidirectional network consists of two separate RNNs, in which one network 

analyses a sequence from the start to the end, while another network analyses the sequence 

in the opposite direction. This approach makes it possible for an RNN to take decisions based 

on information of previous and subsequent steps in a sequence. 

One drawback with standard RNNs is that they have difficulties in capturing long-range 

dependencies, due to vanishing gradients.37 However, this problem has partially been solved 

by the introduction of long short-term memory (LSTM) cells.38 These cells allow the network 

to keep an inner state that the network can access, reset and update. Such networks are 

therefore more stable and can capture dependencies that are separated by a greater number 

of steps in the analyzed sequence. 

Reinforcement learning 

Reinforcement learning (RL) is a sub-field of machine learning concerned with how agents 

take actions in an environment to maximize some notion of reward. We consider the 

standard reinforcement learning framework,39 in which an agent, with the capability to learn, 

interacts with an environment. This process is described by a discrete-time Markov decision 

process (MDP) with finite numbers of actions and states, and finite rewards. The set of 
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possible states in the MDP is denoted by S and the set of possible actions is denoted A. The 

state, action and reward at each time step t in the MDP are denoted st, at and rt, respectively, 

where st ∈ S and at ∈ A. The action at that the agent selects at time t is decided using the policy 

π, where π(a, s) = P(at = a | st = s). The aim of the agent is to learn an optimal policy π∗, which 

accumulates the maximum reward over time. To find such a policy, we consider the expected 

value for an agent, following policy π, to be in the state s. This is given by the value function: 

Vπ (s) = 𝔼𝔼π[rt+1 + γrt+2 + γ2rt+3 + ... | st = s], Eq. 1 

= 𝔼𝔼π [rt+1 + γ Vπ (st+1) | st = s], Eq. 2 
 

where γ is a discount factor making rewards in near time more desirable than those in the 

distant future. The value of taking a given action a in state s is defined in a similar way: 

Qπ(s,a) = 𝔼𝔼π [rt+1 + γrt+2 + γ2rt+3 + ...|st = s,at = a], Eq. 3 

= 𝔼𝔼π [rt+1 + γQπ(st+1, at+1)|st = s, at = a] Eq. 4 
 

Most previous work using RL for the inverse design of molecules,17-18 uses the REINFORCE 

algorithm19 to find an optimal strategy on how to generate new molecules. This algorithm 

uses a differentiable policy, parameterized by θ. To measure how good the selected policy is, 

a policy score function that calculates the expected reward of a policy with parameter θ is 

needed. Using the value function, defined in Equation 1, such a function can be defined as: 

 𝐽𝐽(𝜃𝜃) = ∑ 𝑑𝑑𝜋𝜋(𝑠𝑠)𝑉𝑉 𝜋𝜋(𝑠𝑠){s∈S}   Eq. 5 
 
 

where dπ is the stationary distribution of states under the policy π. The target of finding the 

optimal policy π∗ can now be solved through maximizing equation (Eq. 5) through gradient 

ascent where: 
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 ∇θJ(θ) = 𝔼𝔼π [∇θπ(s,a) Qπ(s,a)]. Eq. 6 

One problem with this approach is that the function Qπ(s,a) must be found, and then re-

evaluated for each improved policy. While it is infeasible to find the real value of Qπ(s,a), an 

unbiased sample can be collected by letting the agent start from state s1 and then taking 

actions according to the policy. The total reward achieved by the agent can then be used as 

an unbiased estimate of Qπ(s,a). However, even though the policy eventually will converge 

towards the optimum with this strategy, it may require a large computational effort due to 

the large variance in the samples of Qπ(s,a). 

Actor-critic models 

Actor-critic models make use of temporal difference (TD) learning,40 by having a critic model 

that evaluates the behavior of the agent and suggests whether the agent performed well or 

not. To achieve this, the critic uses bootstrapping to approximate the value function V(s), 

introduced in Equation 1. Hence, the agent interacts with the environment and learns in the 

same way as in the REINFORCE algorithm, but the critic’s approximation of the value function 

is used instead of a sampled trace to estimate Qπ(s,a), reducing the variance in the training 

process and accelerating the learning of the agent. The critic’s approximation of V(s) is 

parameterized with w and, thus, a good approximation can be achieved by finding an optimal 

configuration of w so that the TD error (Eq. 7), is minimized: 

 (V (st) − (rt + γV (st+1)))2. Eq. 7 

Note that this makes actor-critic models fully online learners that learn instantly from each 

action taken and state visited. Hence, there is no need to keep track of traces from the MDP, 

and actions and rewards are only processed as they occur and then never revisited. 
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Method 

The method presented here, which we name DeepFMPO, is based on an actor-critic model 

for reinforcement learning. This AI model learns how to modify compounds and improve 

them to have desired properties. To modify molecules, they must be encoded into a format 

that can be easily handled by the agent. The first step of the encoding is to split molecules 

into fragments. These fragments are then encoded into a sequence of ones and zeros (binary 

strings), so that similar fragments get similar encodings. The actor-critic model is then 

applied to these fragments to learn which of them that should be replaced to obtain more 

desirable properties. These steps are described in detail below. 

Fragmentation 

A library of fragments must first be generated. This library is built up by fragmenting a set of 

molecules. This set would typically consist of molecules that have showed activity against 

the biological target(s) of interest in the drug hunting project. But, it can be any data set, such 

as FDA approved drugs, commercially available chemical reagents, corporate screening 

collections, or various combinations thereof. A common way to fragment molecules is to split 

them up into classes such as R-groups, scaffolds and linkers.41 We essentially follow the same 

scheme when splitting the molecules, but we do not sort the fragments into classes. Hence, 

all fragments are therefore treated the same. To fragment a molecule, all single bonds 

extending from a ring atom are broken. The attachment points are recorded and stored, for 

later use in the assembly step. The methods allows fragments with differing number of 

attachment points to be exchanged, provided that the total number of attachment points 

remains unchanged. The open source cheminformatics python software RDKit42 was used 

throughout in this process. Although the fragmentation step does not allow ring-bonds to be 

broken, the subsequent assembly step allows for rings to be replaced by open-chains, and 

vice versa. Fragments with more than 12 heavy atoms are discarded in the process, as well 
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as fragments with four or more attachment points. These constraints are enforced to reduce 

the complexity while still being able to generate a multitude of interesting candidates. The 

fragmentation process is illustrated in Figure 1. 

 

Figure 1. An illustration of the fragmentation process using the selective D4 receptor 
antagonist Sonepiprazole. Fragments are generated by breaking all single bonds between a 
ring atom and its connected atom.  

Fragment encoding and similarity calculations 

In our method all fragments are encoded as binary strings, and the aim of the encoding is that 

similar fragments should get similar encodings. The similarity between fragments must 

therefore be measured. There are many approaches to calculate chemical similarities.43 A 

molecular fingerprint is an immediate binary encoding where similar molecules should, in 

principle, give similar encodings. However, when comparing fragments of molecules, with 

their inherent sparse representations, we found them to be less useful for this purpose (see 

Table 1). A chemically intuitive method to measure the similarity between molecules is to 

use the maximum common substructure TanimotoMCS (Ts) similarity:44 
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 . Eq. 8 

Here, mcs(M1,M2) is the number of atoms in the maximum common substructure of molecules 

M1 and M2 and atoms(M1) and atoms(M2) is the number of atoms in molecule M1 and M2, 

respectively. 

One advantage of the TanimotoMCS similarity (Eq. 8), is that it directly compares the 

structures of the fragments and is therefore not dependent on other specific representations. 

This method generally works well when comparing “drug-like” molecules. There are, 

however, drawbacks of using the TanimotoMCS similarity for smaller fragments. With this 

measure, fragments like methoxyethane “COCC” and butane “CCCC” will have a low similarity 

even if they only differ with one heavy atom (Table 1). That is, there is a general problem 

with this measure when comparing similar molecules that differ in the central part. 

An alternative, which overcomes these shortcomings, is to calculate the similarity 

between SMILES strings. A common way to measure similarity between two text strings is to 

use the Levenshtein distance.45 The Levenshtein distance is defined as the minimal number 

of insertions, deletions and replacements that are needed to make two strings identical. The 

Levenshtein distance between two strings, Ls(s1,s2) is defined as levs1,s2(|s1|,|s2|), where |s| is 

the length of s and the function levs1,s2 is defined as:   

𝑙𝑙𝑙𝑙𝑣𝑣𝑠𝑠1,𝑠𝑠2(𝑖𝑖, 𝑗𝑗) =  

⎩
⎪
⎨

⎪
⎧ max(𝑖𝑖, 𝑗𝑗)                                                                         if min(𝑖𝑖, 𝑗𝑗) = 0

min�
𝑙𝑙𝑙𝑙𝑣𝑣𝑠𝑠1,𝑠𝑠2(𝑖𝑖 − 1, 𝑗𝑗) + 1                                                                       
𝑙𝑙𝑙𝑙𝑣𝑣𝑠𝑠1,𝑠𝑠2(𝑖𝑖, 𝑗𝑗 − 1) + 1                                                                       
𝑙𝑙𝑙𝑙𝑣𝑣𝑠𝑠1,𝑠𝑠2(𝑖𝑖 + 1, 𝑗𝑗 + 1) + 𝑓𝑓𝑠𝑠1≠𝑠𝑠2(𝑖𝑖. 𝑗𝑗)                   otherwise       

           Eq. 9 

where 𝑓𝑓𝑠𝑠1≠𝑠𝑠2(𝑖𝑖, 𝑗𝑗) is an indicator function, which is equal to 1 if character i of s1 is not equal to 

character j of s2 and 0 otherwise. The similarity of two molecules, which are represented by 

the SMILES strings s1 and s2, can then be measured as: 
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 1 − η ∗ Ls(s1,s2), Eq. 10 

where η is a free parameter. In all experiments described in this paper, η is set to the value 

0.1. This value is selected to make the TanimotoMCS similarity (Eq. 8), roughly the same as the 

Levenshtein distance (Eq. 10), for medium sized fragments. This way of measuring 

similarities performs well for fragments of molecules. But, there are cases where it works 

less well. For example, when comparing the two structurally similar compounds N-

methylpropan-2-amine “CC(C)NC” and its corresponding ring-closed analog N-

methylcyclopropanamine “CNC1CC1” a low Levenshtein distance is obtained (Table 1). As a 

compromise, we choose to measure the similarity between two molecules M1 and M2, with 

the corresponding SMILES representations S1 and S2, as: 

 max(Ts(M1,M2), Ls(S1,S2)). Eq. 11 

Hence, the metric that presents the highest similarity between the pairs of molecules 

compared is used. In this fashion our approach favors similar fragments. Hence, we would 

like to couple fragments that show high similarity, independent of the outcome of the two 

similarity metrics used.  

 

Table 1. TanimotoMCS and Levenshtein distances for two pairs of small molecules illustrating strengths and 

weaknesses for both. Fingerprint similaritiesa (TanimotoFP) are shown for completeness. 

No Structure Structure TanimotoMCS (Ts) Levenshtein(Ls)  TanimotoFPa max(Ts, Ls) 

1 
N
H

 

N
H

 

1.00 0.50 0.14 1.00 
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2 
O

  

0.33 0.90 0.29 0.90 

aRDKit's Morgan fingerprint with radius 2 and 2048 bits.42 
Encoding fragments 

All fragments are encoded into binary strings. These strings are created by constructing a 

balanced binary tree that is based on the similarity of the fragments. Subsequently, this tree 

is used to generate binary strings for each fragment and thus, in extension a binary string 

representing the molecule. The order of attachment points is considered as an identifier for 

each fragment. Hence, there may be several configurations of the same fragment in the tree. 

However, the combination of fragment structure and the order of attachment points are 

always unique and thus, can only exist in a single leaf of the tree. 

When assembling the tree, similarities between all fragments are calculated according to 

Equation 11. Pairs of fragments are then formed in a greedy bottom-up manner, where the 

two most similar fragments are paired first. The process is then repeated and the two pairs 

with the most similar fragments are joined into a new tree with four leaves. The calculated 

similarity (Eq. 11) between two sub-trees is measured as the maximum similarity between 

any two fragments of these trees. The joining process is repeated until all fragments are 

joined together in a single tree. 

When every fragment has been stored in the binary tree it can be used to generate 

encodings for all fragments. The paths from the root to the leaves, where the fragments are 

stored, determine the encoding of each fragment. For every branch in the tree a one (“1”) is 

appended to the encoding if going to the left and a zero (“0”) is added if going to the right, see 

Figure 2. Hence, the rightmost character in the encoding corresponds to the branching 

closest to the fragment. 
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Figure 2. A sub-part of the binary tree holding all fragments. It can be seen that fragments 
that are similar to each other are placed close to each other in the tree. The encoding of a 
fragment is determined by the path from the root to the leaf where the fragment is stored. 
Every branching to the left will add a 1 to the end of the encoding and every branching to the 
right will add a 0. The attachment points of the fragments are marked with an R and the 
number of the order in which they will bind.  

Generating molecules 

As previously described, an actor-critic model is used to modify the fragmented molecules. 

The modifications are conducted by selecting a single fragment of the molecule and one bit 

in the representation of that fragment. The value in this bit is then swapped. That is, if it was 

0 it becomes 1 and vice versa. This allows keeping track of the degree of change applied to 

the molecule, since modifying a bit at the end of the encoding would represent a change to a 

very similar fragment while a change in the beginning would represent a change to a very 

different type of fragment. The leading bits of the encoding will be kept fixed, and thus the 

model is only allowed to change bits at the end, to force the model to search only for 

molecules in the vicinity of already known compounds. In this context it should be noted that 

we define a valid molecule as a molecule that is not rejected by RDKit’s molecule sanitizer.42 

Thus, the atoms in the generated molecule are all in common valences and charge states. 

Experiments 

To highlight the usability of the presented method we conducted an experiment aiming to 

identify novel candidate compounds with properties in a pre-defined “sweet spot”. This 
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setup was designed to mimic a real-world drug design problem where a set of lead 

compounds are optimized towards a sweet spot through a multi-objective optimization 

process.46 In these experiments we optimized towards three calculated properties, namely 

clogP,47 polar surface area (PSA)42 and molecular weight (MW). Lipophilicity (clogP) is a 

cardinal property in drug discovery and is often described as of utmost importance. For 

example, lipophilic compounds are likely to be rapidly metabolized, to show low solubility 

and to display poor oral absorption, which often impacts bioavailability. PSA have been used 

as a medicinal chemistry metric for the optimization of compounds ability to permeate cells, 

and molecular weight (MW) is also often considered important for various reasons. These 

three properties were also selected for a practical reason, as the RDKit framework42 has 

methods to calculate them, thus making it easier for others to reproduce our experiment. 

However, the presented method is modular, and any model or criteria can be used in the 

optimization of properties. For example, predictive DMPK models for properties like 

solubility, permeability and clearance, as well as methods for synthetic feasibility,48 can 

readily be plugged in to facilitate speedy progression towards project defined candidate drug 

target profiles. In this context it should be mentioned that C-lab49  – the AstraZeneca’s in-

house property prediction service has been integrated in the DeepFMPO framework.  

In all our experiments, we let both the actor and the critic in the actor-critic model be 

represented by two bidirectional LSTM-networks. The agent is trained to replace fragments 

of molecules, with the aim of achieving optimal properties, with the final goal being the 

generation of compounds in the defined sweet spot.  

Data Set 

In this proof of concept study, a data set of 15 836 molecules, reported to be potent at the 

dopamine D2 and D4 receptors, were extracted from the ChEMBL database (version 24).50 

These molecules were fragmented and stored as a balanced binary tree library for later use 
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in the building process. A subset of 387 potent dopamine D4 compounds which do not fulfil 

the sweet spot criteria were extracted to serve as the initial set of lead molecules. The data 

set contains a few different structural series, all including a tertiary nitrogen ionized at 

physiological pH essential for dopamine D4 binding.51 The number of compounds (387) is 

close to what a typical drug hunting program would have access to. It should be noted that 

there is nothing in our experimental setup which would prevent the use of any other dataset, 

either for the generation of the library or for the set of lead molecules.  

Optimization of targets and rewards 

One major challenge in drug discovery is to design molecules optimized towards multiple 

properties, which may not correlate well. To show that the presented approach can handle 

such cases, three different properties, which can characterize the feasibility for a molecule to 

be suitable as a drug were chosen. The aim of the model is to be biased towards molecules 

with all three properties in its generation. That is, to produce molecules in the targeted 

“sweet spot”. As mentioned above, the selected properties were MW, clogP and PSA. For 

these properties, the arbitrarily target ranges used are shown in Table 2.  

 

Table 2. Targeted molecular properties and their desired value ranges. 

Property Minimal Maximal 
MW 320 420 

clogP 2.0 3.0 
PSA 40 60 

 

The agent in the reinforcement learning framework was rewarded for every valid 

molecule it produced and got a higher reward if it managed to generate molecules with 

properties in the targeted ranges. The reward for fulfilling a given property is negatively 

correlated to how difficult it is for the agent to find such compounds and the reward at epoch 

e is given by: 
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 , Eq. 12 
 
where check(mi,p) is an indicator function that has the value of 1 when molecule mi is in the 

targeted range for property p and 0 otherwise. A dynamically updated approximation (de,p) 

of the distribution of generated molecules that will fulfil the target for property p at epoch e 

is given by: 

 . Eq. 13 

 

The initial value of de,p is set to the distribution of molecules that fulfil the targeted property 

ranges in the initial set and β defines how quickly the expected distribution of molecules 

changes. Having such a dynamically updated reward allows the agent to adapt, and not only 

target properties that are easily satisfied, while β prevents the reward to fluctuating too 

much. The value of β is set to 0.5 in this experiment. 

 

Model architectures 

Both the actor and the critic are modeled with a bidirectional LSTM network. The state at 

each time step consists of the structure of the current molecule and the number of steps that 

are left until the terminating state. These networks read the encoded molecules, fragment by 

fragment, in both directions. Hence, the input size to these networks is the same size as the 

number of bits required to represent the different fragments. As previously mentioned, the 

task of the agent network is to predict which fragment and bit should be selected. The size of 

the output of the agent network is therefore the same as the number of fragments multiplied 

by the number of bits that can be modified. Since this study mainly aims at showing the 

benefits of a fragment based RL approach we decided to use the commonly used and simple 

architecture of three hidden layers between the input and the output in the agent network: 
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the first of the hidden layers has 128 neurons, the second layer consists of 64 bidirectional 

LSTM cells and the final hidden layer has 32 neurons. The critic network is built up in the 

same way with the single difference that the output layer only has one output, since the critic 

only predicts the value of a given state. The ADAM algorithm,52 with a learning rate of 0.0001, 

was used to find an optimal configuration of the parameters of the properties in both 

networks. The presented models are implemented in Keras 2.2.4 and Theano 1.0.3 is used as 

backend.53,54 

 

Results 

The presented model generated 33% “sweet spot” molecules which thus had all properties 

within the desired ranges. Beside this achievement, the model also managed to generate 93% 

unique molecules with a valid structure. The evolution of the percentage of generated 

molecules that demonstrate properties within the target ranges during the training process 

is shown in Figure 3. The distribution of the targeted properties among the molecules that 

are generated in the last 10 epochs as compared to the distribution of the properties in the 

initial set is shown in Figure 4. The percentage of molecules that have these properties in the 

“sweet spot” ranges are summarized in Table 3. Examples of initial lead molecules and their 

corresponding optimized AI-generated partners are shown in Table 4. 
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Figure 3. The percentage of valid molecules and the percentage of molecules that fulfil the 
conditions specified in table 2. The different lines represent, from top to bottom: the validity 
of the molecule, molecular weight, clogP, PSA and molecules that fulfil all objectives. 

 

Table 3. The percentage of molecules that satisfy each constraint in both the initial set and 
the set of molecules generated in the last 10 epochs. 

Property Set of lead 
molecules 

AI-generated 

Valid molecules 100% 93.2% 
Molecular weight 70.5% 72.9% 

clogP 10.1% 52.1% 
PSA 20.4% 66.1% 

“sweet spot” 0% 33.4% 
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 (a) Molecular weight (b) clogP 

 
(c) PSA 

Figure 4. The distribution of molecular properties in the original dataset (blue) and in the 
set of molecules that are generated in the last 10 epochs (red). The targeted ranges, which 
the aim is to bias the generative model towards, are marked with black dashed lines. 
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Table 4. Selected pairs of initial lead molecules and their corresponding optimized AI-
generated molecule. Targeted properties are color-coded green. 

  Initial Lead Compound AI-Optimized Compound 

No Structure MW clogP PSA Structure MW clogP PSA 

1 

CHEMBL210405

N

NN

N

 

318.2 3.2 24 N

N

N

N N

N

 

320.2 2.0 50 

2 
CHEMBL256492

O

N

N

F
O

O

 

374.2 3.4 34 

O

F
O

O
N

N

O

N

 

405.2 2.7 56 

3 
CHEMBL3335542

F
F

FO

O

N

 

365.2 4.4 22 
N

F
F

FO

N

N

O

 

381.2 3.0 47 

4 

CHEMBL314952

O

N H

NN

 

307.2 2.5 36 
N

O

N
H

N

N

 

322.2 2.3 49 

5 

CHEMBL211164

Br

N
N

NO

N

 

400.1 3.4 33 
O

N N
H

N
N

N

 

351.2 2.7 45 
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Discussion 

The aim of this paper was primarily to present the concept of how reinforcement learning 

can be used to generate new compounds while operating on molecular fragments. This 

approach shows several promising traits and is able to learn how to automatically design 

molecules that fulfill sweet spot criteria. Specifically, the agent learned that it is, in this case, 

beneficial to exchange carbon atoms to nitrogen atoms in certain positions (see Table 4). This 

is a common tactic among medicinal chemists. It has recently been shown that heterocyclic 

nitrogen’s are very frequently introduced when optimizing hit compounds into candidate 

drugs,4 and it has proven to be a successful strategy to improve molecular properties.55 It 

should be noted that chiral compounds can be generated with this fragment-based approach 

(Table 4, pair 3), presenting an advantage over some SMILES based generative methods.17 As 

is apparent from Table 4, the structural changes between the initial lead and the optimized 

AI-compound may be seen as minor. This is in line with our approach of focusing on 

structural similarity as a design strategy. Even though the method was biased to search for 

molecules similar to the set of input lead molecules, as many as 365 521 unique molecules, 

out of a 2048 000 generated molecules in total, were created during the learning phase. This 

shows that the relatively small dopamine D2 and D4 data sets used were sufficiently large 

for the RL method to learn rules on how fragments could be exchanged to improve targeted 

properties in a multi-parameter optimization fashion. It is also a testimony to just how vast 

chemical space is, and that medicinal chemists not always have to look far.3 While the case 

study presented here used a rather small dataset of molecules, there is nothing that prevents 

the method from being used on much larger sets. Using big data can be beneficial, since the 

RL agent would be able to learn general rules and transformations that improve the 

properties of the molecules.  
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The model’s freedom of how to replace fragments and the number of allowed 

replacements is limited to bias the generation to structurally similar compounds. It could, in 

fact, be beneficial to introduce additional restrictions. For example, in the current case study 

the agent was allowed to freely exchange any type of fragments in the molecule, as long as 

they are similar. 

Currently, two different similarities, TanimotoMCS and Levenshtein distance of SMILES, 

are used to measure the similarity of molecules. There are nothing preventing other 

similarity measures to be used instead of, or in combination, with the current ones. In this 

context it should be noted that we tested a standard molecular fingerprint (based on the well-

known Morgan algorithm), and found it not ideal when comparing fragments. Other types of 

fingerprints such as the atom-atom-path similarity published by Gobbi et al.56 may be a better 

alternative. 

There are additional features implemented in the presented framework to further control 

the behavior of the agent. That is, compounds including certain unwanted fragments can be 

prevented from being generated by treating them in the same way as non-valid SMILES 

strings. Also, an extra-large reward can be given if the agent includes desirable fragments in 

the generated molecule. Technically this is achieved by substructure searching using 

SMARTS matching as implemented in RDKit.42 Excluding and including certain fragments 

mimic typical project work, where parts of molecules often remains untouched when 

working on a “structural series”. That is, medicinal chemists tend to retain certain functional 

groups in their designs for good reasons like maintaining essential ligand-protein 

interactions and for being able to use established synthetic routes with available chemical 

intermediates. The piperazine ring in the dopamine D4 compounds would be an example of 

such a desired fragment to reward inclusion of  (Table 4), and a hydrazine moiety could be 

an example of an unwanted fragment.  

The current, standard de novo RL generative approaches16-18 rely on character probability 

distributions when creating new SMILES strings. This may introduce a risk that the 

generative model ends up repeating a specific pattern. For example, the underlying 

distributions of aliphatic carbons in SMILES strings may result in molecules with long strings 

of carbon atoms. This can, however, not happen with our method, since the model is only 

allowed to construct new molecules by exchanging similar fragments. 
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Conclusions 

In summary, we have devised and demonstrated a de novo method for the automatic 

generation of molecules with the ultimate goal of improving quality and efficiency in drug 

discovery. The method uses a reinforcement learning approach that modifies molecules on a 

fragment level. It is based on an actor-critic model and learns how to modify and improve 

molecules for them to have desired properties. The presented method is designed to 

generate molecules which are similar to a given set of lead molecules. 

We report an alternative way of representing molecules and their fragments by encoding 

them as binary strings, with the objective that similar fragments should have similar binary 

strings. The similarity between fragments is assessed by a combination of a maximum 

common substructure derived measure and the Levenshtein distance between SMILES 

strings. The encodings are created with the help of a binary tree, where the most similar 

fragments are sorted into neighboring leaves. This allows the method to replace fragments 

in a molecule with similar fragments in a controlled manner.  

In a case study, we show that the presented method can handle multi-objective 

optimization to generate unique drug candidates with desired properties. That is, a third of 

all AI-generated molecules ended up in the defined sweet spot, fulfilling all targeted 

properties, while there were none in the initial set of lead compounds.  

The system is modular and other criteria and models can easily be hooked up. For 

example, at AstraZeneca we have included internal predictive models for DMPK and safety 

(e.g. solubility, permeability, clearance and hERG models), and exploit 3D information (such 

as predicted binding affinities from docking scores or shape-matching) in the 

multiparameter optimization of molecules used in real-life drug hunting projects.  
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In addition to being specifically biased towards generating structurally similar molecules 

(to existing leads), an advantage over SMILES-based generative de novo methods is the ability 

to generate stereoisomers. The method is user-friendly and does not require any time-

consuming training before use. We call the method DeepFMPO. 

 

Supporting Information  

The Supporting Information is available free of charge on the ACS Publications website at 
DOI: http. The data sets used, and the full implementation of the conducted experiment is 
available at https://github.com/stan-his/DeepFMPO 
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