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Abstract

Formation of CO2−
3 and HCO−

3 species without participation of the framework oxygen atoms

upon chemisorption of CO2 in zeolite |Na12|-A is revealed. The transfer of O and H atoms is very

likely to have proceeded via the involvement of residual H2O or −OH groups. A combined study

by solid-state 1H and 13C MAS NMR, quantum chemical calculations, and in situ IR spectroscopy

showed that the chemisorption mainly occurred by the formation of HCO−
3 . However, at a low

surface coverage of physisorbed and acidic CO2, a significant fraction of the HCO−
3 was deproto-

nated and transformed into CO2−
3 . We expect that similar chemisorption of CO2 would occur for

low-silica zeolites and other basic silicates of interest for the capture of CO2 from gas mixtures.
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Adsorption-driven separation of CO2 from flue gas1–3 and raw biogas4,5 are of considerable inter-

est for anthropogenic reasons. In relation to these processes, adsorbents such as zeolites, activated

carbons, porous polymers, and amine-modified silica materials are being extensively studied.1,2, 6

It is generally found that CO2 typically adsorbs by weak intermolecular interactions (physisorp-

tion),7 but on sorbents of sufficiently high base strength chemisorption also occurs, especially when

catalytic amounts of water are present.8–12 For example, on low-silica zeolites with monovalent

cations, CO2 is both physisorbed and chemisorbed.13–17 In contrast to physisorption, chemisorp-

tion results in the molecular structure of CO2 being significantly altered. However, to date the

mechanisms of chemisorption of CO2 on zeolites, and the nature of the species formed, are not well

understood. This was the problem we undertook to address in this study, and we were able to

identify the species formed on chemisorption of CO2 by using a combination of 1H and 13C solid-

state nuclear magnetic resonance (NMR), density-functional theory (DFT), and in situ infrared

(IR) spectroscopy.

The physisorption of CO2 on zeolites15,18–20 is mainly due to the interaction between the rela-

tively large molecular electric quadrupole moment of CO2, and the significant electric field gradients

near the zeolite framework. In parallel, low-silica zeolites such as zeolite X,19,21–23 Y,14,23,24 and

A19,22 also chemisorb CO2 resulting in the formation of (H)CO
(−)2−
3 species. Even though the po-

sitioning of the chemisorbed species at the 8-ring of zeolite A was partially determined by Rzepka

et al.,25 with in situ neutron diffraction (ND), the precise chemical nature of these (H)CO
(−)2−
3

species has hitherto remained unknown. It has been speculated that either CO2 reacts with the

O-atoms of the framework21–24 forming framework-linked species,14,19,22,24 or that residual H2O

or −OH groups are involved in forming (H)CO
(−)2−
3 species.13,14,24

The fraction of CO2 chemisorbed by the system in this study, zeolite |Na12|-A, was assessed

indirectly by volumetric adsorption measurements17,26 of the first two adsorption-desorption cy-

3



cles, as shown in Figure 1. A reduction in adsorption capacity during the second cycle relative

to the first was observed, which was ascribed to the fraction of CO2 that had been irreversibly

chemisorbed, since the large majority of chemisorbed species cannot be removed by evacuation

under high dynamic vacuum. A long evacuation was used to remove fractionally entrapped CO2

before the second cycle,27–29 and it was found that approximately 6% of the adsorbed CO2 on

zeolite |Na12|-A was chemisorbed, corresponding to about 0.5 molecules per α-cage.

2-site Langmuir model
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Figure 1. The quantity of adsorbed CO2 vs pressure on zeolite |Na12|-A at 293 K for a pristine
sample (1st cycle) and after 12 h of re-evacuation under high dynamic vacuum (2nd cycle). The
data conform to the two-site Langmuir model.

To identify the chemisorbed species, their quantities, and to gain insight into their dynamics,

we employed 13C solid-state magic-angle spinning (MAS) NMR spectroscopy. This technique has

been recently and successfully used to investigate the details of chemisorbed CO2 in amine-modified

clays9 and silicas,10 metal organic frameworks,11,30 polymers,31 and layered hydroxides.32 However,

13C MAS NMR spectroscopy has to date not been used to study the chemisorption of CO2 on

zeolites. We employed a direct excitation (Bloch-decay) NMR protocol with 99% 13C-enriched

CO2 to ensure a full visibility of the adsorbed species and quantitative character of the collected

data.

The 13C NMR spectrum at 5 kHz MAS of zeolite |Na12|-A with 1 bar of CO2 is shown in

Figure 2(e). Resonances with chemical shifts characteristic of both physisorbed and chemisorbed

CO2 were detected. The signals with isotropic shifts at 125 and 162 ppm correspond to physisorbed
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CO2,
33,34 and HCO−

3 , respectively. The H-transfer was likely to have occurred with the involvement
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Figure 2. The α-cavity of zeolite |Na12|-A (a); fragments of the models of CO2 (b), HCO−
3 (c),

and CO2−
3 (d) species inside the α-cavity resulting from geometry optimization at the OLYP-

D3(BJ)/cc-pVTZ level of theory. 13C isotropic chemical shifts calculated with GIAO method at
the DSD-PBEP86/pcSseg-2 (black) and MP2/aug-cc-pVTZ-J (grey) level of theory. (e) 13C MAS
NMR spectra of CO2 adsorbed in zeolite |Na12|-A collected at 14.1 T and 5 kHz MAS rate. The
spinning sidebands are marked with asterisks.

of H2O or −OH groups.35 No CO2−
3 was observed under these conditions. The fraction of

chemisorbed species as determined from integrating the 13C MAS NMR resonances was 0.06 at
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1 bar of CO2, which is in an excellent agreement with the fraction estimated from the volumetric

adsorption data.

The bottom two solid-state 13C MAS NMR spectra of Figure 2(e) were collected from zeolite

|Na12|-A following saturation with 1 bar of CO2, subjected to evacuation under high dynamic vac-

uum for 12 h at the respective temperatures of 298 and 353 K, and backfilled with 1 bar of N2. In

both these cases, the intensity of the signal with isotropic shift of 125 ppm was reduced substan-

tially, indicating that very little physisorbed CO2 remained, and the resonances at 162−172 ppm

originate exclusively from chemisorbed species. The signals with isotropic shifts at 165 and 162 ppm

were hypothesized to correspond to two different types of HCO−
3 , whereas that at 172 ppm was

attributed to CO2−
3 . Similar assignments were reported by Ishihara et al. for the adsorption of

CO2 on hydrotalcite. The relative fraction of the CO2−
3 , to the full amount of chemisorbed CO2,

was 0.06 for the system evacuated at 298 K, and 0.11 for that evacuated at 353 K. The increased

relative fraction of CO2−
3 was consistent with a heat- and vacuum-enhanced desorption of CO2 or

H2O, and in line with the in situ IR spectroscopy observations. Concurrently with the elevated

desorption temperature of CO2, there were alterations towards higher populations of both carbon-

ates (172 ppm), and bicarbonate species with a shift of 165 ppm, at the expense of the bicarbonate

species with an isotropic shift of 162 ppm.

To corroborate the NMR assignments and derive molecular representations for the adsorption

of CO2, we calculated the 13C NMR chemical shifts on DFT-derived models. The corresponding

molecular representations and calculated chemical shifts are presented in Figure 2(b−d). The

energy-optimized positions of the CO2, HCO
−
3 , and CO2−

3 were in accordance to those refined from

ND data by Rzepka et al. At the dispersion-corrected OLYP-D3(BJ)/cc-pVTZ level of theory36–41

employed in the optimization of the DFT models, the potential energy surface did not reveal an

energy minimum corresponding to the CO2 molecule binding with framework −O− bridge for any of
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the several starting configurations used. The calculations indicate that the distance between the C

atom of HCO−
3 and the framework O atom is 3.36 Å (Figure 2(c)), which is in a good agreement with

the value of 3.3 Å from the previous ND refinement of the chemisorbed CO2 positions performed for

the same system.25 At this distance, we could infer that there is no participation of the framework

O-atom in covalent bonding with a HCO−
3 moiety. The same conclusion can be reached for the

CO2−
3 group (Figure 2(d)), where the C is 3.81 Å from the framework O. Hence, we concluded

that both the HCO−
3 and CO2−

3 form as self-standing entities in the zeolite α-cavity without any

participation of framework −O− bridge. For 13C chemical shifts assignments the GIAO approach

with the perturbatively-corrected, double-hybrid DFT (DHDFT) DSD-PBEP86 approximation, as

well as the second-order Møller-Plesset perturbation theory (MP2) were employed.42–44 These are

currently the most accurate (affordable) methods for NMR shielding tensors calculations, when

combined with NMR-optimized basis sets: pcSseg-n and aug-cc-pVTZ-J.45–48 We observed that

the chemical shifts calculated on our models at both DHDFT and MP2 level of theory were in

excellent agreement with those measured experimentally. In particular, we note that the shifts in

Figure 2(c,d) of 164.5−165.1 and 173.2−174.2 ppm were due to HCO−
3 and CO2−

3 ions, respectively,

and not to physisorbed CO2, which gave a lower shift of 124.7−124.8 ppm (Figure 2(b)).

To provide experimental evidence for bicarbonate formation upon chemisorption of CO2 on

zeolite |Na12|-A, fast-MAS 1H and 1H→13C cross-polarization (CP) MAS NMR experiments were

performed. Here we note that traditional CPMAS approaches have very recently been shown to

be problematic in studies of HCO−
3 chemisorbed onto amine-modified mesoporous silica sorbents.12

In Figure 3(a), high-resolution (60 kHz MAS) 1H NMR spectra of activated zeolite |Na12|-A (dried

under high dynamic vacuum at 623 K for 24 h), as well as the zeolite containing chemisorbed CO2

are presented. The activated zeolite contained non-negligible amounts of H2O and −OH groups,

as was indicated by several overlapping 1H resonances in the 0−8 ppm range. Upon chemisorption
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of CO2 signals at 12 and 16 ppm emerge at the expense of those from −OH groups and residual

H2O. These resonances were assigned to bicarbonate species, as their chemical shifts are in good
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Figure 3. (a) 1H MAS NMR spectra of activated zeolite |Na12|-A (black), zeolite |Na12|-A equi-
librated with 1 bar of 13CO2 and backfilled with Ar (red), shown together that of solid NaHCO3

(grey). The data collected at 14.1 T and 60 kHz MAS rate. (b) 1H→13C CPMAS spectrum of
zeolite |Na12|-A equilibrated with 1 bar of 13CO2 and backfilled with Ar (black), and that of solid
NaHCO3 (grey); both spectra acquired at 14.1 T and 14 kHz MAS rate.

agreement with the shift of 14 ppm from pure, solid NaHCO3. Furthermore, the formation of

bicarbonate was unambiguously evidenced by 1H→13C CPMAS spectra in Figure 3(b). 13C chem-

ical shifts of 162 and 165 ppm were close to that of 166 ppm from solid NaHCO3, and same as
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directly-excited counterparts in Fig. 2(e), indicating two distinct bicarbonate environments, in line

with 1H spectrum in Fig. 3(a). Note that in the directly-excited 13C MAS NMR spectra of the

evacuated samples (Fig. 2(e); bottom traces) signal with isotropic shift of 172 ppm was observed.

The absence of this resonance in 1H→13C CPMAS spectrum corroborates the assignment to CO2−
3 .

We also studied the chemisorption of CO2 in zeolite |Na12|-A with in situ IR spectroscopy.

For zeolites with relatively high basicity, IR spectral features of chemisorbed CO2 are usually

observed by C−O stretching bands in the range of 1800−1200 cm−1, and typically assigned to

carbonate-like species.13,14,24,49,50 However, the bands in this spectral region are quite complex

and not always straightforward to interpret. The symmetrical (free) carbonate ion has a single band

around 1415 cm−1, but upon lowering the symmetry, this double degenerated vibration splits into

two distinct IR bands for the asymmetric stretching mode. The extent of this split has been used

for identification of chemisorbed species,51 and for zeolite 4A these band pairs have been assigned to

monodentate, bidentate, and chelating coordinated carbonate species.49 Although our IR spectra

shown in Figure 4 are very similar to those reported by Montanari et al., the presence of bicarbonate

cannot be excluded, because of the same nature of bands split for asymmetric C−O stretches of

bicarbonate and these carbonate species. The band pair at 1726 and 1250 cm−1 originate from

labile carbonate or bent CO2 species that are present only at higher CO2 pressures. The overlapping

band pairs around 1624 and 1365 cm−1 can either be assigned to bidentate carbonate species or

to HCO−
3 . The bicarbonate formation is suggested by a broad H-bonded −OH group band around

3250 cm−1 at low partial pressures of CO2 (Figure 4(b)) that appear in parallel with the C−O

bands at 1600 and 1385 cm−1. Moreover, a negative intensities are observed in the −OH stretching

region around 3635 cm−1, which compares well with 3608 cm−1 reported for residual −OH groups

in activated zeolite A by Montanari et al. This may indicate that −OH groups are “consumed”

and the new band result from −OH vibrations in bicarbonate moiety. This effect is enhanced in
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Figure 4. In situ IR spectra of zeolite |Na12|-A: under 1 bar of CO2 (a), 0.00003 bar of CO2 (b),
and after evacuation under high dynamic vacuum for 4 h (c).

the spectrum of evacuated zeolite, where negative intensities around 3635 cm−1 are accompanied by

two distinct bands of H-bonded −OH groups at 3434 and 3284 cm−1 (Figure 4(c)). The appearance

of these two bands is in agreement with 1H MAS NMR spectra of Figure 3(a). At low CO2 pressure,

and after evacuation (Figure 4(b,c)), there is a single band of the antisymmetric stretching mode at

1455 cm−1 observed, which we attribute to symmetrical and planar CO2−
3 , but we cannot exclude

that it might be a high frequency component of the band pair with its lower frequency counterpart

appearing as a shoulder on the band at 1385 cm−1. Note that the intensity ratios of these carbonates

are not fully correct in the spectra of Fig. 4(b,c) since these species are already present in activated

zeolite as indicated by the negative band at 1455 cm−1 in Fig. 4(a). The transformations of different

carbonate-like species upon CO2 pressure/coverage changes i.e. symmetric carbonates at low, and

less symmetric species at high have also been observed by others on zeolite A49 and zeolite X.13

To conclude, it is established that the chemisorption of CO2 in low-silica zeolites involves basic

sites (conjugate acid-base pairs).52–55 However, in this study we showed for the first time that

carbonates did not integrate with the framework of zeolite |Na12|-A. We also showed that two
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different types of HCO−
3 formed and that CO2−

3 occurred at very small pressures of CO2. As the

formation of CO2−
3 is favored only in highly basic environment,12 it was consistent that CO2−

3 was

stabilized at low concentrations of CO2 on the zeolite |Na12|-A. We expect that similar equilibria

among different coexisting chemisorbed species and their dependencies on the temperature and

overall CO2 surface coverage to be observed for other zeolites and basic (alumino)silicates in general.
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