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Abstract 

Machine learning techniques are being applied in quantifying structure-property relationships for a wide 

variety of materials, where the properly representing materials plays key roles. Although algorithms for 

representation learning are extensively studied, their applications to domain-specific areas, such as polymer, 

are limited largely due to the lack of benchmark databases. In this work, we investigate different types of 

polymer representations, including Morgan Fingerprint (MF), molecular embedding (ME) and molecular 

graph (MG), based on a benchmark database from a subset of PolyInfo. We evaluate the quality of different 

polymer representations via quantifying the relationships between the representations and polymer 

properties, including density, melting temperature and glass transition temperature. Different representation 

learning schemes, such as supervised learning, semi-supervised learning and transfer learning, are 

investigated. It is found that ME outperforms the other representations for structure-property relationship 

quantification in all cases studied, and MG is shown to be much inferior than ME and MF, likely due to the 

relatively small volumes of training data available. For MEs, it is found that the similarities of substructure 

MEs under different learning schemes (e.g., SL, SSL and TL) are differently estimated, thus leading to 

different performance scores in structure-property relation quantification. Several ME mixtures have shown 

to outperform the single MEs in the corresponding regression tasks, and this is attributed to the information 

gain when mixing different ME.   
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INTRODUCTION 

With the emergence of big data and machine learning,[1-3] the data-driven science, which unifies theory, 

experiment and computation, is being advanced rapidly. Data-driven science has great advantage in 

identifying patterns rapidly, and is being broadly applied in fields like speech and image recognition[4], 

bioinformatics[5] and economics.[6] Researchers in the materials science community have started to adopt 

the data-driven approaches to quantify the structure-property relationships, where material informatics 

becomes increasingly popular.[7] Fischer et al. adopted early data mining techniques combined with 

quantum mechanics approaches to design stable crystal structure of materials in 2006.[8]  In 2013, Koji et 

al. used data-driven approach to rapidly design lithium superionic conductors based on the data calculated 

from fist-principle molecular dynamics.[9] Zhan et al. predicted the thermal boundary resistance using data-

driven method based on experimental data.[10] Blay et al. predicted up to eight different properties of 

zeolites using machine learning and perturbation theory, which enabled the data-driven design of zeolites 

as inorganic catalysts.[11] Shi et al. developed machine learning models to predict specific surface area 

(SSA) of ABO3-type perovskite so that users can search for additional perovskite materials with high SSA 

using their model.[12] Hachmann et al. also built a highly diverse database for designing the next generation 

of organic photovoltaics and understanding the structure-property relationship in the domain of organic 

electronics.[13] These data-driven machine learning approaches can potentially help the rapid screening of 

materials with properties of interest and provide useful guidance for de novo material design. 

 

The success of machine learning algorithms can greatly depends on how data is represented, since different 

representations can have different explanatory factors of variation behind the data.[14] Different 

representation learning techniques have been applied to fields like natural language processing[15], image 

recognition[16], and even music[17], taking advantage of the big data in those fields. Recently, with the 

exponential increase in the volume of data in materials science, representation learning techniques for 

materials have been studied, so as to improve the accuracy of quantifying the structure-property 

relationships.[18-22] However, in the organic materials field, the techniques being developed for materials 

representation are mainly based on the drug-like small molecules.[19-22] We are still not very clear about 
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what might be a better representation for polymers, even though a few works[23-27] have applied some of 

the aforementioned techniques to represent polymers.  

 

In this work, we explore different kinds of mathematical representations for polymers, including Morgan 

fingerprint (MF), molecular embedding (ME) and molecular graph (MG), and evaluate their quality via 

quantifying the structure-property relationships for properties like density, melting temperature, glass 

transition temperature, and performing similarity studies. It is found that ME outperform the other two 

kinds of representations for polymer in structure-property relationship regression. Different ME learning 

schemes like supervised learning (SL), semi-supervised learning (SSL) and transfer learning (TL) are also 

studied, and it is found SSL and TL can have slightly better performance than SL likely due to the larger 

data set used in the training. The reduced-dimension visualization of MEs of substructures is used to 

examine the neighbor list of the substructures and measure the similarity between different substructures. 

The differently estimated similarities for MEs under different learning schemes might explain the different 

performance scores in structure-property relationship quantification. Finally, mixing of MEs is explored 

and identified as a way to further improve such a representation learning process. 

 

 
METHODS 

Dataset: The benchmark dataset used in our work are built based on the well-known web-based polymer 

database, PolyInfo.[28] 1442 homopolymer structures from different polymer classes are collected and all 

property data studied are for neat polymers (i.e., non-composite). Each homopolymer is represented as a 

two-monomer structure in this study, since the two-monomer structure contains all the chemical 

information of a polymer while the one-monomer structure will leave out the bonding information between 

neighboring monomers. This can be important for correctly capturing the polymer structure-property 

relationship since many polymer properties are inherently related to the polymer conformation, which 

depends on the bonding characteristics.[29, 30] Out of the 1442 homopolymers, 318 of them are labeled by 

the density (ρ), 641 of them are labeled by the melting temperature (Tm), and 1034 of them are labeled by 
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the glass transition temperature (Tg). If multiple values are recorded for a homopolymer in each label, they 

are reduced to the mean value. The distributions of density, melting temperature and glass transition 

temperature in the database and the correlation plots among them are shown in Figure 1. Based on the plots, 

the properties distributions are nearly normally distributed, and a relatively strong correlation is found 

between glass transition temperature and melting temperature, but the correlations between density and the 

other two are weak as indicated by the R2 values. 

 

Figure 1. a) Distributions of density, melting temperature and glass transition temperature data in the 

studied polymer database; b) Correlation plots between different properties of interest.  

 

Representations: Three mathematical representations are employed for the polymer structures, including 

MF, ME and MG. MF, also known as extended-connectivity fingerprints, is the most commonly used 

mathematical representation in organic molecular activity predictions.[31-37] To generate a MF, all 

substructures around all non-hydrogen atoms of a molecule within a defined radius are generated and 

converted to unique identifiers.[31] These identifiers are then usually hashed to high-dimensional and 

sparse vectors with a fixed length. A disadvantage is that these vectors are likely to contain bit collisions. 

Although also based on the identifiers calculated by the Morgan algorithm, ME, a continuous-value vector 
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obtained by the Mol2vec[21] model,  is the post-representation of each identifier, which avoids bit collision. 

The MEs of each identifier is obtained through machine learning. In this work, the MEs are obtained using 

the package implemented in Ref. [21]. The substructures in MF are represented as one-hot vectors, so the 

similarity between different substructures, which is measured by the dot product of two vectors, is 0, but 

the ME representation can achieve the similarity measurement between different substructures as enabled 

by the continuous-value feature of this representation. Figure 2a shows a representative two-monomer 

polymer structure and the schematic diagram of MF and ME are shown in Figure 2b. MG, on the other 

hand, treats molecules as an undirected graph with attributed nodes and edges, and it is represented as a 

molecular tensor as implemented by Coley et al.[20] Figure 2c shows an example MG of propane and its 

corresponding molecular tensor. The propane is first treated as an undirected graph, each heavy atom with 

its surrounding hydrogen atoms are treated as a node and the bonds between different atom groups are 

treated as an edge. Finally, the atom feature, such as atomic identification of heavy atoms, and the bond 

feature, such as bond order, are encoded and used to populate the molecular tensor. The atom feature and 

bond feature are partially visualized here as an example, and the rest features can be found in Ref [20]. 

RDKit,[38] an open-source cheminformatics package, is used in this study for molecular file preprocessing, 

identifier calculation and MF generation.  
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Figure 2. a) An example of a two-monomer polymer structure; b) The schematic diagram of MF and ME: 

MF is a binary vector, a “1” in MF indicates a unique substructure in the polymer structure, the “1s” at 

different positions represent different substructures. MEs the substructures are continuous-value vectors, 

and the ME of the polymer structure is the summation of all MEs of the substructures in the polymer; c) An 

example MG of propane and its corresponding molecular tensor. The atom and bond attributes of propane 

are extracted and individually color coded to indicate how their features are used to populate the molecular 

tensor, M. 

 

Machine Learning Methods: Three different machine learning methods — random forest (RF), multi-

layer perceptron (MLP) and support vector machine (SVM) — are used for the structure-property 

relationship training to evaluate the performance of MF and ME. Scikit-learn[39] is used for all the three 

learning schemes. RF is an ensemble learning method that fits a number of decision trees on various sub-

samples of the dataset and uses averaging to improve the predictive accuracy and mitigate over-fitting,[40, 

41] and the number of trees is set to 500 in the RF training. MLP, also known as the feed-forward neural-

network, consists of a system of simple interconnected neurons.[42] Two hidden layers are used here, which 
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contain 20 and 15 neurons respectively. All the hidden layers have the rectified linear unit (ReLU) 

activation function[43] and the Adam optimizer[44] is used to minimize the mean squared error for 

regression. The basic idea of SVM is to first map the data into a high dimensional input space and then 

construct an optimal separating hyperplane in this space.[45] The SVM is used for regression task here, in 

which the radial basis function is used, the penalty parameter (C) of the error term is set to 20 and the 

epsilon value that specifies the penalty-free area is set to 0.2. All the hyper-parameters mentioned above 

have been optimized before producing the final results. 

 

RESULTS 

Firstly, we perform a limited scope parametric study for different radii in generating substructures, different 

sizes of MEs, and different lengths of MFs. In this parametric study, all three machine learning models are 

trained using the 318 polymers labeled with densities in a 5-fold cross-validation manner, and the 

coefficient of determination (𝑅") is used for performance evaluation. Based on the results shown in Figure 

3, we choose a radius size of 1, ME size of 300 and the MF length of 1024 and 2048 for the rest of the study. 

 

 

Figure 3. Coefficient of determination (𝑅") under different tests: the radius size, the size of ME and the 

length of MF. In these tests, while changing the radius size, we keep the size of ME constant, and while 

changing the size of ME and length of MF, we keep the radius size constant as 1. 

 

After obtaining the appropriate size of ME and lengths of MF, the relationships between polymer 

representations and their corresponding properties are quantified using all three machine learning methods 
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(i.e., RF, MLP and SVM). The 5-fold cross-validation is used and three different performance metrics — 

coefficient of determination (𝑅"), mean squared error (MSE) and mean absolute error (MAE) — are 

employed for performance evaluation. The quantitative structure-property relationships between the 

polymer representations and different properties are shown in Table 1, Table 2, and Table 3. Based on the 

results, we find that ME outperforms MF in all cases as the polymer representation in quantifying the 

structure-property relationships, as indicated by the higher 𝑅", lower MSE and lower MAE. The MF can 

only capture the substructure counts as a binary fingerprint, while the ME cannot only capture the 

substructure counts but also indicate substructure importance via the vector amplitude, which provides more 

information in learning the structure-property relationships, and thus leading to better performance. To 

visually capture the different performances of MF and ME, we show a few representative “predictions vs. 

ground truths” plots on validation datasets for all three properties in Figure 4, and the data plotted here 

correspond to the best performance of MF and ME. 

 

Table 1. Quantitative structure-property relationships between MF, ME and density (ρ). 

 
 

Table 2. Quantitative structure-property relationships between MF, ME and melting temperature (Tm). 

Regressor Metrics
Morgan Fingerprint (MF) Molecular Embedding (ME)

Length of 1024 Length of 2048 SLME SSLME TLME

MLP

!" 0.492±0.146 0.380±0.262 0.667±0.108 0.696±0.064 0.724±0.068

MSE 0.016±0.006 0.019±0.009 0.011±0.005 0.009±0.002 0.009±0.003

MAE 0.083±0.011 0.086±0.015 0.074±0.014 0.068±0.009 0.063±0.007

RF

!" 0.562±0.204 0.561±0.202 0.668±0.118 0.701±0.093 0.648±0.137

MSE 0.014±0.008 0.014±0.008 0.011±0.005 0.010±0.004 0.011±0.0066

MAE 0.077±0.019 0.077±0.019 0.070±0.013 0.065±0.012 0.072±0.014

SVM

!" 0.534±0.182 0.542±0.163 0.610±0.161 0.659±0.085 0.720±0.103

MSE 0.015±0.007 0.015±0.006 0.013±0.007 0.011±0.003 0.009±0.004

MAE 0.080±0.015 0.081±0.014 0.074±0.017 0.071±0.009 0.063±0.012
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Table 3. Quantitative structure-property relationships between MF, ME and glass transition temperature 

(Tg). 

 
 
 

 

 

 

Regressor Metrics
Morgan Fingerprint (MF) Molecular Embedding (ME)

Length of 1024 Length of 2048 SLME SSLME TLME

MLP

!" 0.516±0.150 0.542±0.092 0.597±0.050 0.599±0.087 0.624±0.054

MSE 4940.075±1087.783 4714.405±637.154 4199.681±575.565 4118.422±658.782 3885.808±386.265

MAE 48.902±4.896 48.156±3.737 48.612±3.841 48.004±4.631 45.806±2.745

RF

!" 0.645±0.079 0.645±0.075 0.662±0.059 0.684±0.054 0.681±0.055

MSE 3618.983±386.075 3633.643±379.554 3489.120±447.132 3268.919±468.430 3329.932±659.739

MAE 45.072±2.744 45.221±2.753 42.124±3.178 40.464±2.652 41.146±4.948

SVM

!" 0.597±0.097 0.617±0.085 0.651±0.069 0.651±0.074 0.676±0.051

MSE 4121.232±609.482 3934.450±577.552 3604.422±628.983 3597.295±641.081 3360.045±508.099

MAE 46.864±3.988 45.779±3.901 42.731±3.726 42.361±3.835 41.001±3.196

Regressor Metrics
Morgan Fingerprint (MF) Molecular Embedding (ME)

Length of 1024 Length of 2048 SLME SSLME TLME

MLP

!" 0.751±0.053 0.807±0.032 0.819±0.023 0.832±0.028 0.827±0.027

MSE 3100.174±558.6112 2431.716±461.369 2270.717±239.209 2117.769±388.884 2164.443±237.657

MAE 36.794±2.520 34.573±3.388 34.018±0.947 31.833±3.002 31.985±1.735

RF

!" 0.848±0.031 0.849±0.033 0.863±0.034 0.865±0.030 0.861±0.033

MSE 1910.702±412.941 1904.136±436.917 1722.556±475.903 1709.877±445.498 1752.278±454.228

MAE 30.255±2.621 30.193±2.816 28.284±3.218 28.012±3.300 28.188±2.848

SVM

!" 0.820±0.035 0.832±0.025 0.858±0.034 0.863±0.031 0.865±0.026

MSE 2261.821±434.207 2105.846±280.078 1799.059±507.899 1737.997±460.278 1699.999±355.951

MAE 34.218±3.284 33.096±2.790 28.297±3.145 28.183±3.279 27.493±2.752
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Figure 4. “Predictions vs. ground truths” plots on the validation sets for all three properties, the data for 

the plots correspond to the best performance of MF and ME. X-axes are for the predictions and y-axes are 

for ground truths.  

 

To evaluate the performance of MG, we also quantify the same structure-property relationships. The 

package that we adopt to encode the MG and quantify the structure-property relationships are implemented 

by Ref. [20]. The regression method used is deep neural network (DNN) and the results in Table 4 are 

produced after the hyper-parameter optimization for the DNN. Based on the results, MG shows a much 

inferior performance compared to MF and ME. The potential reasons can be the following three: 1) the 

molecular tensor used to encode MG are in high dimension and sparse even for such small molecule like 

propane in Figure 2c. For our two-monomer polymer structures, which are long-chain molecules in nature, 

the sizes of molecule tensors are even larger (32 × 8) and highly sparse, which will lead to low signal-to-

noise ratio; 2) The structure-property relationship quantifying process is based on deep learning method, 

which highly depends on the volume of training data, thus several hundred to one thousand data may not 

be enough for obtaining accurate results here; 3) It is challenging to find the global optimal in DNN, which 

can be another attribute to the inferior performance of MG.  

 

Table 4. The quantitative structure-property relationships between MG and different properties. 
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Furthermore, we study the ME under different representation learning schemes, including supervised 

learning (SL), semi-supervised learning (SSL) and transfer learning (TL). We name the representations 

learned under supervised learning SLME, that learned under semi-supervised learning SSLME, and that 

learned under transfer learning TLME. To quantify the relationships between SLME and properties, 318 

polymers labeled with densities are used for obtaining the SLME in Table 1, 641 polymers labeled with 

melting temperatures are used for obtaining the SLME in Table 2, and 1034 polymers labeled with glass 

transition temperatures are used for obtaining the SLME in Table 3. To quantify the relationships between 

SSLME and properties, all 1442 polymers are used for training the SSLMEs shown in all three tables. For 

the relationships between TLME and properties, we leverage 20 million organic molecular structures from 

the ZINC version 15[46] and the ChEMBL version 23[47, 48] databases to train the TLMEs in all three 

tables. The best performance scores are marked in bold in Tables 1, 2 and 3, which all happen in SSLME 

or TLME. Comparing the ME’s best performances (bold numbers) in Tables 1 and 3, the improved 

performance in Table 3 can be attributed to the increased training samples. However, a counterintuitive 

case is shown in Table 2. Even though the number of training samples in Table 2 is more than that in Table 

1, the performance is degraded. A potential explanation could be that when quantifying the relationships 

between polymer structures and fundamental properties such as density, no additional information needs to 

be specified; but for those application properties like melting temperature, who is sensitive to the 

measurement methods, additional information besides ME, such as the measurement method, may need to 

be added to the representation in order to accurately quantify the structure-property relationships.[49] 

MG

Regressor Metrics ρ Tm Tg

DNN

R2 0.260±0.229 -0.149±0.235 0.711±0.017

MSE 0.017±0.003 9560.946±2015.798 3566.943±605.063

MAE 0.102±0.012 79.561±7.339 45.440±2.469
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To investigate the difference in MEs of substructures under different representation learning schemes, we 

find a way to visualize the MEs of substructures. We use the t-SNE technique[50] to project the three sets 

(each from a learning scheme) of 268 MEs, whose corresponding substructures are shared by the training 

molecules for obtaining SLME, SSLME and TLME used in Table 1, into a 2D space, and we name them 

T1-SLME-268, T1-SSLME-268 and T1-TLME-268, respectively. In this way we can observe the local 

neighbor pattern for MEs of substructures. In Figure 5a, b and c, we can visually see that the local neighbor 

patterns of T1-SLME-268, T1-SSLME-268 and T1-TLME-268 are very different. To be more quantitative, 

we calculate the one-to-the-rest distance for all the MEs of substructures. In this calculation, we randomly 

pick a ME in the space, calculate the distances between this ME and all the rest ones, and then sum up all 

the calculated pair-wise distances as the total distance for this ME. We repeat this calculation for all the 

MEs and then plot the distribution of the total distances in Figure 5d. Based on Figure 5, the local-

neighbor-patterns for MEs and their distributions of total distances change with different representation 

learning schemes, thus leading to different similarity estimation in MEs under different learning schemes. 

For the essence of structure-property relations, similar structures should have similar properties. However, 

if the similarities between structures are differently estimated among different learning schemes, the 

quantitative structure-property relationship will be different, thus leading to difference performance scores 

as seen in Tables 1-3. 

 



 15 

 

 

Figure 5. 2-D t-SNE visualization of a) T1-SLME-268, b) T1-SSLME-268 and c) T1-TLME-268, the 

number of data points in each graph are 268, which corresponds to the common substructures shared by the 

training molecules for obtaining SLME, SSLME and TLME used in Table 1; d) The distribution of total 

pair-wise distances of T1-SLME-268, T1-SSLME-268 and T1-TLME-268. 

 

Finally, inspired by the idea of mixing word embeddings to capture more semantic information in language 

learning,[51] we mix our MEs here to see whether more information for estimating the substructure 

similarities can be captured in comparison to the strongest single MEs. We conduct the ME mixing in two 

ways: concatenation and weighted sum, which are schematically shown in Figure 6. In the concatenation 

mixing, two MEs are conjugated into one. In the weighted sum mixing, the weights 𝜔$ is calculated as: 

 𝜔$ = 𝑅$"/'𝑅("

(

 (1) 
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where i, j is the type of ME (e.g., SLME, SSLME or TLME) and 𝑅$,("  is the corresponding highest mean 

coefficient of determination (𝑅") as shown in Tables 1-3. For example, when mixing SLME and SSLME 

according to the 𝑅" in Table 1, 𝜔*+,- = 0.668/(0.668 + 0.701) for the SLME term. The weighted sum 

ME, 𝜈8, is then calculated as: 

 𝜈8 ='𝜔( ∙ 𝜈(
(

 (2) 

where m is the type of mixing (e.g., SLME + SSLME), j is the type of ME (e.g., SLME). Thus, the weighted 

sum ME of SLME and SSLME is calculated as 𝜈*+,-:**+,- = 𝜔*+,- ∙ 𝜈*+,- + 𝜔**+,- ∙ 𝜈**+,-. 

 

 
 
Figure 6. The schematics of mixed ME. Two different mixing schemes are studied: concatenation and 

weighed sum. 

We calculate the coefficient of determination (𝑅") in a 5-fold cross-validation manner when quantifying 

the relationships between different ME mixtures and properties, and compare the results to the 𝑅" of the 

strongest single MEs in Tables 1, 2 and 3. Based on the results in Table 5, several ME mixtures, which are 

marked in bold, outperform their corresponding strongest single MEs in quantifying the structure-property 

relationships. Such improvements, even though not very significant, may be attributed to the information 

gain when mixing different MEs. 

 

Table 5. Quantitative structure-property relationships between different ME mixtures and properties. 
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CONCLUSION  

In summary, we have explored different representations for polymers and evaluated their quality by 

quantifying the relationships between them and three different polymer properties. It is found that ME, 

which carrying more information about substructures, outperforms the commonly used MF as the polymer 

representation, as indicated by better performance scores from the regression of the structure-property 

relationships. On the other hand, the MG representation is shown to be much inferior than ME and MF in 

the polymer structure-property relationship quantification, likely due to the relatively small volumes of 

training data available. For MEs, it is found that the similarities of substructure MEs under different learning 

schemes (e.g., SL, SSL and TL) are differently estimated, thus leading to different performance scores in 

structure-property relation quantification. Several ME mixtures have shown to outperform the single MEs 

in the corresponding regression tasks, and this is attributed to the information gain when mixing different 

ME.   
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Label Regressor

Molecular Embedding (ME)

Strongest 
Single ME

Concatenation Weighted Sum

SLME+SSL
ME

SLME+TL
ME

SSLME+TL
ME

SLME+SSL
ME+TLME

SLME+SSL
ME

SLME+TL
ME

SSLME+TL
ME

SLME+SSL
ME+TLME

ρ

MLP 0.685±0.044 0.706±0.094 0.692±0.083 0.651±0.140 0.644±0.104 0.683±0.116 0.717±0.066 0.708±0.068

0.724±0.068RF 0.705±0.095 0.663±0.124 0.694±0.105 0.700±0.106 0.664±0.097 0.661±0.122 0.691±0.113 0.667±0.103

SVM 0.684±0.078 0.719±0.098 0.712±0.085 0.714±0.082 0.671±0.085 0.733±0.097 0.698±0.092 0.711±0.089

Tm

MLP 0.560±0.135 0.577±0.083 0.598±0.063 0.525±0.089 0.612±0.086 0.624±0.077 0.626±0.079 0.617±0.071

0.684±0.054RF 0.683±0.050 0.681±0.053 0.689±0.047 0.689±0.047 0.671±0.063 0.690±0.051 0.680±0.062 0.671±0.062

SVM 0.663±0.073 0.679±0.062 0.680±0.060 0.680±0.066 0.666±0.072 0.681±0.062 0.680±0.056 0.676±0.064

Tg

MLP 0.816±0.028 0.833±0.022 0.833±0.019 0.822±0.040 0.825±0.022 0.831±0.038 0.832±0.038 0.843±0.023

0.865±0.026RF 0.867±0.030 0.867±0.032 0.869±0.032 0.870±0.031 0.853±0.038 0.863±0.034 0.861±0.031 0.856±0.036

SVM 0.860±0.034 0.867±0.028 0.867±0.027 0.867±0.029 0.861±0.035 0.866±0.026 0.868±0.030 0.866±0.029
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