
Random Forest refinement of pairwise potentials for protein-ligand 

decoy detection 

 

Jun Pei,§ Zheng Zheng, §‡ Hyunji Kim, §a Lin Frank Song, § Sarah Walworth, §b Margaux R. 

Merz,§c and Kenneth M. Merz Jr.* §† 

 

§Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, 

Michigan 48824, United States 

†Institute for Cyber Enabled Research, Michigan State University, 567 Wilson Road, East 

Lansing, Michigan 48824, United States 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

 

An accurate scoring function is expected to correctly select the most stable structure from 

a set of pose candidates. One can hypothesize that a scoring function’s ability to identify the 

most stable structure might be improved by emphasizing the most relevant atom pairwise 

interactions. However, it is hard to evaluate the relevant importance for each atom pair using 

traditional means. With the introduction of machine learning methods, it has become possible to 

determine the relative importance for each atom pair present in a scoring function. In this work, 

we use the Random Forest (RF) method to refine a pair potential developed by our laboratory 

(GARF6) by identifying relevant atom pairs that optimize the performance of the potential on our 

given task. Our goal is to construct a machine learning (ML) model that can accurately 

differentiate the native ligand binding pose from candidate poses using a potential refined by RF 

optimization. We successfully constructed RF models on an unbalanced data set with the 

‘comparison’ concept and, the resultant RF models were tested on CASF-2013.5 In a comparison 

of the performance of our RF models against 29 scoring functions, we found our models 

outperformed the other scoring functions in predicting the native pose. In addition, we used two 

artificial designed potential models to address the importance of the GARF potential in the RF 

models: (1) a scrambled probability function set, which was obtained by mixing up atom pairs 

and probability functions in GARF, and (2) a uniform probability function set, which share the 

same peak positions with GARF but have fixed peak heights. The results of accuracy comparison 

from RF models based on the scrambled, uniform, and original GARF potential clearly showed 

that the peak positions in the GARF potential are important while the well depths are not.  

 



Introduction 

 

Molecular docking is a widely used method in structure based drug design (SBDD), and 

scoring functions are essential components in molecular docking programs. Some well-known 

scoring functions are used in the GOLD,1 SurFlex Dock,2 Glide,3 and AutoDock Vina docking 

packages.4 A highly performant scoring function should have several properties:8 (1) the most 

stable ligand binding pose should have the lowest rank, (2) it should distinguish between ligands 

that bind from nonbinding ones, (3) the scores generated from the scoring function are correlated 

with the experimentally determined binding affinities. Extant scoring functions can be classified 

into four broad categories: force field based,12-22 knowledge based,23-34 empirical,9, 35-40 and 

machine learning based8, 10, 11, 41-49 scoring functions. Force field based scoring functions 

typically employ a classical force field, which use relatively simple energy equations to describe 

bond, angle, torsion, and nonbond interactions in a protein ligand complex, to represent a three 

dimensional structure at the molecular level. Alternatively, knowledge-based scoring functions 

employ a statistical analysis on the radial distribution functions of atom pairs, which are 

extracted from a protein-ligand structure database, to obtain “pure” interactions between atom 

pairs. Empirical scoring functions assume the binding affinity between a protein and ligand can 

be decomposed into basic components with different coefficients, which can be obtained through 

multivariate regression analysis on a set of protein ligand complexes with experimentally 

determined structures and binding affinities.9 Machine learning based scoring functions employ a 

variety of machine learning/deep learning methods along with a variety of information from 

protein ligand systems to predict the binding poses and affinities for a given protein ligand 

systems.  



With the ever-increasing amounts of data, force field based scoring functions are limited 

by their relatively high computing costs, while the accuracy of these methods is continually 

challenged by the increasingly diverse data sets that require specific parameterizations for high 

accuracy. On the other hand, recently reported scoring functions based on machine learning 

techniques showed promising performance using multiple different input types, such as topology 

representations10 and three-dimensional “pictures”11 of protein ligand complexes. Hence, it is 

possible that the performance of traditional scoring functions might be improved by combining 

the information encoded within them with novel machine learning models. From a chemistry 

point of view, a lot of relevant information (for example, potential functions) are contained in 

force field and knowledge based scoring functions which might prove useful in building machine 

learning models. Using traditional methods, it is almost impossible to assign different importance 

factors to each atom pair in a potential database such that the most important atom pairs would 

be emphasized in a calculation. However, this can be accomplished using machine learning 

algorithms. 

In this work, we focus on using Random Forest(RF) models to assign different 

importance factors to each atom pair in order to improve the scoring function’s ability to rank the 

most stable binding pose as the lowest. The GARF potential data base, which is generated 

using a graphical-model-based approach with Bayesian field theory,6 was used as an example of 

pair wise potential data base. We successfully constructed RF models on unbalanced data sets 

with the ‘comparison’ concept, and RF models were tested on a well-known protein ligand decoy 

set, CASF-2013,5 to evaluate their ability to select the most stable structure. The accuracy 

comparison results between our RF models and another 29 scoring functions suggest that the RF 

models have a greater ability to correctly identify the native ligand binding pose among a 



collection of decoy poses. In addition, based on the GARF potential data base, we constructed 

two artificial probability function sets to address the importance of the potential data base used to 

generate the RF models. In particular, a scrambled probability function set was used to test if the 

GARF potential is critical in building RF models, and a uniform probability function set was 

used to further understand the most important information contained in GARF. The accuracy 

comparison results showed that the peak positions in the GARF potential data base is critical to 

build an accurate RF model. In the end, the influence of training set size was also tested. The 

results showed that accuracy converged after the training set’s size is larger than 60 % of the 

whole data set, which provides a strong evidence for the fact that only peak positions are the 

most important information in RF models. 

 

Method 

 

Descriptor for intermolecular interactions 

            

In a n-body system, if all independent pair wise probabilities are known, the overall 

probability of the whole n-body system can be calculated as follows: 

 

𝑝𝑛 =  ∏ 𝑐𝑖𝑗 × 𝑝𝑖𝑗
𝑛
𝑖,𝑗=1, 𝑖≠𝑗 ,                                                                                                              (1) 

 

where pij represents the independent probability for particle pair i and j, cij is the corresponding 

coefficient for pij. If a protein ligand complex is considered as a n-body system, with the 



knowledge of all independent pair wise probabilities (including the pair wise probabilities of 

bond, angle, torsion, and nonbonded interactions), the overall probability of a protein-ligand 

complex can be obtained as: 

 

𝑝𝑝𝑟𝑜𝑡𝑒𝑖𝑛−𝑙𝑖𝑔𝑎𝑛𝑑 =  𝑝𝑝𝑟𝑜𝑡𝑒𝑖𝑛 × 𝑝𝑙𝑖𝑔𝑎𝑛𝑑 × 𝑝𝑖𝑛𝑡𝑒𝑟𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛−𝑙𝑖𝑔𝑎𝑛𝑑                                     (2) 

 

where 𝑝𝑝𝑟𝑜𝑡𝑒𝑖𝑛−𝑙𝑖𝑔𝑎𝑛𝑑  represents the overall probability of  a protein-ligand complex, 𝑝𝑝𝑟𝑜𝑡𝑒𝑖𝑛 

and 𝑝𝑙𝑖𝑔𝑎𝑛𝑑  are the probability of  protein and ligand, respectively. 

𝑝𝑖𝑛𝑡𝑒𝑟𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛−𝑙𝑖𝑔𝑎𝑛𝑑 is the probability of the intermolecular interactions between the 

protein and ligand. If the protein is treated as a rigid body, 𝑝𝑝𝑟𝑜𝑡𝑒𝑖𝑛 will be the same for both 

native and decoy protein-ligand complexes, hence, it is a constant in equation (2). On the other 

hand, 𝑝𝑙𝑖𝑔𝑎𝑛𝑑 can be expanded as: 

 

𝑝𝑙𝑖𝑔𝑎𝑛𝑑 = (∏ 𝑐𝑖𝑗 × 𝑝𝑖𝑗)(∏ 𝑐𝑘𝑙 × 𝑝𝑘𝑙)(∏ 𝑐𝑚𝑛 × 𝑝𝑚𝑛)(∏ 𝑐𝑝𝑞 × 𝑝𝑝𝑞)𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑛𝑔𝑙𝑒𝑏𝑜𝑛𝑑        (3) 

 

c and p represent the scaling factor and the probability of atom pair  and , the subscripts ij, 

kl, mn, and pq correspond to bond, angle, torsion, and non-bonded atom pairs, respectively. In 

theory, p could be found in a potential database, however, given the scarcity of data, the GARF 

potential does not contain the pair-wise probabilities for atom pairs that only exist in a ligand. 

Hence, in this work, 𝑝𝑙𝑖𝑔𝑎𝑛𝑑 is a constant in equation (2), in other words, the ligand molecule is 

also treated as a rigid body. 

 

With the product of  𝑝𝑝𝑟𝑜𝑡𝑒𝑖𝑛 and 𝑝𝑙𝑖𝑔𝑎𝑛𝑑 as a constant C, equation (2) can be rewritten as: 



 

𝑝𝑝𝑟𝑜𝑡𝑒𝑖𝑛−𝑙𝑖𝑔𝑎𝑛𝑑 =  𝐶 × 𝑝𝑖𝑛𝑡𝑒𝑟𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛−𝑙𝑖𝑔𝑎𝑛𝑑 = 𝐶 × (∏ 𝑐𝑠𝑡 × 𝑝𝑠𝑡)𝑖𝑛𝑡𝑒𝑟𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟       (4) 

 

cst and pst are the weighting coefficient and the probability of intermolecular atom pair s and t. 

Taking logarithm on both sides of equation (4) we get: 

 

log(𝑝𝑝𝑟𝑜𝑡𝑒𝑖𝑛−𝑙𝑖𝑔𝑎𝑛𝑑) = 𝑙𝑜𝑔(𝐶) + ∑ 𝑙𝑜𝑔(𝑐𝑠𝑡  ×  𝑝𝑠𝑡)𝑖𝑛𝑡𝑒𝑟−𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟                                             (5) 

 

the pst terms are obtained from the GARF potential function database, which contains all 

intermolecular potential functions between the protein and ligand. cst is a to-be-determined 

parameter obtained using machine learning.   

 

Fig. 1 shows, as an example, the probability function for N and C.3 from the GARF 

database. The x-axis in Fig. 1 represents the distance between N and C.3 and the y-axis 

represents the probabilities corresponding to the various distances. The probabilities at different 

distances can be calculated directly from the probability function. In this work, instead of using 

one probability for a given distance, we used an averaged probability over a small region 

centered on the selected distance. For example, if the atom pair N_C.3 is found in a protein-

ligand complex at a distance of 4.0 Å, 201 different probabilities will be calculated for the 

distances between 3.5 and 4.5 Å with an interval of 0.005 Å. Then, the logarithm value of the 

averaged probability (average value for 201 probabilities) is calculated to represent the 

probability of atom pair N_C.3 at a distance of 4.0 Å . In general, the calculation can be 

summarized as follows: 



 

𝑝𝐴−𝐵(𝑟1) = 𝑙𝑜𝑔[∑ 𝐺𝐴𝑅𝐹𝐴−𝐵(𝑟𝐴𝐵)𝑟1+0.5
𝑟1−0.5 ] − 𝑙𝑜𝑔(201)                                                                 (6) 

 

GARFA-B is the probability function from the GARF database and r1 is the distance between atom 

A and B in a protein-ligand system (in above example, r1 equals 4.0 Å), while rAB represents a 

distance in the range of r1 ± 0.5 Å over an interval of 0.005 Å.  

 

 

Fig. 1 Probability function of atom pair N and C.3 in GARF. x-axis is the distance between N 

and C.3 and the y-axis is probability. The selected region shows a sampling range of 4.0 ± 0.5 Å. 

 

A given atom pair may appear multiple times in a given protein-ligand complex, so we 

sum over all atom pairs of the same type to obtain an overall probability. Thus, the sum of all 



individual probabilities for a given atom pair is used as the final probability for that specific atom 

pair in the protein-ligand complex. Therefore, the final probability can be expressed as: 

 

𝑝𝐴−𝐵 =  ∑ 𝑝𝐴−𝐵(𝑟𝑖)
𝑘
𝑖=1                                                                                                                  (7) 

 

where, 𝑝𝐴−𝐵 is the final probability of atom pair AB. Indices of r1 to rk are the distances between 

atom A and B found in a protein ligand complex structure, ri represents a distance from r1 to rk. 

Based on this formulation, a three-dimensional protein-ligand structure can be converted to a one 

dimensional column vector of pairwise probabilities. Fig. 2 shows the protocol of converting the 

protein ligand structure into a column vector with atom pair wise probabilities. 

 

 

Fig. 2 A general protocol to generate the column vector for a protein ligand complex. The 

subscript 1k, 2k, …, 480k represents the occurrence number of each atom pair found in the 

structure. 



 

Random Forest model 

 

Supervised learning models can be split into two broad categories; regression and 

classification models.50 In this work, the goal is to construct a classifier that can accurately 

determine the native pose from decoy poses. The most straightforward way to do this is to create 

a model that predicts whether a ligand pose is native or not. However, the low number of native 

poses eliminates the possibility of constructing an efficient classifier (in one decoy set, there is 

only one native pose amongst hundreds of decoys). Therefore, it is necessary to find out a way to 

make the number of samples in each class similar. In this work, a ‘comparison’ concept was used 

to transfer a decoy set into two classes with the same number of members. 

 

The one criteria for our data sets in the protein ligand complex of the native pose is 

always more stable than the decoy poses. In other words, the complex of the native binding pose 

has the higher probability than all the others. Accordingly, the probability of the native pose 

minus the probabilities of any decoy pose should be always greater than zero, and the reverse 

will be less than zero. In this way, if all the results larger than zero are labeled as “class 1” and 

the reverse are defined as “class 0”, those two classes will have same number of members, which 

is ideal for constructing a classifier model.  

 

Fig. 3 shows the general protocol for generating a RF model. As an example we took one 

protein ligand decoy set, which contains one ligand native pose and m ligand decoy poses. First, 

the GARF potential database was used to convert all 3 dimensional protein ligand structures into 



column vectors following the steps described in Fig. 2. These column vectors are termed 

descriptor vectors. Then, the results of the descriptor vector from the native structure minus the 

corresponding vectors from every decoy are called “class 1”, which corresponds to “more stable 

than”. Similarly, the inverse are labeled “class 0” which it represents “less stable than”. 

Consequently, class 1 and class 0 have the same number of members, which is perfect to build 

up a classification model. In this work, the RF algorithm was selected to build up the classifier. 

The goal of the classifier is to accurately compare any two random structures in a given set. For 

instance, in order to compare two protein ligand complexes, which share the same protein and 

ligand structures, the descriptor vectors are calculated for each protein ligand complex. A final 

descriptor vector is generated using the descriptor vector of the first complex minus the 

corresponding one from second structure. Then, the final descriptor vector was treated as an 

input for the RF model to give its final prediction. If the predicted result is class 1, that means the 

first complex is more stable than the second one; on the other hand, if the prediction is class 0, 

that indicates the first complex is less stable than the second one.  

 



 

Fig. 3 A general protocol to construct a random forest classifier on an unbalanced decoy set. 

 

It is possible to compare two complexes with the RF model described above, however, 

there is still a gap between the RF model and blind tests. The goal of a blind test is to identify the 

complex with ligand native pose among a large number of complexes with ligand decoy poses. 

Hence, another protocol needs to be introduced to do a blind test based on the RF model and Fig. 

4 outlines the workflow. Here, one decoy set containing n protein-ligand complexes is shown as 

an example. The goal is to identify the complex with the ligand in its native pose. There are four 

steps to identify the selected complex: (1) all n protein-ligand complexes were converted to n 

descriptor vectors using the procedure described previously. (2) Compare each complex structure 

with all the other complexes. As an example we generate the comparison result for the first 

complex S1 with all other structures. Table_S1 shown in Fig. 4 is obtained by using the 

descriptor vector of the first complex minus the descriptor vectors of the other complexes. Each 



column in that table represent a comparison between the first complex with one of the other 

structures, hence, Table_S1 has n-1 columns, which contains the information of all comparisons 

between the first complex and all other complexes in the decoy set. In total, there are n 

comparison tables for each complex in the decoy set. (3) Tables obtained in the previous step 

were used as inputs for our RF model resulting in a row vector representing the comparison 

result for each table. Every element in the resultant row vector represents the comparison result 

when a specific complex was compared with another structure. “1” means “more stable than” 

and “0” is “less stable than”. Next, the sum of the row vector is defined as the “Score”, and the 

score of complex S1 is called “Score_S1”. (4) Based on these “Score” values, a rank of all 

complexes can be obtained. In this way the most stable complex can be identified from a 

collection of protein-ligand complexes with RF models.  

 

 

Fig. 4 A general protocol of calculating scores for each protein ligand complex in a blind test  

using a RF model. 



 

Random Forest model with decoy comparison information 

 

Our RF model is focused on identifying the native binding pose of a ligand among all decoy 

poses. However, it is not effective in identifying the best decoy due to the lack of comparison 

information between the best decoy structure and the other decoy poses. In order to include the 

comparison information between decoy poses into the RF analysis we made the following 

assumption. The assumption is that the ligand decoy pose with the lowest RMSD is the most 

stable decoy structure (best decoy pose). Fig. 5 shows the protocol of adding comparisons 

between the best decoy pose and other decoy poses. For example, a decoy set contains m decoy 

structures and one native pose, two kinds of comparisons were considered when the model was 

trained: (1) the comparison between the native binding pose and all other decoy poses, in total 

there are 2m comparisons (m comparisons for each class); (2) without the native binding pose, 

the best decoy pose was compared with all other decoy poses for a total of 2(m – 1) comparisons. 

Then, RF models, which were trained on these comparisons, were used to select the best decoy 

through the protocol of Fig. 4.  



 

Fig. 5 The protocol used to include the comparison information between best decoy binding pose 

and other decoy poses. 

 

Decoy set 

 

In this work, 191 systems were selected out of the 195 systems in CASF-20135 due to 

formatting issues with our program. CASF-20135 is known as the ‘Comparative Assessment of 

Scoring Functions’, it includes data sets for testing the scoring, docking, screening, and ranking 

powers of scoring functions. Here, we only used the data sets, which were designed to test the 

docking power of scoring functions. The decoy ligand binding poses were prepared with three 

popular molecular docking programs: GOLD(v5), Surflex-Dock implemented in SYBYL(v8.1), 

and the docking module built in MOE(v2011). These three programs have different algorithms 

for ligand pose sampling, therefore, the resultant decoy set is more complete and avoids the bias 



inherent in using only one program. In total, we used 191 protein ligand systems, 15802 ligand 

decoy poses, and 31604 native-decoy comparisons.  

 

GARF potential 

 

Herein, we used the GARF6 potential to calculate the pairwise probabilities for each 

protein ligand complex. GARF is a potential database developed by our group. It employed a 

graphical-model-based approach with Bayesian field theory to construct atom pairwise potential 

functions. There are 20 atom types for the protein atoms and 24 atom types for the ligands. All 

definitions of the atom types are listed in Table s3 in the supporting information. Further details 

regarding GARF can be found in the original article.6 

 

Machine learning and validation 

 

The sklearn.ensemble.RandomForestClassifier function from Scikit-learn was used to 

create the proposed classification model.7 One training-testing iteration includes: (1) Randomly 

split the whole data set into two parts, 80% as the training data set and 20% as the test set. (2) A 

grid search with five-fold cross validation was done on the training set in order to identify the 

best set of hyperparameters for the RF model. (3) The RF model with the best set of 

hyperparameters was then validated on the test set. Ten independent iterations were performed 

on the CASF-20135 decoy set in order to avoid bias from our data partitioning scheme.  

 



In order to evaluate the performance of the RF models, a concept called ‘accuracy’ was 

used in this work. In supervised machine learning, usually a ‘confusion matrix’ is applied to 

evaluate the performance of a classifier. The format of a confusion matrix is presented in Table 

1: 

  

Table 1. General form of a confusion matrix 

 Predicted (class 1) Predicted (class 0) 

Actual (class 1) TP FN 

Actual (class 0) FP TN 

 

There are four values in the confusion matrix, which are TP, FP, FN, and TN. TPs (True 

Positives) refers to the cases whose predicted classes are ‘class 1’ - same as their actual classes. 

FPs (False Positives) are the cases with a predicted class of ‘class 1’ even though their actual 

class is ‘class 0’. FNs (False Negatives) represent cases whose predicted class is ‘class 0’, 

however, their actual class is ‘class 1’. Finally, TNs (True Negatives) refers to the case where the 

predicted class is ‘class 0’ which is the same as their actual class. Accuracy can be calculated 

based on these four numbers from the confusion matrix using: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                                            (8) 

 

Usually, accuracy is not an ideal judge of the performance of a classifier because the difference 

between two actual classes might be large. For example, if class 1 has 90 examples and class 0 

only has 10 examples, a “naïve” classifier, which predicts every sample as class 1, can achieve 

an accuracy of 90%. On the other hand, in this work, our two classes have equal members, 



hence, accuracy can be used to judge the performance of the proposed RF model. Ten 

independent iterations were done on the CASF-20135 decoy data set yielding ten accuracies to 

average over. Here, we used the averaged, highest, and lowest accuracies to represent the general 

performance of our RF models. 

 

Potential analysis 

 

In order to test the importance of using the GARF potential database, two sets of artificial 

probability functions were constructed.  

 

(1) Scrambled probability function set 

 

A scrambled probability function database was set up based on GARF in order to test 

whether the GARF database is critical to the performance of the RF models. In the GARF 

database, each atom pair has its probability function. The scrambling process mixes up 

the atom pair names. For example, before scrambling, one probability function might 

represent a hydrogen bond interaction, and after mixing up the atom pair names, the same 

probability function might be used to describe the interaction between two carbon atoms. 

Ten independent RF models were built using the scrambled data base. The averaged, 

highest, and lowest accuracies were selected to represent the general performance of RF 

on the scrambled data set. 

 

(2) Uniform probability function set 



 

A uniform probability function set was constructed based on the GARF database in order 

to address the most important information buried in the data set. The uniform probability 

function only contains the peak positions for each atom pair found in GARF. There are 

two steps to artificially construct a uniform probability function set. First, peak positions 

rpeak_A_B (A and B represent two atom names in GARF) of each atom pair were collected 

from the GARF data set. Then, probability functions were designed using: 

 

𝑝𝐴𝐵 =  𝑒
(𝐸1∗(

3
𝑟𝐴𝐵

)
12

−𝐸2∗(
3

𝑟𝐴𝐵
)

6
)

−𝑅𝑇                                                                                              (9) 

 

In equation (9), pAB and rABis  are the probability function and distance of atoms A and B, 

E1 and E2 are two to-be-determined variables. If the peak height in the uniform 

probability function set is fixed, two equations are created to solve for the values of E1 

and E2.  

 

(𝐸1∗312∗
−12

𝑟𝑝𝑒𝑎𝑘_𝐴_𝐵
13−𝐸2∗36∗

−6

𝑟𝑝𝑒𝑎𝑘_𝐴_𝐵
7)

−𝑅𝑇
  = 0                                                                         (10)      

𝑒

(𝐸1∗(
3

𝑟peak_A_B
)

12

−𝐸2∗(
3

𝑟peak_A_B
)

6

)

−𝑅𝑇
  =  𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

                                                                      (11)             

 

Equation (10) represents the maximum of the probability function at the peak position 

rpeak_A_B and, equation (11) shows that the uniform probability function shares the same 

peak height. The Constant in equation (11) can be set to any positive value, in this work, 

it was set to 2. E1 and E2 can be obtained by solving equations (10) and (11), and in this 



way the uniform probability functions for each atom pair can be determined, based solely 

on the peak positions.                                           

 

Result and Discussion 

 

Accuracy  

 

The most important goal of a scoring function is to accurately identify the native structure 

among an plethora of decoy structures. In order to evaluate the ability of a scoring function to 

identify the native structure, the concept of accuracy is used in this work. If a decoy set contains 

100 decoy structures but only one native, the scoring function is expected to make 200 correct 

comparisons to identify the native pose. The higher the accuracy of the comparison, the better 

the performance of the scoring function. The third column in Table. 2 shows the comparison of 

accuracies from RF models and 29 other scoring functions. The averaged, highest, and lowest 

accuracy of the RF models are 0.953, 0.969, 0.942. The averaged accuracy value is higher than 

all of the other tested scoring function, and the lowest accuracy value is still higher than all of the 

other accuracies. It is clear that the RF models have a higher accuracy, which means that the RF 

models perform better than all other scoring functions in comparing the ligand native pose to 

decoy poses. 

 

Table. 2 Comparisons between RF models and 29 other scoring functions. 

  accuracy Native’s ranking 1st decoy RMSD 



RF models Averaged 0.953 4.49 3.87 

 Highest 0.969 5.54 4.47 

 Lowest 0.942 3.54 3.38 

Conventional SFs GOLD-ASP 0.924 6.13 1.74 

 GOLD-ChemPLP 0.923 6.25 1.51 

 DS-PLP1 0.917 6.68 1.80 

 DS-PLP2 0.914 7.07 1.87 

 MOE-Affinity_dG 0.900 8.23 2.42 

 Xscore-HMScore 0.891 8.89 2.45 

 Xscore-Average 0.886 9.33 2.38 

 GOLD-ChemScore 0.882 9.58 1.72 

 DS-PMF04 0.874 10.58 3.38 

 SYBYL-PMF 0.874 10.53 3.42 

 Xscore-HPScore 0.871 10.63 2.75 

 MOE-Alpha 0.870 10.38 1.85 

 Xscore-HSScore 0.869 10.80 2.64 

 DS-LigScore2 0.867 10.67 1.83 

 MOE-London_dG 

 

0.863 11.38 2.52 

 DS-PMF 0.857 11.89 3.48 

 MOE-ASE 0.856 11.88 2.91 

 GlideScore-SP 0.832 13.20 1.72 

 DS-LigScore1 0.823 14.28 2.31 

 GlideScore-XP 0.823 14.07 1.86 

 GOLD-GoldScore 0.819 14.70 1.88 

 DS-LUDI2 0.807 15.62 2.23 

 DS-LUDI1 0.799 16.35 2.34 

 DS-LUDI3 0.783 17.48 2.87 



 SYBYL-

ChemScore 

0.782 17.70 2.40 

 SYBYL-Gscore 0.725 22.64 3.13 

 dSAS 0.692 25.48 3.96 

 DS-Jain 0.685 25.63 2.90 

 SYBYL-Dscore 0.674 26.70 4.03 

 

Native ranking 

 

 Other than accuracy, another criteria for evaluating a scoring function is the ranking of 

the ligand native pose. In other words, a scoring function is expected to give the ligand native 

pose the lowest rank. The fourth column in Table. 2 shows the result of ligand native pose 

ranking from each method. The averaged, highest, and lowest ligand native pose ranking from 

RF models are 4.49, 5.54, and 3.54, respectively. The confidence interval of the native pose’s 

ranking from RF models is [3.54, 5.54]. It is clear that all 29 scoring functions have ligand native 

rankings higher than the averaged native ranking obtained from the RF models, and of these 

rankings they are larger than the highest native ranking from the RF models. Thus, it can be 

concluded that the RF models perform better in selecting the ligand native pose than existing 

models. 

 

 If the accuracy values are compared with the ligand native pose rankings, a correlation 

between those two sets of data can be found. The higher the accuracy, the lower the native pose 

ranking. The most important goal of a scoring function is to identify the most stable ligand pose 

(native pose), therefore, the minimum standard for a scoring function is to correctly compare 



native pose to decoy ones. Using our previous example of a decoy set containing 100 decoy 

structures and one native pose we have 200 comparisons between the native and decoy poses. 

Hence, minimally the scoring function should make 200 correct comparisons to obtain the native 

structure. With more correct comparisons, the native pose has a higher chance to be found at a 

lower rank. For example, if the scoring function makes ten mistakes, the accuracy is around 0.95, 

and the ligand pose ranking would be ≥ 5.  

 

RMSD of the best decoy 

 

Besides accuracy and native pose ranking, there is another criteria, RMSD of the best 

decoy structure, which is used to judge the performance of a scoring function. The best ligand 

decoy pose refers to the decoy structure that is selected by a scoring function as the structure 

among all decoy poses most similar to the native pose. Scores generated by a scoring function 

are expected to be correlated with the quality or native-likeness of a structure. The RMSD value 

between the ligand native binding pose and a decoy binding pose is often used to represent the 

quality of that decoy pose. If the RMSD is below a predefined cutoff (RMSD < 2 Å), the decoy 

binding pose is believed to be “native-like”. The last column in Table. 2 shows the RMSD 

values from each of the scoring functions. The averaged, highest, and lowest RMSD values from 

RF models are 3.87 Å, 4.47 Å, and 3.38 Å, respectively. The confidence interval for the RF 

models is [3.38, 4.47]. It is clear that there are 26 scoring functions that can identify ligand decoy 

poses with RMSDs lower than 3.38 Å, and two scoring functions provide RMSD values within 

the confidence range of the RF models. In general, 28 scoring functions perform better than our 

initial RF models in selecting the best decoy structure. 



 

The RF models used in Table. 2 only contain comparisons between native and decoy 

poses, while comparison information between decoy poses was not considered when the models 

were trained.  Hence, we conclude, that these RF models do not have enough information to find 

the “best” ligand decoy poses among a large number of decoy structures. In order to improve our 

RF models’ ability to identify the best decoy structure, comparison information between decoy 

poses should be added when training the RF models. Here, we make an assumption that, among 

all decoy poses, the pose with the lowest RMSD is perhaps the most stable of all the decoys 

because it is most “native-like”. With this assumption, the comparison between the best decoy 

and other decoy poses could be generated. Instead of just using comparisons between native and 

all decoy poses, the new training set also included comparisons between the best decoy pose and 

all other decoy poses. Table. 3 shows the result when different number of decoy structures were 

identified as the most stable poses. Four sets of training data were used: (1) only including 

comparisons between the native and decoy poses; (2) including comparisons between the native 

and decoy poses, and between the decoy structure with the lowest RMSD with all other decoy 

poses; (3) including comparisons between the native and decoy poses, between the two lowest 

RMSD decoy poses and all other decoy poses; (4) including comparisons between the native and 

decoy poses and, between the three lowest RMSD decoy poses with all other decoy poses. 

Table. 3 gives the overall performance on accuracy, ligand native pose ranking, and the best 

decoy RMSD. With the inclusion of decoy structures in the training set, the accuracy of the RF 

models and the ligand native binding pose’s ranking were slightly negatively affected. On the 

other hand, the best decoy pose’s RMSD dropped dramatically. The averaged, highest, and 

lowest RMSD of the best decoy pose from RF models trained on data set only including 



comparisons between native and decoy binding poses are 3.87 Å , 4.47 Å , and 3.38 Å , 

respectively. Alternatively, the corresponding values from RF models including the three lowest 

RMSD decoy structures are 2.27 Å, 2.44 Å, and 1.73 Å, respectively (confidence interval is [1.73, 

2.44]). By including low RMSD decoy structure comparisons we obtain RF models (see Table. 

2) that give better first decoy RMSDs than 13 scoring functions, a further 15 scoring functions 

have first decoy RMSDs with the confidence interval of the RF model and only one scoring 

function gave a RMSD smaller than 1.73 Å. Hence, we conclude that the overall performance 

(i.e., accuracy, native rank, and low RMSD first decoy) of RF models can be improved by 

including lowest RMSD decoy comparisons in the fitting of the model.  

 

Table. 3 Comparison between RF models with considering different number of decoy pose in 

training set. 

  Accuracy Native’s ranking 1st decoy RMSD 

 

With no decoy structure 

Averaged 0.953 4.49 3.87 

Highest 0.969 5.54 4.47 

Lowest 0.942 3.54 3.38 

 

With one lowest RMSD 

decoy structure 

Averaged 0.958 4.28 2.41 

Highest 0.974 7.49 2.72 

Lowest 0.921 3.03 2.13 

 

With two lowest RMSD 

decoy structure 

Averaged 0.950 5.03 2.50 

Highest 0.957 6.08 2.99 

Lowest 0.937 4.39 1.95 

 

With three lowest RMSD 

decoy structure 

Averaged 0.947 5.21 2.27 

Highest 0.963 6.56 2.44 

Lowest 0.930 3.97 1.73 



 

 Based on previous discussion, it is clear that with a higher accuracy, a scoring function 

can give the native binding pose a lower rank. If the accuracy values are compared with the 

RMSD of the best decoy, it is obvious that those two sets of data do not appear to correlate. 

Some scoring functions are better at selecting the native pose but provide a relatively larger 

RMSD value, whereas other scoring functions do a better job selecting the best decoy structure 

but do not have the ability to identify the native binding pose. This leads to a basic philosophical 

question: which one is more important, accuracy or RMSD? Both of them should be important in 

the limit that all decoy poses can be obtained. However, it is almost impossible to generate all 

relevant decoy poses using contemporary approaches. In our opinion, the basic requirement for a 

scoring function is that the function can accurately identify the native pose. To some degree, 

RMSD might be useful in judging if a structure has a low free energy, but it is obvious that a 

decoy structure can have a high free energy while enjoying a low RMSD value. Hence, if two 

scoring functions were compared solely on identifying the best decoy and one gives a RMSD 

larger than 2 Å while another is less than 2 Å, it is unclear, at least to us, how to judge which one 

is better. On the other hand, accuracy, the factor that represents the performance of a scoring 

function when comparing native and decoy poses, is a clear standard. The explicit hypothesis we 

are making when docking and scoring is that the native structure always has a lower free energy 

than the decoys. When comparing two scoring functions, the better scoring function should be 

the one with a higher accuracy. Put another way, when creating, for example, ML models for a 

self-driving car what is more important – accurately identifying an obstacle or being close to 

identifying an obstacle? Therefore, we believe that accuracy is the more important criteria.  

 



Uniform probability function 

 

 The RF models perform better than all other scoring function on accuracy and native 

binding pose ranking. It is interesting to consider if the GARF potential is critical in these RF 

models. Two tests were set up in order to test the importance of the GARF potential database. 

First, a scrambled probability function set was constructed based on GARF followed, by a 

uniform probability function set to test whether GARF’s peak position is more important or if the 

peak height is more critical.  

 

 The scrambled probability function set was generated by randomly mixing up the atom 

pairs in the GARF potential database. Taking the 480 atom pairwise potential functions in GARF 

we randomly scrambled the atom pair names. For example, before scrambling, one probability 

function represented the interaction between N and O.co2, while after scrambling, the same 

probability function might be used to describe the interaction between C and F. Hence, the 

scrambled probability function set is physically unrealistic. Based on the scrambled probability 

function set, ten independent RF models were constructed following the same procedure 

described in the methods section. Since the scrambled function set is physically unrealistic, it is 

expected that the performance of these RF models would be worse than models using the 

original GARF potential. 

 

 There are two kinds of information embedded in the GARF potential, peak positions 

(well position) and peak heights (well depth). Which is more important – or are both important? 

To address this a uniform probability function set was built up to probe this fundamental 



question. Uniform probability functions share the same peak positions with the original GARF 

potential, but set all the peak heights at a constant value eliminating the impact of prior peak 

heights. If the obtained RF models based on a uniform probability function set performs 

similarly to models obtained with the original GARF, peak positions will be more important than 

peak height.  Alternatively, if the obtained RF models perform more poorly than original the 

models peak height is significant.  

 

 Table. 4 compares the accuracy result from RF models based on the original, scrambled, 

and uniform GARF potential database. If we compare the accuracy values between RF models 

based on original and scrambled GARF, it is clear that the averaged, highest, and lowest 

accuracies from RF models with a scrambled probability function perform poorer. The accuracy 

value did not drop as much as we have seen in the past51 because the GARF potential only 

contains intermolecular interactions found in protein ligand systems. Moreover, the 480 peak 

positions found in GARF are all in the range of [2.5, 5.1] with 355 peak positions in the range of 

[3.4, 4.4] (see Table. s1). Therefore, the scrambled peak positions in the scrambled probability 

function set might be similar to the original positions in GARF. It is reasonable to expect that the 

accuracy of RF model based on scrambled probability function set is lower than the 

corresponding values from original models. On the other hand, if we compare the accuracy 

values from the uniform probability function set to the values provided by the original RF 

models, it is obvious that the averaged accuracy values from those two sets of models are the 

same. This further supports the notion that peak position is more important than well depths in 

given a potential function used to build a RF model.51 

 



Table. 4 Comparison between RF models with different probability function sets 

 RF models 

 Averaged accuracy Highest accuracy Lowest accuracy 

Original GARF 0.953 0.969 0.942 

Scrambled GARF 0.933 0.951 0.911 

Uniform GARF 0.953 0.980 0.918 

 

 

Influence of training set size  

 

 Usually in the field of supervised machine learning, especially when the data set does not 

contain a large number of data points, it is common to split the data set into training (80% of 

total, 16% cross validation set, five-fold cross validation in training data) and test sets (20% of 

total). The 80:20 ratio works well in most cases, but we wanted to test whether the RF models 

can achieve a similar accuracy with a smaller training set. Table. s2 shows the accuracy result 

from RF models based on the original and uniform GARF data base trained on data sets of 

differing sizes. Fig. 6 is the corresponding plot obtained using the data of Table. s2. The blue 

and orange lines in Fig. 6 represent the performance of RF models based on the original and 

uniform GARF database, respectively. Both lines show that by increasing the size of the training 

set, the accuracy of RF models generally increased. Accuracy values converge with training sets 

>60% and the RF models based on the original and uniform GARF potential have the same 

trend.  

 



 

Fig. 6 Accuracy trend from RF models based on original(blue line) and uniform(orange line) 

GARF data sets. 

      

Conclusions 

 In this work, we constructed RF models on unbalanced data sets utilizing the 

‘comparison’ concept to identify native protein-ligand poses. Using RF, the GARF potential 

database was refined by assigning different importance factors to each atom pair in that potential. 

The resultant RF models were tested on a well-known protein-ligand decoy set, CASF-2013,5 

which includes decoy structures generated from three docking packages using different docking 

algorithms. The results suggest that our RF models outperformed other scoring functions on 

accuracy and native binding pose selection. By including comparisons between the best decoy 

pose and the remaining decoy pose structures, the RMSD value of the best decoy was reduced. 

We also tested the importance of GARF in creating the corresponding RF models. The use of a 



scrambled GARF probability function to build a RF model provided evidence for the 

significance of the GARF potential, while the uniform GARF potential indicated that peak 

position (or the well position) is most relevant in building a RF model. Finally, we tested the 

influence of training set size, which showed that the accuracy converged when ~60% of the data 

set was used in building the RF model. Overall, we showed that potential function based RF 

models perform at a high level when identifying a native pose from a collection of decoys.  
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