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Abstract

We present a low-cost, virtual high-throughput materials design workflow and use

it to identify earth-abundant materials for solar energy applications from the quater-

nary oxide chemical space. A statistical model that predicts bandgap from chemical

composition is built using supervised machine learning. The trained model forms the

first in a hierarchy of screening steps. An ionic substitution algorithm is used to assign

crystal structures, and an oxidation state probability model is used to discard unlikely

chemistries. We demonstrate the utility of this process for screening over 1 million

oxide compositions. We find that, despite the di�culties inherent to identifying stable

multi-component inorganic materials, several compounds produced by our workflow

are calculated to be thermodynamically stable or metastable and have desirable op-

toelectronic properties according to first-principles calculations. The predicted oxides
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are Li2MnSiO5, MnAg(SeO3)2 and two polymorphs of MnCdGe2O6, all four of which

are found to have direct electronic bandgaps in the visible range of the solar spectrum.

Introduction

The past decade has seen the construction of extensive databases for computed materi-

als properties from quantum mechanical calculations.1–6 These databases have enabled the

virtual screening of thousands of compounds for new target properties in the fields of pho-

tovoltaics,7–9 solar fuels,10–14 thermoelectrics,15–17 and others.18,19 They are also facilitating

the move towards predictive materials design using data-mining and machine learning (ML).

A growing infrastructure of ML tools has enabled its application to complex problems across

many areas of molecular and materials science.20 This includes building models that relate

readily-available descriptors to desirable properties including bandgap,21–24 thermodynamic

stability,25–27 thermal transport properties28,29 and the probability for crystal structure types

to form.30,31 These approaches constitute computationally a↵ordable ways to explore the

vast chemical space that is otherwise intractable to high-throughput first-principles compu-

tation.32

While the development of more advanced statistical techniques for chemical and materi-

als science continues,33 it is already possible to add ML models to the list of tools that can

be used in materials design workflows. In this paper, we present a virtual high-throughput

screening process in which ML joins the ranks of other data-driven models and density func-

tional theory (DFT) calculations to constitute a hierarchy of filtering stages. The overall

workflow is capable of translating from a compositional search space of over 1 million qua-

ternary oxides (AwBxCyOz) to compounds predicted to have target optoelectronic properties

by explicit quantum-mechanics calculations.

Our workflow consists of five steps. In the first, which deals with the largest number of

configurations, an ML model is used to screen for compositions predicted to have a bandgap
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within a window for potential applications for solar energy conversion. The next stage of

filtering, illustrated in Figure 1, combines multiple low-cost data-driven approaches to fur-

ther reduce the search space. We make use of the Herfidahl Hirschman Index of Resource

Availability (HHIR)34 to focus on the most sustainable element compositions. Two estab-

lished models are used to assign high-ranking compositions to likely crystal structures,35

then assess the feasibility of these new compounds in terms of oxidation states.36 Finally,

automated electronic structure calculations are carried out in order to accurately predict the

thermodynamic stability and bandgap of candidate materials. We demonstrate the overall

process by screening 1.1 million quaternary oxide compositions to identify four new com-

pounds with suitable bandgaps for solar energy applications comprising of earth-abundant

elements. These data-driven approaches are used to drastically reduce the required compu-

tational resources compared to a brute-force first-principles investigation.

Step 1: Machine learning model of oxide bandgaps

Supervised ML can be used to build statistical models that relate input values (features)

to target values (labels) for a set of training samples. These models can then be used

predictively given new data. There exists a wide variety of supervised ML approaches,

many of which are being applied to numerous problems relating to first-principles materials

modelling.20 We now provide a brief outline of the key concepts and training procedure

needed to build a gradient boosting regression (GBR) model, which is employed in this

work to predict bandgaps from chemical compositions. The GBR model is trained and

subsequently applied using the scikit-learn Python library.39

Model structure

In GBR, an ensemble of individual weak learners (usually decision trees) is used. By weak

learners, we mean that each individual learner has poor predictive power if applied in iso-
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Figure 1: Computer-aided design workflow: Data from the Computational Materials Repos-
itory (CMR) database is used in conjunction with Matminer37 to construct a gradient
boosting regression (GBR) model (step 1), which is then used as a bandgap filter (step
2). Compositions are ranked using the Herfindahl Hirschman Index (HHIR),34 appropriate
structures generated with a structure substitution algorithm,38 and a probabilistic oxida-
tion state model filters out unlikely species combinations (step 3). Thermodynamic stability
(step 4) and bandgaps (step 5) are calculated from first-principles using semi-local density
functional theory (DFT) and non-local hybrid DFT.

lation. When building decision trees, the goal is to predict the value of sample labels by

learning simple decision rules from the sample features. Individual trees are constructed us-

ing the classification and regression trees (CART) algorithm.40 In brief, for a given node of

a decision tree (Figure 2a), the sample space is split into two parts that are as homogeneous

as possible according to their labels. A decision rule involving one of the sample features is

selected to best achieve this goal, i.e. to minimise the impurity of the node. This process is

carried out recursively until some stopping criteria is met. For regression, the mean value

of the ground truth labels at a given leaf node is taken as the prediction of the model for
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samples at that node.

Figure 2: Schematic of the gradient boosting regression (GBR) model. a) A decision tree
splits the sample space recursively at nodes based on feature values, grouping samples into
leaf nodes. b) Multiple decision trees are constructed during the GBR process with each
consecutive tree trained on the residuals of the existing model, minimising the root mean
squared error (RMSE).

One problem with decision trees – and indeed the reason that they fall into the category

of weak learners – is that by splitting the sample space on the basis of one feature at each

node, they fail to include predictive power from multiple, overlapping regions of feature space.

As such, decision trees of a small depth tend to ignore valuable information from unused

features, while those of a large depth are likely to be fit to random noise in the dataset. This

shortcoming is countered within GBR by constructing multiple decision trees sequentially.

As depicted in Figure 2b, the overall model is built by adding trees in a forward, stagewise

fashion with each consecutive tree trained not on the sample labels, but on the residuals of

the current model. The result is that each consecutive tree can consider the whole sample

space and serves to improve the overall performance of the model by minimizing a chosen
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loss function, in this case the root-mean-squared-error (RMSE).

Data representation

The target property that we wish to predict is the bandgap calculated using the GLLB-sc

functional,41 which has been shown to give more reliable estimations of bandgap than semi-

local DFT functionals that operate within the generalised-gradient approximation (GGA).11

The bandgap values produced by Castelli et al. are used as a training set,13 and are available

from the Computational Materials Repository (CMR) database.3 This set is comprised of

2,289 inorganic materials, 799 of which are oxides (i.e. contain oxygen and at least one other

element), which is used as training data.

The compositions of the materials are represented using the element properties from the

Magpie package.42 The features used are the minimum, maximum, range, mean, mode and

mean absolute deviation (MAD) of atomic number, Mendeleev number, atomic mass, melting

temperature, electronegativity, among others (see Supplementary Information of Ref. 42 for

the full list). In addition, we use the number of valence electrons, elemental frontier orbital

energies calculated from neutral atoms with DFT, and the bandgap center position calculated

using the geometric mean of electronegativities as demonstrated by Nethercot.43 All of the

149 features are generated using the Matminer Python library.37

Model training

While the model parameters are set automatically during the learning process as described

above, several key hyperparameters must be chosen at the start. For GBR, as well as the self-

explanatory tree-specific hyperparameters, there are three key boosting parameters (Table 1).

The fraction of compounds to fit each tree dictates the maximum number of samples in the

training set that any individual tree can use, introducing some level of diversity into the

ensemble, which helps to mitigate against overfitting. The number of decision trees and

learning rate refer to the number of boosting stages used in the final ensemble and the factor
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by which the contribution of each new tree is multiplied, respectively. The overall model is

given by

F (x) =
MX

m=1

�mhm(x) (1)

where M is the total number of decision trees, hm(x) are the individual trees and �m is the

learning rate.

The total error in ML approaches comes from a combination of bias, variance, and ir-

reducible errors. Gradient boosting reduces bias of individual trees, but runs the risk of

increasing the variance (error from sensitivity to noise in the training data). Upon changing

a given hyperparameter, it is crucial to check how the model performs on unseen data, even

if the fit to the training data appears to be improving (see Figure 3). Each time a model is

built using a trial set of hyperparameters, 10-fold cross validation (CV) is performed whereby

the model is trained on 90% of the data, then tested on the remaining 10%. This process

is repeated such that every 10% chunk of data is used for testing, then the mean RMSE is

calculated.

Optimal hyperparameter values for this GBR model were found by Bayesian optimisation

and are listed in Table 1. This was achieved using the scikit-optimize Python library,44

and involves approximating the model using Gaussian processes. The next set of hyper-

parameters to trial is chosen by an acquisition function over the Gaussian prior, which is

cheaper to evaluate than the model itself. A more detailed explanation of this approach can

be found in Ref. 45. Using these parameters, as well as removing oxide gases such as CO2

and SO2, and complex anions containing uncommon oxidation states such as phosphites and

perphosphates, yields a final model with an RMSE of 0.95 eV.

Finally, it might be assumed that the correlation between bandgap calculated using GGA

exchange-correlation functionals, which tend to be consistently underestimated, and that cal-

culated using GLLB-sc could be high enough to use predicatively. If this were the case, a ML

model could be trained using a larger database, such as the Materials Project (MP), which

contains ⇠86,000 inorganic structures with bandgaps calculated using the PBE functional.46
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Figure 3: E↵ect of the number of decision trees (boosting stages) on model performance
for bandgap prediction. At a certain threshold (⇠1000), increasing the number of trees in
the model ceases to improve its performance on unseen test data, even though it appears to
better fit the training data.

We find that while the expected linear relationship is observed between bandgaps calculated

using PBE and GLLB-sc, there is significant deviation from the relationship, and that this is

larger in general for oxides (see Figure S1 in the Supplementary Information). The standard

deviation is 0.85 eV, thus for a two-step approach to be advantageous, the RMSE of the

model trained on the large dataset of PBE bandgaps would have to be unreasonably low (<

0.1 eV).

Model performance and limitations

Features representing the crystal structures of inorganic compounds to ML algorithms are the

subject of much recent development.47–50 The use of such features has been shown to improve

the predicted properties of inorganic solids beyond compositional representations alone. As

such, the accuracy of our model is limited because atomic connectivity is not accounted for.

This e↵ect is particularly prevalent for oxides, as their structural diversity results in a wide
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Table 1: Hyperparameter values used in final GBR model for oxide bandgap prediction.

Tree-specific parameters

Min. compounds needed to split nodes 65

Max. depth of tree 20

Min. compounds required at leaf nodes 1

Max. features considered per tree 86

Boosting parameters

Fraction of compounds to fit each tree 0.9

Learning rate 0.01

Number of decision trees 1000

variety of local bonding arrangements. We have quantified this phenomenon by showing

that the unscreened Madelung site potential of the oxide anion – a quantity that reflects

the electrostatic potential of an ion in a crystal by approximating ions as point charges –

varies across all binary metal oxides with a striking range of 16 V.51 The distribution of the

maximum (PBE) bandgap di↵erence between polymorphs for all oxide compositions in the

MP database is shown in Figure 4. While for a large number of oxides, polymorphism results

in a bandgap di↵erence of < 0.5 eV, the di↵erence can be as large as 4.18 eV (e.g. LiFePO4)

and the mean di↵erence is 0.57 eV. This highlights the extent to which crystal structure

plays a role in dictating bandgap, and a model that considers chemical composition alone

can only be used as a pre-screening filter. In this context, a composition-only model with

an RMSE of 0.95 eV is reasonable.

It is also instructive to compare this approach to existing heuristic methods. For example,

the solid state energy (SSE) scale,52,53 derived from the relationship between electron a�nity

(EA) and ionization potential (IP) and bandgap for a selection of binary closed-shell inorganic

semiconductors and insulators, can be used to estimate bandgaps for new compounds.54 The

SSE has knowledge only of the EA and IP values of the constituent cations and anions,

respectively. The range and standard deviation of IP values for the 56 binary oxides used in

the construction of the SSE model are 4.9 eV and 1.44 eV, respectively, giving O the largest

associated uncertainty of all the anions featured. For this reason, there is no correlation

between the bandgap predicted using the SSE scale and the GLLB-sc bandgap of the 799
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oxides in the training dataset (see Figure S2). By taking into account more information

about the constituent elements, the GBR model we developed is able to predict bandgaps

to a higher level of accuracy.

Figure 4: Distribution of maximum bandgap di↵erence between polymorphs for oxides in
the Materials Project database that exhibit polymorphism. Only compounds with an energy
above the convex hull of < 0.1 eV and a maximum bandgap di↵erence of > 0.05 eV are
included. Bandgaps are calculated in the Materials Project using the GGA-PBE functional.

Finally, we can inspect which features are most important in the final GBR model using

the decrease impurity method.40 Figure 5 shows the mean absolute deviation (MAD) of

covalent radius is the most important feature. The mean value for volume per atom and

MAD of melting temperature are also relatively important. The extent to which this can be

interpreted as meaningful depends on how highly correlated the features are. For example,

covalent radius and volume per atom are strongly correlated, which makes it harder to
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decouple their contributions to the overall model. In general, a number of features contribute

significantly to the final model. Investigation into the e↵ect of systematically removing

correlated features, and retraining the model, is an avenue for further study and a means of

extracting physically-intuitive relationships.

Figure 5: Relative importance of the 20 most important features in the final gradient boosting
regression model. HOMO and LUMO energies refer highest occupied and lowest unoccu-
pied molecular orbital energy as calculated within DFT, respectively, (taken directly from
the Matminer Python library). Ionic character refers to Pauling’s empirical ionic character
between pairs of atoms calculated using electronegativities.55

Step 2: Bandgap filter

We now use the trained GBR model to search for promising candidates from a large search

space. A pool of 1.1 million hypothetical quaternary oxide compositions was generated using

the SMACT Python library, implementing the heuristic chemical rules employed in that code.32

The target bandgap window of 1.0–2.5 eV will capture a wide range of photoactive materials.

Smaller gaps may be more suitable for single-junction photovoltaic applications, while wider

gaps could be used in tandem systems or solar fuel processes.56,57

The distribution of errors obtained using the GBR model is shown in Figure 6a. Materials
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predicted to have a bandgap at the centre of the target window (1.75 eV) have a 60%

probability of having a GLLB-sc bandgap within the window. In contrast, Figure 6b shows

the distribution of bandgaps of all oxides in the CMR dataset and the probability of choosing

one at random with a bandgap in the target window is just 8%. We filter the 1.1 million

candidates that do not have a predicted bandgap of 1.75 ± 0.02 eV, leaving 17,833 viable

compositions. This approach does not aim to capture all the hypothetical compositions that

fall between within the target bandgap window. Rather, those compositions that are most

likely to have useful bandgaps according to the GBR model are targeted. This screening

step corresponds to a greater than 60-fold reduction of the search space.

Figure 6: a) Distribution of error in predicted bandgap by the trained GBR model. The
shaded region corresponds to an error of ± 0.75 eV and encloses 60% of all predictions.
b) Distribution of GLLB-sc bandgaps for oxides in the CMR training dataset. The shaded
region corresponds to a bandgap of 1.75 ± 0.75 eV.
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Step 3: Crystal structure assignment

The surviving 17,833 compositions are ranked by sustainability using the HHIR scale.34

Starting with the most sustainable composition, chemically plausible quaternary oxide crys-

tal structures are constructed using the structure substitution algorithm developed by Hau-

tier and coworkers.38 For each predicted structure, an oxidation state probability model54

is applied as an additional filter, to check that the combination of ions in that structure

is chemically plausible. A low probability threshold of 0.005 is used so only very unlikely

species combinations are eliminated. We also choose to eliminate Ti3+ compounds due to

the d1 electronic configuration being linked to fast electron-hole recombination for solar

applications. This procedure was repeated until 235 candidate materials were generated,

corresponding to 61 unique chemical compositions. This pool is small enough to allow for

explicit first-principles calculations, and we take these candidate materials forward to calcu-

late their thermodynamic stability.

Step 4: Thermodynamic stability

Competing phases are identified using the chemical potentials from the MP database. Then

full geometry optimization is carried out on candidate compounds and all competing phases

using DFT at the GGA (PBEsol) level, with equivalent computational setup. This is done

in high-throughput using the Atomate58 and Fireworks59 Python libraries. The DFT total

energies are used to determine thermodynamic stability via the distance from the 3D convex

hull of the quaternary phase diagram.

Of the 235 compounds, 27 are calculated to be within the predefined metastability window

of 100 meV/atom of the convex hull. Four of the 27 compounds were found to be structurally

identical to one other compound in the set, leaving 23 unique compounds, corresponding to

8 distinct compositions. The presence of identical structures can occur when di↵erent parent

structures are found for one composition using the structure substitution algorithm, which
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then ultimately yield the same crystal structure following geometry optimisation.

The relatively small proportion of stable and metastable compounds is unsurprising given

the existence of a large number of stable binary and ternary oxides that act as competing

phases. The energies above the convex hull for all 23 compounds are given in Table S1.

Only one compound, Li2MnSiO5, has been previously reported in the MP database, but has

not been synthesised experimentally to the authors’ knowledge. Shown in Figure 7a, the

compound ZrMnSi2O7 is the only one predicted to be thermodynamically stable, while a

second polymorph of ZrMnSi2O7 along with a Li2TiMnO4 structure are predicted to be <

10 meV/atom above the convex hull, as shown in Figure 7b and Figure 7c, respectively.

While three polymorphs of Li2TiMnO4 are in the MP database, including one that has

been investigated as a possible active material for Li-ion battery applications,60 none of

the crystal structures adopted by the candidate compounds have previously been reported.

The new phase of Li2TiMnO4 di↵ers from the three previously reported polymorphs as the

metals are in tetrahedral environments as opposed to octahedral. It also has a wide electronic

bandgap of 4.21 eV, as calculated using a hybrid DFT functional in the following section,

whereas the previously reported compounds all have PBE-calculated bandgaps of less than

0.4 eV. To the best of our knowledge, no compounds have previously been reported for any

of the other 7 compositions.

Table 2: Summary of compounds found to have (predicted HSE06/DFT) bandgaps that fall
within the target window of 1.0–2.5 eV.

Formula Spacegroup Ehull

(meV/atom)

Bandgap

(eV)

Li2MnSiO5 P4/nmm 86 2.24

MnCdGe2O6 P21/c 99 2.47

MnCdGe2O6 C2/c 99 1.76

MnAg(SeO3)2 Pna21 36 2.31

14



Figure 7: Three most stable compounds identified by the workflow. a) and b) are di↵erent
polymorphs of ZrMnSi2O7 in which Si, Zr and Mn atoms are depicted as blue, green and
purple circles, respectively. c) A Li2TiMnO4 structure in which Li, Ti and Mn atoms are
depicted as green, blue and purple circles, respectively. O atoms are red circles in all three
structures.
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Figure 8: The most stable compound identified by the high-throughput workflow with a
bandgap within the target window, MnAg(SeO3)2. Mn, Ag, Se and O atoms are depicted as
purple, silver, green and red circles, respectively.

Step 5: Electronic structure

The electronic structure of the 23 remaining candidate compounds were calculated with the

HSE06 hybrid functional.61,62 While being more computationally demanding, this approach

yield more accurate electronic structure information that what is available in current materi-

als databases. The majority of compounds have a calculated bandgap of > 4 eV, which is well

outside the target bandgap window (see Table S1). Four of the compounds are calculated

to have bandgaps within the target window and are listed in Table 2. The most thermody-

namically stable compound with a bandgap within the target window is MnAg(SeO3)2 and

is shown in Figure 8.

Encouragingly, the four compounds with useful bandgaps include three di↵erent compo-

sitions. Since the original GBR model is trained on composition alone, this indicates a coarse

37.5% success rate. While the success rate is not as high as the original 60% as indicated

by the 10-fold CV results, the latter should be considered a maximum achievable success

rate when using this model predictively. Cross validation can give some indication of model

performance, but there are limited options to glean further insight before applying the model

predictively where existing data is scarce.

Crucially, this study represents a small sample size making it impossible to draw strong

conclusions. Qualitatively, it promising that we have identified four candidate compounds
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using only 235 first-principles calculations, given the “needle in a haystack” nature of the

problem. Without using the data-driven screening stages, computationally prohibitive struc-

ture optimization calculations would have been required for each of the top compositions

suggested by the ML model. The overall virtual high-throughput screening process con-

stitutes a multi-objective optimization, in which bandgap, sustainability and stability are

all targeted sequentially (see Figure 1). The latter of these, stability, is likely to be a sig-

nificant bottleneck for any screening of quaternary materials as compared with binary or

ternary phases, given the expected lower stability window due to an increase in possible

decomposition pathways.

Finally, the model was trained on bandgaps calculated using the GLLB-sc functional,

whereas the bandgaps of the new compounds are calculated using the HSE06 functional.

In the original work by Castelli et al. in which they calculate the bandgaps used here for

training data, they show that bandgaps calculated using HSE06 and GLLB-sc are generally

in good agreement.13 However, they also show that for smaller bandgaps such as those

considered here, the GLLB-sc functional has a tendency to underestimated as compared with

the HSE06 functional. This could be another reason for getting a lower success rate and

would also explain why no compounds had bandgaps calculated using HSE06 smaller than

the target window (< 1.0 eV). The availability of a comprehensive database with electronic

and thermodynamic properties of materials at a consistent high-level of theory would greatly

benefit the training of ML models and future data-driven studies.

Conclusion

We outlined a multi-stage computational procedure to reduce a chemical space of over 1

million compositions to 4 target compounds using a combination of techniques and chemical

filters. The majority of the study has been performed on a single-processor workstation. A

GBR model was trained to predict bandgaps for quaternary oxide compositions. This model

17



is shown to outperform established chemical heuristics for ability to predict bandgap and

allows for a 60-fold reduction of the initial search space, with an order of magnitude better

chance of identifying suitable compounds compared to random filtering. Additional screening

based on sustainability, oxidation state combinations, and thermodynamic stability was used,

before performing high-quality electronic structure calculations on a pool of 23 candidate

materials. Finally, we identified four new quaternary oxides not previously reported or

explored for solar energy applications. The workflow that we present here can be a blueprint

for using a combination of machine learning and first-principles calculations to allow e�cient,

targeted screening of the vast chemical structure-composition hyperspace.

Computational Methods

Full information on the workflow is available in Supporting Information. It makes use of

the Python libraries SMACT,32 Pymatgen,63 Matminer,37 Scikit-learn,39 Atomate,58 and

Fireworks.59

Electronic structure caluclations

First-principles calculations are carried out using Kohn-Sham DFT with a projector-augmented

plane wave basis64 as implemented in the Vienna Ab-initio Simulation Package (VASP).65,66

We use the PBEsol exchange-correlation functional67 and a k-point grid is generated for each

calculation with a density of 120 Å3 in the reciprocal lattice. The kinetic-energy cut-o↵ is

set at 600 eV and the forces on each atom minimised to below 0.005 eVÅ�1.

Semi-local exchange-correlation treatments such as the PBEsol functional provide an

accurate description of crystal structures but tend to underestimate the electronic bandgaps

of semiconductors. To overcome this issue, more accurate electronic structure calculations

are performed using the hybrid non-local functional HSE06,62 which includes 25% screened

Hartree-Fock exact exchange. �-centred homogeneous k-point grids are used with a density
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of 64 Å3 in the reciprocal lattice and the kinetic energy cuto↵ is set at 520 eV.
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Figure S1: PBE calculated bandgap vs GLLB-sc calculated bandgap for the materials in
the database used to train the GBR model. The GLLB-sc values are those taken from the
Computational Materials Respository (CMR) while the PBE bandgaps are taken from the
Materials Project database.
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Figure S2: Predictive power of the GBR model (a) and the SSE approach (b) for predicting
GLLB-sc bandgaps of the materials in the dataset used to train the GBR model. The values
shown in a) relate to estimates from 10-fold cross validation, whereby the predicted bandgaps
shown are for each compound when in the 10% of data not used to train the model. The
values in b) relate to the bandgap from the limiting SSEs, i.e., the di↵erence between the
lowest cation SSE and highest anion SSE.
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Table S1: Summary of most stable compounds found after high-throughput DFT calcula-
tions. Bandgaps calculated with hybrid DFT that fall within the target window of 1.0 – 2.5
eV are shown in bold.

Number Formula spacegroup

symbol

Ehull

(meV/atom)

Bandgap

(eV)

1 MgFe(SO4)2 P21/m 99 4.07

2 MgFe(SO4)2 C2/m 11 4.15

3 Li2MnSiO5 P4/nmm 86 2.24
4 MnCd(GeO3)2 P21/c 99 2.47
5 MnCd(GeO3)2 C2/c 99 1.76
6 ZrMnSi2O7 C2 0 4.64

7 ZrMnSi2O7 P-1 40 4.32

8 ZrMnSi2O7 P-1 72 3.95

9 ZrMnSi2O7 P21/m 3 4.33

10 ZrMnSi2O7 P21/c 39 4.40

11 ZrMnSi2O7 P21/c 36 5.12

12 Na2YFeO4 Pc 79 4.27

13 Na2YFeO4 Pmn21 90 4.33

14 MnAg(SeO3)2 Pna21 36 2.31
15 Li2TiMnO4 P21/c 38 4.10

16 Li2TiMnO4 I-42m 96 4.05

17 Li2TiMnO4 Pna21 40 4.19

18 Li2TiMnO4 Pmn21 11 4.23

19 Li2TiMnO4 Pnma 4 4.21

20 Li2TiMnO4 P21/c 31 4.58

21 Li2TiMnO4 Pnma 60 4.05

22 NaCaFeO3 Pna21 61 3.73

23 NaCaFeO3 P21/c 60 2.87
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