
Chemical Reaction Stoichiometry: A Key Link

between Thermodynamics and Kinetics, and an

Excel Implementation

Leslie Glasser† and William R. Smith∗,‡,¶,§

†Curtin Institute for Computation, Discipline of Chemistry, Curtin University, GPO Box

U1987, Perth WA 6845, Australia

‡Department of Mathematics and Statistics, University of Guelph, Guelph ON N1G 2W1,

Canada

¶Department of Chemical Engineering, University of Waterloo, Waterloo ON N2L 3G1,

Canada

§Faculty of Science, University of Ontario Institute of Technology, Oshawa ON L1H 7K4,

Canada

E-mail: bilsmith@uoguelph.ca;l.glasser@curtin.edu.au

*Corresponding author

Keywords:Upper–Division Undergraduate; Physical Chemistry; Computer-Based Learning;

Equilibrium, Chemical Kinetics, Chemical Thermodynamics, Mathematics/Symbolic Math-

ematics

1



Abstract

Various special methods are generally taught for the construction of stoichiometric

equations for simple reacting systems, including inspection, oxidation–reduction, and

ion–electron approaches, which typically fall under the topic of “balancing a chemical

equation”. However, apart from the simplest cases described by single chemical equa-

tions, only matrix methods can express the Law of Conservation of Mass (LCM) by

generating a set of multiple stoichiometric equations of the appropriate number.

Chemical Reaction Stoichiometry (CRS) represents the Law of Conservation of

Mass (LCM) in the context of chemical reaction, both in and out of its chemical equi-

librium state; it may be expressed as a set of linear equations involving the conservation

of mass, of chemical elements, or of another appropriate quantity, for example chem-

ical moieties or genetic units. CRS expresses this information in terms of a set of

stoichiometric equations, which are equivalent representations of the LCM and have

the appearance of, but are distinct from, actual chemical reaction mechanisms. These

equations may be determined by algorithms implemented in symbolic mathematics pro-

grams or by purpose-specific computer programs. In order to provide a more generally

accessible means of implementing the matrix method, we provide a Microsoft Excel

implementation, XSTOICH, as a Supplementary file that contains many examples.

After first briefly reviewing the matrix method for the standard case based on

a set of chemical species and their molecular formulae, we show how to incorporate

complications arising from stoichiometric restrictions such as those imposed by a kinetic

model of the system. The need for background mathematical knowledge is avoided

by the provision of simple worked motivating examples in the text. The chemical

motivation for more complex problems is made clear, and their solution is illustrated

by means of the simple input procedures of XSTOICH.
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Introduction

The Law of Conservation of Mass (LCM) is fundamental to chemistry. It applies to all

closed chemical systems as well as to open flow systems (those with both inlets and exits) at

steady state; we refer to both situations as closed systems in the following. The LCM can be

expressed most directly by means of a set of linear equations involving the species amounts,

representing the conservation of the atom types in the system (including the conservation of

electronic charge, which is incorporated by imposing a value of zero for its conserved value).

This is equivalent to requiring that changes in the amounts of the conserved quantities which

accompany arbitrary changes in the species amounts from a given composition must always

be zero. The LCM may equivalently be expressed in the form of “chemical equations”,

which have the appearance of, but are distinct from, actual chemical reaction mechanisms.

Chemical Reaction Stoichiometry (CRS) is the study of the inter-relationships between the

two expressions of the LCM. Although these inter-relationships can provide insights into the

underlying chemical phenomena, the topic is not a component of traditional undergraduate

chemistry pedagogy, in spite of the fact that it is based on the use of relatively simple

mathematical manipulations.

In undergraduate chemistry education, reaction kinetics and equilibrium thermodynamics

are two important topics, traditionally taught as separate subjects. However, they share the

common link of the LCM. Not only must the overall reaction conserve mass, but each reaction

that appears in a chemical kinetic description of a system must individually satisfy the LCM.

The topics are further connected by the fact that reaction processes in a closed system under

a given set of overall thermodynamic conditions (for example, specified temperature and

pressure) evolve with time towards a unique chemical equilibrium composition. Although

the details of a system’s reaction mechanism and its kinetic description may be exceedingly

complex or, indeed, even unknown, the equilibrium composition itself is independent of such

considerations, and is determined by the global minimum of the system’s Gibbs function.

Thus, the calculation of chemical reaction equilibrium requires only species reference state
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Gibbs energy information in conjunction with the specification of the LCM for the system and

an appropriate chemical potential model. This also means that the limiting compositional

state of any chemical kinetic model for such systems must coincide with the equilibrium

composition. In addition, a link may be made from a chemical kinetic model to its implied

LCM conservation equations using the concepts of Chemical Reaction Stoichiometry (CRS).

For the aforementioned reasons we believe that a focus on the pedagogical treatment

of the topic of CRS itself would serve to unify the treatment of chemical equilibrium and

of chemical kinetics within the field of chemistry and, by avoiding its duplication in each,

provide a more efficient pedagogical approach to both topics. We also note in passing the

increasing importance of CRS concepts in systems biology,1,2 providing an additional field

that could benefit from a common treatment of the topic.

The commonest pedagogical application of the LCM in a system undergoing chemical

change has been the calculation of the chemical equilibrium in closed systems, for which the

LCM may be expressed in terms of sets of equations that have the superficial appearance of

describing actual chemical reaction processes. This emphasis, and traditional applications

to relatively simple systems that require only a single such equation, have both obscured

their basic purpose and led to the teaching of a myriad of methods for “balancing a chem-

ical equation”, including “inspection”, simple algebra,3 the oxidation number method4 and

the half-reaction (or ion-electron) method.5 Only the matrix method,6 which we herein dis-

cuss, can be extended to the ubiquitous case of multi-reaction systems. This approach also

addresses the core task of determining the appropriate number, R, of independent chemi-

cal equations that are required to implement the LCM; this number is a crucial aspect of

chemical equilibrium problems.

The importance of chemical reaction stoichiometry (CRS) has been explored by one of

us in many articles6–11 and a website12 that have advocated for an increased emphasis on

the LCM itself and its application to both chemical reaction equilibrium and to chemical

reaction kinetics. Software to implement the general matrix method for the LCM was first
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published in the 1982 textbook of Smith and Missen,6 and later (1989) by Missen and Smith8

in the form of a BASIC program to generate a maximal set of chemical equations from the

system’s formula matrix. To the best of our knowledge, no other generally available current

software provides this universality. However, in order to run the BASIC program in current

Windows, Mac and Linux computers, it is necessary to install an emulator13 which makes

the program unacceptable for general use. The method was later coded as a web–based Java

Applet, JSTOICH.14 However, current security considerations mean that Java Applets are

no longer accessible through web browsers, except under special circumstances.15,16

The purpose of this paper is to briefly describe the matrix method for CRS and to present

its implementation in Microsoft VBA Excel, which is rather widely available and not subject

to browser restrictions. The Excel program is made available as a supplement, XSTOICH,

to this manuscript. Examples of its use are illustrated in the paper.

Although CRS is based upon the mathematics of sets of linear algebraic equations, the

need for background knowledge in this area is avoided by the consideration of very simple

worked examples, which are easily understood by first-year chemistry students. The chemical

motivation for more complex problems is explained clearly, and their implementation is

illustrated by simple input entries to XSTOICH.

The paper is organized as follows. In the next section, we briefly review the matrix

method for the determination of a set of chemical equations consistent with the most general

form of the LCM that arises when the set of species chemical formulae is specified. We

proceed from the simple case of a one-equation system to the general case of multiple chemical

equations, demonstrated in XSTOICH on examples. The subsequent section discusses the

use of XSTOICH to consider less well-known LCM situations, in which restrictions are

placed on its general form. These may arise either from explicit restrictions on the element

conservation equations over and above the conservation of the elements, or from implicit

restrictions arising from a specified set of chemical equations. In both cases, the restrictions

must correspond to experimental observations.
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The Matrix Method for a One–Reaction System

CRS implements the law of the conservation of mass (LCM) in a closed chemical system

undergoing chemical change. It expresses the conservation of appropriate entities such as

atomic elements, electronic charge, quantities such as group moieties in biological processes

being transferred between molecules,17 and the transfer of genetic information,1,2 all of which

will henceforth be referred to as “elements”. The LCM is expressed in terms of the set of

homogeneous linear algebraic equations arising from the requirement that changes in the

species amounts must result in a net zero change in the amount of each conserved element in

the system. This may be represented by a system of homogenous linear equations involving

the changes in the species amounts (thus having their right sides equal to zero) and treated by

the methods of linear algebra, most conveniently by the use of simple matrix manipulations.

The matrix method can be most straightforwardly derived by stating that there is zero

change in the amount of each chemical element for any set of changes in the molar amounts

of the chemical species involved in a closed system. In the case of a single-reaction system,

this is the principle underlying the familiar “ICE method”18,19 used in solving a chemical

equilibrium problem involving a single reaction.

As an initial simple example, consider the system of coal (in the form of solid carbon),

steam and synthesis gas (C(s),H2O,CO,H2). The 3×4 system formula matrix, A, is shown in

Fig. 1(a), where the numbers under the chemical formulae in the column headings represent

the numbers of atoms per molecule of the type labelled at the left of the corresponding row;

for example, a molecule of H2O consists of two H atoms, one O atom and zero C atoms.

A represents the formula matrix of the system of N = 4 species (heading the columns),

requiring M = 3 linear equations (represented by the rows) involving arbitrary mole number

changes, whose right sides are set to zero to indicate that the amount of each element is

conserved.

A maximal set of independent solutions of these equations can be found by a standard

Gauss-Jordan elimination process20 implemented in XSTOICH, of generating the diagonal
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Row-Reduced Echelon Form (RREF) of A, labelled as the matrix, A∗, containing a leading

3×3 unit matrix, as depicted in Fig. 1(b). The RREF procedure consists of considering each

row in turn, and adding (positive or negative) multiples of rows together, (“swapping” of rows

is a special case of this), so as to produce a “1” in the column corresponding to the row and

zeros in all other rows of that column. (This process may usefully be followed interactively

and step-by-step on the RESHISH Matrix Calculator website21) At the termination of this

process, the final column of the RREF matrix in Fig. 1(b) is a solution stoichiometric vector,

ν, which may be interpreted as the relationship of the formula vector of the single “non-

component species” listed in the header to the formula vectors of each of the prior header

species (termed the “component species”) with their corresponding unit vectors beneath

them, in sequence, thus:

1×


2

0

0

 = 1×


2

1

0

+ 1×


0

0

1

− 1×


0

1

1

 (1)

or, replacing the formula vectors by their chemical names

1× H2 = 1× H2O + 1× C(s) –1× CO (2)

which re-arranges to the more familiar chemical equation

C(s) + H2O = CO + H2 (3)

In general, the A∗ matrix is comprised of a leading unit matrix of dimension C followed

by a C×R stoichiometric matrix (a 3×1 vector in this case), where C represents the number

of “components species” (or “basis chemical species”) in the system and R represents the

number of noncomponent species which may be produced from the component species by

the R reactions. This example is a very simple one, since it has R = 1; note also that
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Figure 1: (a) 3×4 formula matrix, A, for the system involving coal, steam and synthesis gas
(CO and H2O). (b) A∗, the RREF (Row-Reduced Echelon Form) of A, with the resultant
leading 3 × 3 unit matrix highlighted. Each column is headed by a species name, with
each cell beneath it containing the number of atoms per molecule of the component species
indicated in the corresponding left column. The final column is the stoichiometric vector,
ν, for the (single) reaction producing the “non-component” species noted in its header from
the prior component species. In this case, the number of reactions is R = 1.

C = M in this case. Finally, note that we could have arranged the species columns in any

order and would have arrived at the same resulting Eq. (1) (but the sets of component

species and non-component species would be different). The astute reader will also notice

that R = N − C in this simple example, a result that carries over to the multiple reaction

case. We shall see that the order of the columns affects the nature of the particular set of

reactions that are generated when R is greater than 1.

The Universal Matrix Method (UMM)

Although simple chemical processes may be represented by a single chemical equation, most

realistic cases result in multiple chemical equations. In elementary chemistry, these are some-

times characterised as being “difficult to solve” or having multiple solutions.22 We believe

that this characterization is pedagogically counterproductive since it emphasizes “single–

reaction chemistry” (the notion that all reacting systems can be reduced to a single reaction);
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in fact, every one of the possible “multiple solutions” can be written as a linear combination

of a set of R independent chemical equations. The fundamental task of CRS is to find the

values of C and R and to find a set of R independent chemical equations from the system

formula matrix A. The value of R is unique, but the set of independent chemical equations

is not, with the only requirement being that the equations are “independent”, that is, any

individual equation cannot be obtained by a linear combination of the other members of the

set.

Symbolic algebra programs to perform the necessary matrix manipulations on the formula

matrix are generally expensive and require some familiarity in use, while Microsoft Excel (and

similar programs) are widely available (with some being free of charge) while still requiring

some experience in data manipulation. We therefore introduce XSTOICH, a “universal”

programmed method in Excel to perform the task.6,7,9,12 In this method, the formula matrix

A is transformed as in Fig. 1 by Gauss-Jordan elimination21,23 to a “Row-Reduced Echelon

form” (RREF), resulting in a matrix A∗ consisting of a unit matrix followed by stoichiometric

coefficient vector(s) from which a set of independent stoichiometric equations may be directly

written. Since A∗ is obtained from A by linear combinations of its rows, the matrices satisfy

rank(A∗) = rank(A) (4)

where the rank of a matrix is its number of linearly independent rows or columns. (We

remark that XSTOICH is configured to require the formula matrix A to be entered in its

transposed form, that is, the columns contain the formula vectors.)

As a simple example of a multi–reaction system, consider the partial combustion of

methane to produce synthesis gas, CO and H2, together with CO2 and H2O. The 3 × 6

stoichiometric formula matrix for this system appears in Fig. 2(a). After Gauss–Jordan

elimination, we observe in the RREF matrix A∗ (Fig. 2(b)) that there is a leading 3×3 unit

matrix, followed by three additional columns; rank(A) is readily determined by counting the
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Figure 2: (a) Formula matrix, A, for the partial combustion of methane to produce synthesis
gas, CO and H2, together with CO2 and H2O. (b) A∗, the RREF (Row-Reduced Echelon
Form) of A, with the resultant initial unit matrix highlighted. The final three columns are
the stoichiometric vectors, νj, for the R = 3 stoichiometric equations.

number of 1s in the unit matrix, three in this case. Each of the last three columns is a set

of coefficient vectors (for the non-component species heading that column) corresponding

to the reaction forming one mole of the non-component species from the prior component

species indicated above the unit matrix. Thus, the chemical equation for the species H2O is

1× H2O = 0.5× CH4 + 1×O2 – 0.5× CO2 (5)

Multiplying by 2 and re-arranging, we obtain

CH4 + 2O2 = 2H2O + CO2 (6)

The two remaining column vectors produce the equations

2CO2 = 2CO + O2 (7)

CH4 + O2 = 2H2 + CO2 (8)
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The set of three chemical equations that we have obtained are not unique, and can be

replaced by other sets which are linear combinations of the three equations we have found;

however, the number of three independent stoichiometric equations for this system is unique.

(As an exercise, the reader may re-run this example in the supplied program XSTOICH with

different orderings of species and see what happens.)

Finally, a consequence of the operations used by RREF on A to obtain A∗ is that the

M × N formula matrix A and the N × R stoichiometric matrix ν derived from it by the

RREF procedure satisfy

Aν = 0 (9)

and the ranks of the matrices satisfy

rank(ν) = N − rank(A) (10)

If we let the species formulae stand for their formula vectors in Eq. (9), the equation can

be expressed in the form:

Aν =

(
CH4 O2 CO2 H2O CO H2

)



0.5 0 0.5

1 −0.5 0.5

−0.5 1 −0.5

−1 0 0

0 −1 0

0 0 −1


=

(
0 0 0

)
(11)

where the matrix of numbers is the stoichiometric matrix, constructed from A∗ by appending

the negative of a unit matrix below the right–most part of A∗. The notation in Eq. (11)

follows the usual matrix multiplication rules, where on the left side, the row of species names

is a 1×N (N = 6 in this case) row vector is multiplied into the columns of the N×R (R = 3

in this case) stoichiometric matrix, yielding a 1 × R row vector of linear combinations of
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species names, with each linear combination set equal to the corresponding zero in the row

vector on the right side.

Stoichiometric Restrictions: Explicit and Implicit

A complication arises when constraints are imposed on the reactions undergone by a chemical

system over and above the conservation of the elements; these typically arise either from

experimental observations or are imposed by a kinetic model. When these constraints are

equivalent to specifications of linear combinations of species mole numbers, we call these

constraints “stoichiometric restrictions”.

Stoichiometric restrictions may arise either explicitly or implicitly. In the former case,

one or more additional independent conservation equations on the species mole numbers

are imposed, and the goal is to derive a modified system formula matrix A′ that takes the

restriction(s) into account. A stoichiometric matrix is then derived by the UMM in the usual

way from A′.

A general result from linear algebra20 states that for an arbitrary matrix pair (A,ν ′)

satisfying Eq. (9), their ranks satisfy

rank(ν ′) ≤ N − rank(A) (12)

where N is the number of columns of A. rank(ν ′) is called the number of stoichiometric

degrees of freedom, Fs, which is the number of values of appropriate species mole numbers

(or independent conditions to obtain them) that must be specified in order to determine the

values of the remaining mole numbers (see also Smith and Missen,6 Section 2.4.3). A matrix

pair (A, ν ′) satisfying Eq. (12) as an equality is said to be stoichiometrically compatible.

As noted, the RREF procedure in the implementation of the UMM always produces such

a matrix pair (see Eq. (10)), in which case rank(ν ′) is of maximal rank R for the given A
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matrix, where

R = N − rank(A) (13)

.

In the case of stoichiometric restrictions, the left side of Eq. (12) is strictly less than

the right side and the difference is defined to be the number of stoichiometric restrictions, r,

given by

r = N − rank(A)− rank(ν ′) (14)

Explicit restriction example

An example of an explicit restriction10 occurs for the reaction with potassium permanganate

used in the analytical determination of hydrogen peroxide. Without restrictions, application

of the UMM for this system withN = 7 shows that rank(A)=5, indicating that every possible

reaction is described by a linear combination of the two (Fs = N − rank(A) = 7 − 5 = 2)

stoichiometric equations

6H2SO4 + 4KMnO4 = 5O2 + 6H2O + 4MnSO4 + 2K2SO4 (15)

O2 + 2H2O = 2H2O2 (16)

which allow for KMnO4 and H2O2 to react in any ratio.

However, it is known experimentally that peroxide and permanganate always react in the

fixed ratio of 5/2.24 This can be expressed as the following explicit restriction on their mole

number changes, ∆ni:

2∆n(H2O2) = 5∆n(KMnO4) (17)

This can be expressed by inserting an additional row into the system formula matrix (see

Fig. 3(a)), which represents the revised conservation equations in a matrix A′ with rank

equal to 6. The UMM then gives the single (from Fs = N − rank(A′) = 7−6) stoichiometric
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equation

2KMnO4 + 5H2O2 + 3H2SO4 = K2SO4 + 2MnSO4 + 8H2O + 5O2 (18)

as indicated in Fig. 3(b), corresponding to the indicated stoichiometric matrix (a vector in

this case), ν ′ of rank 1.

This system thus exhibits one stoichiometric restriction, from Eq. (14):

r = N − rank(A)− rank(ν ′) = 7− 5− 1 (19)

Figure 3: (a) Modified formula matrix A′ for the reaction between H2O2 and KMnO4, with
the final added constraint row representing the 5/2 relation between the molar amounts of
H2O2 and KMnO4. (b) The RREF reduction of A′ to its RREF A′∗, with the highlighted
leading unit matrix followed by the single stoichiometric vector, ν ′, in the final column.
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Implicit restriction example

We have seen that in the absence of restrictions, Eq. (10) holds for the ranks of the formula

matrix and its stoichiometric matrix of maximum rank. However, a stoichiometric matrix

ν ′ may be specified, for example corresponding to a reaction mechanism. Our goal is to

examine ν ′ to discover whether or not it implies (one or more) stoichiometric restrictions,

and if so, to determine a modified formula matrix A′ that incorporates the restriction(s).

As an example, we examine a proposed reaction mechanism25 for the aqueous–phase

oxidation of formaldehyde (HCHO) catalysed by cobaltic ion. The 12 × 8 stoichiometric

reaction matrix, ν ′, describing this mechanism is given in the accompanying Supplementary

Information Excel worksheet. XSTOICH yields the result in Fig. 4(a), demonstrating that

rank(ν ′) = 6 and rank(A′) = 6. (Note: in XSTOICH, (i) the primed symbol is used for the

numbers of mass-balance components and stoichiometric equations resulting from restric-

tions; (ii) the missing left entries for the first, second and fourth stoichiometric equations

represent arbitrary constants, depending on the initial concentrations of the species on the

right sides.) However, comparing the situation when the original 12× 5 formula matrix, A,

is run in XSTOICH, we obtain rank(A) = 5, and rank(ν) = 7, as in Fig. 4(b). Thus, the

stoichiometric matrix ν ′ indicates the presence of one stoichiometric restriction, since from

Eq. (14):

r = N − rank(A)− rank(ν ′) = 12− 5− 6 = 1 (20)

This example shows that the reaction mechanism restricts the possible changes in the

system composition to those described by the conservation matrix A′. It is important to

verify that when such a restriction is discovered, it be verified by experiment.
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(a)

(b)

Figure 4: (a) XSTOICH output from specifying the stoichiometric reaction matrix of the
aqueous-phase oxidation of formaldehyde (HCHO) catalysed by cobaltic ion. (b) XSTOICH
output from specifying the formula matrix of the aqueous-phase oxidation of formaldehyde
(HCHO) catalysed by cobaltic ion.
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Conclusions

Chemical Reaction Stoichiometry (CRS) connects reaction kinetics and chemical equilibrium;

this connection provides a link that we recommend be exploited in the teaching of both topics.

A maximal set of independent stoichiometric equations may be determined from the system

formula matrix through its algebraic manipulation, for which a programmed matrix reduction

method must be used to treat the general multi–reaction case. When a stoichiometric matrix

is specified, the matrix method can determine if it implies any “hidden” mass conservation

equations. Such additional conservation equations must be consistent with experimental

observations.

Supplementary Material

A Microsoft Excel macro–based program, XSTOICH.xlsm for implementing the Universal

Matrix Method of chemical stoichiometry, is supplied. The user must provide a transposed

formula matrix, consisting of N rows of species with M columns representing the contributing

elements (which may be chemical elements, reaction equations, or lists of other conserved

entities). Numerous example matrices are given and solved in the Excel worksheet.
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