Synthesis of a Hominal Bis(difluoromethyl) Fragments

Viktor Ivasyshyn,^{\dagger,\ddagger} Hans Smit,^{$\dagger,\ddagger} and Ryan C. Chiechi^{*,†,‡}</sup>$

†Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

‡Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands

E-mail: r.c.chiechi@rug.nl

Abstract

This paper describes the synthesis of discrete units of hominal $bis(gem-CF_2)$. The controlled introduction of fluorine atoms is a powerful synthetic tool to introduce dipole moments with minimal impact to sterics. Polyvinylidene fluoride (PVDF) is a striking example of the influence of fluorine atoms, which impart ferroelectric behavior from the alignment of the dipole moments of CF_2 units, however, it is prepared via direct polymerization of vinylidene difluoride. Thus, a different synthetic pathway is required to produce synthons containing discrete numbers of CF_2 groups in a hominal relation to each other. We found out that, in the case of short chains, the consecutive deoxofluorination of sequentially-introduced keto groups is very inefficient, as it requires harsh conditions and sharply decreasing yields at each step. To solve this problem, we combined the selective desulfurative fluorination of dithiolanes with pyridinium fluoride and the deoxofluorination of keto groups with morpholinosulfur trifluoride. This strategy is highly reproducible and scalable, allowing the synthesis of the hominal $bis(gem-CF_2)$ fragment as a shelf-stable

to sylate, which can be used to install discrete chains of hominal $bis(gem-CF_2)$ on a variety of synthons and monomers.

Introduction

The introduction of fluorine atoms into organic compounds has established itself as a powerful tool for tuning their chemical and physical properties with minimal impact to sterics. Fluorination often improves chemical resistance, thermal stability, biological and optical activity.¹ As a result, C-F bonds can be found in a wide variety of pharmaceuticals,^{2,3} agrochemicals, pesticides, surfactants, dyes and polymeric materials.^{4,5}

The unique properties of the fluorine atom have drawn increasing attention to its potential application in the field of organic photovoltaics (OPV), where the introduction of C-F bonds into the monomers of conjugated polymers can significantly improve their performance.^{6,7} The systematic introduction of C-F bonds into the backbones of benzoditiophene-^{8,9} and thiophene-containing¹⁰⁻¹³ conjugated (co)polymers leads to an increase in power conversion efficiencies (PCEs) through a combination of subtle effects.⁶ The utility of this approach is evident in the recent work of Zhao *et al.*, where the combination of fluorinated donor and non-fullerene acceptors enabled OPV devices with PCEs over 13 %.¹⁴ In addition to direct backbone fluorination, several studies have examined the effects of introducing fluorinated pendant groups of semi-fluorinated alkyl chains.^{15,16} Such modifications lead to favorable microstructural ordering and remarkably high electron mobilities. There is a growing focus on the electrostatics of pendant groups (i.e., permanent dipoles) in organic materials, from enhancing the dielectric constant of OPV materials^{17,18} to stabilizing dopants in thermoelectrics.¹⁹ A striking manifestation of the strong dipole moment created by C-F bonds is ferroelectricity in polyvinylidene diffuoride (PVDF), which arises from the alignment of CF_2 groups enabled by the $-CH_2CF_2$ - repeat-unit.^{20–23}

We are interested in synthesizing discrete chains containing these hominal $bis(gem-CF_2)$

(*i.e.*, $CF_2CH_2CF_2^{24}$) units that can be attached to small-molecules and monomers to tailor their electrostatic properties, however, the synthesis of hominal CF_2 units, in general, has not been widely reported. Typically, such compounds are isolated from mixtures of telomerization reactions. Haupschein *et al.* accomplished the telomerization of 1,1-difluoroethylene under thermal conditions, yielding telomer iodides and bromides containing the hominal bis(*gem*-CF₂) fragment.²⁵ In later work, they prepared fluorocarbon halosulfates, acids and derivatives that also contained hominal bis(*gem*-CF₂) fragment.²⁶ However, in both cases, the hominal bis(*gem*-CF₂) fragment formed in a mixture with perfluorinated moieties. The synthesis also required large autoclaves and long, extensive heating and required difficult fractional distillations to isolate. Similar difficulties were observed by others, via a variety of synthetic approaches: photochemically initiated reactions of bistrifluoromethyl disulphide with olefins,²⁷ thermal polymerization of SF₅Br with fluoroolefins,²⁸ modification of other telomers,²⁹ telomerization of VDF with α, ω -diiodoperfluoroalkanes³⁰ and iodoperfluoroalkanes.³¹⁻³⁵

It is apparently impossible to control the number of CH_2CF_2 units by means of telomerization; a fully synthetic and controllable approach that does not require harsh conditions, can be performed in a typical laboratory environment and easily reproduced would be ideal. Stepanov *et al.* demonstrated one of the first examples of synthetically-feasible compounds containing hominal bis(*gem*-CF₂) fragment.³⁶ By treating pentane-2,4-dione with SF₄ for 3 h at 20 °C they managed to obtain a mixture that contained 8 % of 2,2,4,4-tetrafluoropentane and 70 % of 4,4-difluoropentan-2-one among other fluorinated products. With increased reaction time (up to 40 h) and the addition of HF, they observed a shift toward the formation of 2,2,4,4-tetrafluoropentane as a predominant product. The same behavior was observed in the case of 2,2,4,4-tetrafluorohexane from hexane-2,4-dione. Even though this approach seems straightforward, reacting SF₄ and HF in an autoclave is so dangerous as to be forbidden in many (academic) laboratories (such as our own). As a result, more convenient and user-friendly methods of introducing CF₂ groups have been developed,³⁷ largely as a class of dialkylaminosulfur tetrafluorides³⁸ and pyridinium poly(hydrogen fluoride) (PPHF, 70% hydrogen fluoride, 30% pyridine, also known as Olah reagent).³⁹

Significant progress toward the user-friendly synthesis of hominal $bis(qem-CF_2)$ -containing compounds using these methods has been done by O'Hagan and co-workers. For example, Wang *et al.* installed CF_2 groups into a palmitic acid analogue by sequential preparation of appropriate precursor ketones, followed by deoxofluorination using diethylaminosulfur trifluoride (DAST).⁴⁰ The conversion to the CF₂ group occurred in modest yields and required neat DAST at elevated temperature. Jones et al. synthesized 2,2-dimethyl-5-phenyl-1,1,3,3tetrafluorocyclohexane by means of the direct deoxofluorination of a diketone precursor.⁴¹ Attempts to use the same approach in the case of diketones, which did not have dimethylsubstituted methylene between keto groups were unsuccessful, yielding only complex and intractable products, which could be attributed to the high degree of enolization of such diketones. In both works by Stepanov et al.³⁶ and Wang et al.,⁴⁰ the route to compounds containing the hominal $bis(qem-CF_2)$ fragment included the formation of 3.3-diffuoroketones as intermediates. 3,3-difluoroketones themselves are attractive building blocks, but are notoriously difficult to synthesize; however, recent work by Hamel et al. demonstrated that the synthesis of 3,3-diffuoroketones via a regioselective gold-catalyzed formal hydration of propargylic gem-difluorides.⁴² This approach installs the $(gem-CF_2)$ fragment before the ketone, suggesting that β -ketones deactivate deoxofluorinations.

Given the relative scarcity of examples of the successful isolation of compounds containing hominal $bis(gem-CF_2)$ units, there does not appear to be any reasonable synthetic route to realize our goal of incorporating them into pendant chains. In this work, we demonstrate an approachable, reproducible and reliable strategy for synthesizing compounds containing the hominal $bis(gem-CF_2)$ fragment from the precursor 3,3-difluoroketones. Our strategy is scalable and produces shelf-stable tosylates that can, in principle, be attached to any small-molecule or monomer.

Results and Discussion

In our first attempts to synthesize hominal $bis(qem-CF_2)$ fragment, we used an consecutive deoxofluorination approach analogous to that proposed by Wang $et \ al.,^{40}$ as illustrated in Scheme 1. Starting from commercially available allyl benzyl ether, we performed an epoxidation using *meta*-chloroperbenzoic acid (*m*CPBA), which gave 2 in high yield (77%). This reaction was followed by chain-extension with vinylmagnesium bromide and CuCN to produce alcohol **3** in near-quantitative yield (99%), which was oxidized with Dess-Martin periodinane (DMP), leading to the suitable ketone 4 (80% yield). This ketone was then treated with morpholinosulfur trifluoride (Morph-DAST) to introduce the CF_2 group, yielding compound 5. The deoxofluorination reaction proceeded under mild conditions, requiring $24 \text{ h in CH}_2\text{Cl}_2$ at room temperature to achieve a high yield (91%). Morph-DAST was used as our deoxofluorination reagent of choice, as its reactivity is identical to DAST, but it has higher thermal stability.^{43,44} In order to generate the second ketone precursor, compound 5 was epoxidized (*m*CPBA, 95%). The resulting epoxide **6** was reduced with LiAlH₄, giving alcohol 7 (99%), which was oxidized with DMP yielding ketone 8 (76%). However, our attempts to introduce the second CF_2 group by means of deoxofluorination were met with moderate success. After screening reaction conditions, we found that even modest conversion requires harsh conditions. Performing the reaction with neat Morph-DAST at 50 °C for 3 d produced a crude product containing compound 9 in poor (9%) yield. Efforts to isolate the product were unsuccessful.

The failure of the second deoxofluorination step highlights the difficulty of the hominal $bis(gem-CF_2)$ fragment; the installation of each CF_2 severely deactivates subsequent deoxofluorination reactions, precluding the isolation of more than one CH_2CF_2 unit. In this case, despite the fact that we could distinguish the characteristic signals of product **9** by both ¹H and ¹⁹F NMR, it was a minor product and could not be purified. We suspect that the key difference between our work and that of Wang *et al.*⁴⁰ can be attributed to the difference in a keto group environment. Although both contain CF_2 groups in a hominal arrangement,

Scheme 1: Consecutive deoxofluorinations

substrate 8 does not possess the long aliphatic chain that is present in palmitic acid, the electron-donating nature of which may have somewhat counteracted the deactivating effect of the first CF_2 group.

To cope with the apparent narrow scope of the aforementioned consecutive deoxofluorination approach, we decided to change our synthetic strategy, as demonstrated in Scheme 2. First, we reacted previously-synthesized epoxide 2 with ethylenediamine complex of lithium acetylide in order to introduce the propargyl group, yielding alcohol 10 (94%). This compound was then treated with potassium tert-butoxide, to effect the migration of a triple bond, as was demonstrated before by Kadirvel *et al.*⁴⁵ and Li *et al.*,⁴⁶ resulting in the propynyl 11 (88 % yield), which was then oxidized with DMP⁴⁷ to produce yneone 12 (72 % yield). Generating the yneone fragment is a key step, as it was easily converted into β -dithiolane 13 in high yield (89%) using the procedure by Sneddon *et al.*⁴⁸ The dithiolane (thicketal) group acts as an orthogonal protecting group of a parent 1,3-diketone, which simultaneously permits the use of drastically different fluorination techniques on both reaction centers. Using this strategy, we proceeded with desulfurative fluorination of dithiolane group in 13 with PPHF and 1,3-dibromo-5,5-dimethylhydantoin (DBDMH) following the procedure by Sondej and Katzenellenbogen,⁴⁹ which resulted in fluorinated product **14**. Because of the use of DBDMH as a source of electrophilic Br⁺, during this transformation, the benzyl protecting group was partially brominated. The degree of bromination varied depending on the reaction time and scale, however, it was always significant. The mixture of brominated product 14 and its non-brominated analogue (58% combined yield after desulfurative fluorination of 13) was inseparable by the means of flash chromatography. However, both compounds demonstrated equal reactivity and were carried through the rest of the synthesis without incident. The second ketone group was then converted into the CF_2 via deoxofluorination with Morph-DAST under very mild conditions (overnight in CH_2Cl_2) yielding the product 15 in a good yield (85%).

Scheme 2: Combined desulfurative and deoxofluorination approach with benzyl protection

In order to generate alcohol **16**, we cleaved the (bromo-)benzyl protecting group of compound **15** with hydrogen gas in an autoclave at 30 bar using palladium on carbon as a catalyst and methanol as a solvent. The deprotection proceeded a bit more slowly than anticipated because the bromines needed to be reduced (forming **9** *in situ*) before the normal benzyl ether deprotection reaction occurred. Unfortunately, alcohol **16** is extremely volatile, which required some care following the autoclave step; once the autoclave cooled, compound **16** was collected as a cold, methanolic solution and immediately worked up with dichloromethane, without evaporating the solvent. This handling limited the characterization of alcohol **16**, which we could verify by NMR, but could not isolate. Instead, the resulting crude dichloromethane solution was quickly tosylated, giving the product **17** along with methyl tosylate from the residual methanol from the autoclave mixture. After purification via the flash column chromatography, we isolated pure tosylate **17**, which is shelf-stable and considerably less volatile than **16**. As the quantity of alcohol **16** could not be determined accurately (we could only verify full conversion according to ¹⁹F NMR), the exact yield of last two steps cannot be reported. However, it is possible to determine the yield of the two-step transformation from compound **15** into the final product **17**, which is 30.7%. We assume that the yield loss is due partly to the (extreme) volatility of the alcohol **16** in addition to the yield of the tosylation reaction itself. To effect the tosylation, we treated the cold crude solution containing **16** and trace amounts of methanol with 1,4-diazabicyclo[2.2.2]octane (DABCO) as a base, along with the catalytic quantity of 4-dimethylaminopyridine (DMAP), followed by the excess amount of 4-toluenesulfonyl chloride. This allowed us to obtain and purify the product **17**, while when using other procedures (*e.g.*,with NaOH, pyridine or triethylamine as a base and without DMAP) we either observed very low yields or could not separate the product **17** from the resulting mixture.

To avoid the necessity of using an autoclave and all the difficulties it created, we investigated the applicability of our strategy to a different substrate, namely to methoxyacetic acid (18). This approach is illustrated at Scheme 3. We started by converting 18 into a Weinreb amide 20 in a two-step process via an intermediate acyl chloride 19 (around 72% two-step yield). The amide **20** was then reacted with 1-Propynylmagnesium bromide, vielding the compound **21** (89%). This synthesis was previously reported by Globisch etal.⁵⁰ and allowed us to shorten the number of steps leading to the necessary yneone moiety, which was then treated in a fashion similar to mentioned above. After easily converting it to dithiolane 22 (95% yield), we treated the product with PPHF and DBDMH, resulting in fluorinated compound 23 (67% yield). Although this approach obviates the need for the autoclave and eliminates the bromination of the benzyl protecting group, the intermediates were considerably more volatile, which required care (e.g., when evaporating solvents and storing intermediates between steps) until the final product 17 was isolated. Thus, after producing the compound 23 and deoxofluorinating it with Morph-DAST, we were able to obtain product 24 (74% yield). What followed was the demethylation using iodotrimethylsilane (TMSI) in accordance with Jung et al.⁵¹ which yielded the aforementioned compound **16** (full conversion by ¹⁹F NMR, exact yield could not be determined). Alcohol **16** was promptly tosylated to afford compound **17**. The yield of the two-step transformation from compound **24** into the final product **17** was around 19%, which is lower than for the transformation of **15**. Despite shortening of the synthetic route, this modified strategy proceeded with mixed success, as coping with the volatility of not only the alcohol **16** but also compounds **23-24** turned out to be challenging.

Scheme 3: Combined desulfurative and deoxofluorination approach with methyl protection

Conclusion

We explored three approaches leading to easy-to-handle and shelf-stable compounds containing a hominal $bis(gem-CF_2)$ fragment. While the general strategy involving two consecutive deoxofluorinations of ketones has been demonstrated,⁴⁰ it turns out to be quite specific to 1,3-diketones flanked by long alkyl chains. Excluding deprotection, adopting that strategy to our target compound required 8 steps, but failed at last deoxofluorination due to the apparent deactivation of the second deoxofluorination by the first CF_2 . To work around this problem and expand the scope of the double di-fluorination of 1,3-diketones, we combined desulfurative- and deoxofluorinations to obtain hominal $bis(gem-CF_2)$ fragment in good yield in 6-7 steps, depending on protecting group used (*e.g.*, compounds **15** and **24**). While the use of methyl protected group allowed us to shorten the number of steps and avoid the use of an autoclave, it necessitated working with volatile intermediates. Deprotection of both compounds 15 and 24 followed by the tosylation of intermediate alcohol 16 allows the isolation of the hominal $bis(gem-CF_2)$ fragment in the form of product 17, which can be attached to small-molecules and monomers to introduce strong dipole moments in the 1,3 configuration that enables their alignment in an electric field. We believe that such modifications will be useful for affecting the dielectric and molecular doping properties of organic-electronic materials.

In the course of synthesizing 17, we isolated the 3,3-diffuoroketones 14 and 23, which are potentially useful building blocks for a variety of applications, but are notoriously difficult to prepare.⁴² By combining deoxofluorination and desulfurative fluorination strategies, we installed the (*gem*-CF₂) fragment in the presence of the ketone rather than hydrating a propargylic gem-diffuoride to form a ketone. Thus, our synthetic strategy expands the scope of the double di-fluorination of 1,3-diketones and provides an alternative route to the synthesis of 3,3-diffuoroketones using accessible and scalable chemistry.

Experimental Section

General Information

All reagents were acquired from commercial sources and used without further purification unless stated otherwise. Specifically, Morph-DAST was purchased from Manchester Organics and PPHF (70% hydrogen fluoride, 30% pyridine) was purchased from Sigma-Aldrich. Reactions performed under a nitrogen atmosphere were conducted in flame-dried glassware. All dry solvents were obtained from a solvent purification system, except dimethyl sulfoxide (DMSO), which was purchased from commercial sources. Thin-layer chromatography (TLC) used Merck silica gel 60 F_{254} aluminum plates. Visualization of compounds by TLC was done by irradiation with UV light at 254 nm, iodine or potassium permanganate stain. Column chromatography was performed using SiliCycle SiliaFlash (R) Irregular Silica Gels P60 (40 µm to 63 µm, 60 Å) or with Reveleris (R) X2 Flash Chromatography System. ¹H NMR, ¹³C NMR and ¹⁹F NMR were performed on Agilent Technologies 400/54 Premium Shielded (400 MHz), Varian Oxford AS400 (400 MHz) or Varian Oxford (300 MHz) instrument at 25 °C, using tetramethylsilane (TMS) as an internal standard. NMR shifts are reported in ppm, relative to the residual protonated solvent signals of CDCl₃ ($\delta = 7.26$ ppm) or at the carbon absorption in CDCl₃ ($\delta = 77.0$ ppm). To determine accurate ¹⁹FNMR chemical shifts, CFCl₃ ($\delta = 0.00$ ppm) was used as an internal standard. Multiplicities are denoted as: singlet (s), doublet (d), triplet (t), quartet (q), pentet (p), doublet of doublets (dd), doublet of triplets (dt), doublet of triplets (dd), triplet of doublets (td), triplet of doublets (td), triplet of triplets (tt) quartet of doublets (qd), quartet of triplets of triplets (qt) and multiplet (m). High-resolution mass spectrometry (HRMS) was performed on a Thermo Scientific LTQ Orbitrap XL (FTMS). Infrared spectra (IR) were recorded on Thermo Scientific Nicolet iS50 FT-IR spectrometer.

Synthesis

General Procedure for Epoxidation. To a stirring solution of an appropriate alkene (1.0 equiv) in CH₂Cl₂ (volume in mL equal to the mmol of alkene) at room temperature and ambient conditions a solution of mCPBA (2.5 equiv) in CH₂Cl₂ (volume in mL equals twice the number of mmol of mCPBA) was added. The mixture was left stirring overnight. The resulting mixture was filtered to get rid of formed suspension, and the organic layer was washed successively with aqueous solutions of NaHSO₃, NaHCO₃, water, and brine, filtering away any formed intermediate precipitate. The combined organic layer was dried over Na₂SO₄, filtered, and the solvent was removed by rotary evaporation. The resulting product is used without further purification in the next step, unless necessary.

General Procedure for Oxidation of Alcohols. To a 0.3 M solution of an appropriate

alcohol (1.0 equiv) in CH_2Cl_2 at 0 °C and the ambient atmosphere was slowly added Dess-Martin periodinane (DMP) (1.5 equiv) and the resulting mixture was left warming up to room temperature and stirring overnight. The resulting mixture was filtered to get rid of formed suspension, the organic layer was quenched with water, washed with an aqueous saturated NaHSO₃ solution, then with a saturated NaHCO₃ solution, water, and brine. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The resulting product is used without further purification in the next step, unless necessary.

General Procedure for Dithiolane Formation. This procedure is adapted from the one previously reported by Sneddon *et al.*⁴⁸ Sodium methoxide (1.3 equiv) was added in one portion to a stirred solution of an appropriate ynone (1 equiv) and ethane-1,2-dithiol (1.1 equiv) in methanol and CH_2Cl_2 (4:1, 0.05 M) at approximately -10 °C. The reaction mixture was stirred overnight, allowing the temperature to rise to ambient temperature. On completion, the reaction was quenched by addition of saturated NH₄Cl solution and extracted with diethyl ether. The organic fractions were washed with water and brine, dried over Na₂SO₄, concentrated under reduced pressure and purified by flash chromatography if necessary.

General Procedure for Deoxofluorination of Ketones. To a 0.5 M solution of an appropriate ketone (1.0 equiv) in CH_2Cl_2 (molarity might vary and is not a crucial parameter) under inert atmosphere at 0 °C, Morph-DAST (2.2 equiv) was slowly added. The reaction mixture was allowed to gradually warm up to room temperature and left stirring overnight. Then it was diluted with additional CH_2Cl_2 and poured dropwise on the stirring mixture of saturated aqueous NaHCO₃ and ice. When effervescence was complete, the organic layer was washed with a saturated NaHCO₃ solution (until the solution became constantly basic), water and brine. The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The resulting crude product was purified using vacuum distillation or column chromatography.

General Procedure for Desulfurative Fluorination of Dithiolanes. A flame-dried three-necked round-bottom borosilicate glass flask, equipped with a stirring egg, capped with septums and connected to the Schlenk line was charged with DBDMH (2.0 equiv) and put under an inert atmosphere. Then DBDMH was fully dissolved in dry CH_2Cl_2 (approximately 30 mL of CH_2Cl_2 is needed per g of DBDMH). The mixture was cooled to -78 °C and PPHF (approximately 1.5 mL per mmol of dithiolane is used) was added via syringe, making sure that the temperature remains constant. This mixture was stirred for 30 minutes at -78 °C, followed by the dropwise addition of an appropriate dithiolane (1.0 equiv). The resulting mixture was stirred at constant -78 °C temperature for an additional 45 minutes. It was then carefully poured via Teflon cannula on the mechanically-stirred icy solution of NaHCO₃ in HDPE vessel, without letting the reaction mixture to warm up. When effervescence was complete and the solution became constantly basic, it was extracted with CH_2Cl_2 , washed with saturated $CuSO_4$, water and brine, dried over Na_2SO_4 and concentrated *in vacuo*. The resulting crude product was dissolved in a small quantity of CH_2Cl_2 and filtered through silica. Further purification was performed if necessary.

2-((benzyloxy)methyl)oxirane (2). According to the General Procedure for Epoxidation, the reaction using ((allyloxy)methyl)benzene (1) (52.1 mL, 337 mmol) and mCPBA (208 g, 843 mmol) afforded compound 2 (42.7 g, 260 mmol, 77% yield) as a transparent colourless liquid, which was used in the next step without further purification. If necessary, the product 2 can be distilled at 65 °C and 242 mTorr. ¹H NMR (400 MHz, Chloroform-d) δ 7.43–7.24 (m, 5H), 4.59 (q, J = 11.9 Hz, 2H), 3.77 (dd, J = 11.4, 3.0 Hz, 1H), 3.44 (dd, J = 11.4, 5.9 Hz, 1H), 3.19 (ddt, J = 5.9, 4.3, 2.9 Hz, 1H), 2.80 (dd, J = 5.1, 4.1 Hz, 1H), 2.62 (dd, J = 5.1, 2.7 Hz, 1H). ¹³C NMR (75 MHz, Chloroform-d) δ 137.93, 128.43, 127.75, 73.28 (d, J = 2.9 Hz), 70.83, 50.86, 44.25.

1-(benzyloxy)pent-4-en-2-ol (3). To a stirred solution of 2 (26 g, 158 mmol) and CuCN (1.418 g, 15.83 mmol) in dry THF (120 mL) under inert atmosphere, a 1 M THF solution of vinylmagnesium bromide (238 mL, 238 mmol), was added dropwise at -78 °C. The mixture was allowed to gradually warm up to room temperature and stirred for additional 3 hours before it was quenched with a saturated aqueous NH₄Cl solution (100 mL). Layers were separated, the aqueous layer was extracted with ethyl acetate $(2 \times 50 \text{ mL})$, and the combined extracts were washed with brine (50 mL) and dried over Na₂SO₄. Evaporation of the solvent gave the product **3** (30.31 g, 158 mmol, 100 % yield) as a golden oil. The product was used in the next step without further purification. ¹H NMR (400 MHz, Chloroform-d) δ 7.37–7.25 (m, 5H), 5.83 (ddt, J = 17.2, 10.2, 7.1 Hz, 1H), 5.20–5.04 (m, 2H), 4.55 (s, 2H), 3.88 (qd, J = 6.7, 3.3 Hz, 1H), 3.51 (dd, J = 9.5, 3.4 Hz, 1H), 3.38 (dd, J = 9.5, 7.4 Hz, 1H), 2.50 (s, 1H), 2.27 (t, J = 6.8 Hz, 2H). ¹³C NMR (75 MHz, Chloroform-d) δ 137.98, 134.26, 129.18–127.12 (m), 117.65, 73.90, 73.37, 69.72, 37.94.

1-(benzyloxy)pent-4-en-2-one (4). According to the General Procedure for Oxidation of Alcohols, the reaction using 3 (30 g, 156 mmol) and DMP (99 g, 234 mmol) afforded compound 4 (23.64 g, 124 mmol, 80 % yield) as a yellowish oil. The product was used in the next step without further purification. ¹H NMR (400 MHz, Chloroform-d) δ 7.42–7.29 (m, 5H), 6.02–5.84 (m, 1H), 5.24–5.09 (m, 2H), 4.59 (s, 2H), 4.10 (s, 2H), 3.26 (dt, J = 6.9, 1.4 Hz, 2H). ¹³C NMR (75 MHz, Chloroform-d) δ 206.38, 137.13, 129.73, 128.54, 128.05, 127.91, 119.23,74.57, 73.38, 44.03.

(((2,2-difluoropent-4-en-1-yl)oxy)methyl)benzene (5). According to the General Procedure for Deoxofluorination of Ketones, the reaction using 4 (20 g, 16.53 mL, 105 mmol) and Morph-DAST (40.5 g or 30.8 mL, 231 mmol) after distillation of a crude product at 43 °C and 291 mTorr afforded compound 5 (20.23 g, 95 mmol, 91% yield) as a transparent colourless liquid. ¹H NMR (400 MHz, Chloroform-d) δ 7.43–7.32 (m, 5H), 5.82 (ddt, J = 17.3, 10.3, 7.2 Hz, 1H), 5.26 (dd, J = 17.2, 7.9 Hz, 2H), 4.63 (s, 2H), 3.64 (t, J = 12.3 Hz, 2H), 2.75 (td, J = 16.5, 7.2 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 137.30, 129.02 (t, J = 5.9 Hz), 128.56–127.71 (m), 122.11 (t, J = 243.0 Hz), 120.56, 73.77, 69.95 (t, J = 32.1 Hz), 38.46 (t, J = 24.5 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -104.36 (tt, J = 16.5, 12.2 Hz).

2-(3-(benzyloxy)-2,2-difluoropropyl)oxirane (6). According to the General Procedure for Epoxidation, the reaction using 5 (9.6 g, 45.2 mmol) and mCPBA (27.9 g, 113 mmol) afforded **6** (9.77 g, 42.8 mmol, 95 % yield) as a transparent colourless liquid, which was used in the next step without further purification. ¹H NMR (400 MHz, Chloroform-d) δ 7.39–7.31 (m, 5H), 4.63 (s, 2H), 3.19–3.05 (m, 1H), 2.81 (t, J = 4.5 Hz, 1H), 2.54 (dd, J = 5.0, 2.6 Hz, 1H), 2.30–2.12 (m, 2H). ¹³C NMR (75 MHz, Chloroform-d) δ 137.11, 135.14, 134.50, 130.27, 129.78, 128.51, 128.03, 127.81, 122.04 (t, J = 242.9 Hz), 73.86 (d, J = 3.2 Hz), 70.92–69.91 (m), 46.34 (d, J = 11.7 Hz), 37.46 (t, J = 24.0 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -101.76– -104.62 (m). The multiplet signals can be recognized as: -101.75– -102.03 (m), -102.56 (dq, J = 17.1, 14.0 Hz), -103.84 (tt, J = 17.5, 11.8 Hz), -104.52 (tdd, J = 17.2, 13.3, 10.1 Hz).

5-(benzyloxy)-4,4-diffuoropentan-2-ol (7). To a 1 M solution of LiAlH₄ (43.8 mL, 43.8 mmol) in diethyl ether a solution of **6** (5 g, 21.91 mmol) in diethyl ether (20 mL) at -10 °C was added dropwise. The resulting mixture was allowed to gradually warm up to room temperature overnight while stirring. Afterward, the resulting mixture was diluted with additional diethyl ether and carefully poured on icy water. The organic layer was washed with 1 N HCl, water and brine, dried and concentrated *in vacuo*, affording the product **7** (5 g, 21.72 mmol, 99% yield) as a yellowish oil, which was used in the next step without further purification. ¹H NMR (400 MHz, Chloroform-d) δ 7.40–7.32 (m, 5H), 4.69 (d, J = 8.0 Hz, 1H), 4.63 (d, J = 2.4 Hz, 2H), 4.18 (ddq, J = 12.7, 6.4, 3.1 Hz, 1H), 3.70 (dd, J = 13.7, 11.4 Hz, 2H), 2.20–2.05 (m, 2H), 2.00 (s, 2H), 1.25 (d, J = 6.3 Hz, 3H). ¹⁹F NMR (376 MHz, Chloroform-d) δ -100.05– -105.28 (m). The multiplet signals can be recognized as: -100.14 (dq, J = 16.8, 13.6 Hz), -100.82 (dq, J = 16.8, 13.7 Hz), -104.49 (tt, J = 18.4, 12.0 Hz), -105.18 (tt, J = 18.4, 12.1 Hz).

5-(benzyloxy)-4,4-difluoropentan-2-one (8). According to the General Procedure for Oxidation of Alcohols, the reaction using 7 (4.5 g, 19.54 mmol) and DMP (12.43 g, 29.3 mmol) afforded 8 (3.38 g, 14.81 mmol, 76 % yield) as an orange oil, which was used in the next step without further purification. ¹H NMR (400 MHz, Chloroform-d) δ 7.38–7.29 (m, 5H), 4.59 (s, 2H), 3.77 (t, J = 12.8 Hz, 2H), 3.11 (t, J = 15.7 Hz, 2H), 2.23 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-d) δ -100.50 (tt, J = 15.7, 12.7 Hz).

4-(((2,2,4,4-tetrafluoropentyl)oxy)methyl)benzene (9). Under inert atmosphere neat Morph–DAST (0.321 mL, 2.410 mmol) was slowly added to 8 (0.1 g, 0.438 mmol). The mixture was heated up to 50 °C for 4 hours and then left stirring at room temperature (for approximately 72 hours). Process was controlled daily via ¹⁹F NMR of the quenched samples, and Morph–DAST was added until the conversion was full. Then, the reaction mixture was cooled down to room temperature, diluted with CH₂Cl₂ and carefully poured on icy water $(100 \,\mathrm{mL})$. After effervescence was complete, the organic layer was washed with saturated NaHCO₃ solution (till the solution became constantly basic), water (50 mL)and brine (50 mL). The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. An attempt of purifying the resulting crude mixture via flash chromatography (silica gel, hexane/ethyl acetate gradient separation) was made, however only small quantity of product **9** along with unknown impurities was recovered (0.01 g, 0.040 mmol, 9.12% crude yield, still)contained impurities). ¹H NMR (400 MHz, Chloroform-d) δ 7.38–7.30 (m, 5H), 4.62 (s, 2H), 2.61 (p, J = 15.4 Hz, 2H), 1.72 (t, J = 19.1 Hz, 3H). ¹³C NMR (75 MHz, Chloroform-d) δ too low intensity of the signals. ¹⁹F NMR (376 MHz, Chloroform-d) δ -85.19 (qtt, J = 19.1, 14.8, 7.8 Hz), -102.35 (ttt, J = 13.1, 8.2, 4.2 Hz).

1-(benzyloxy)pent-4-yn-2-ol (10). This procedure is adapted from the one previously reported by Li *et al.*⁴⁶ To a stirred solution of **2** (15 g, 91 mmol) in dry DMSO (20 mL) at 0 °C a solid powder of lithium acetylide etylenediamine complex (15.83 g, 146 mmol) was added in several portions. The reaction mixture was stirred at 0 °C for 3 hours and then left warming up to room temperature overnight. Afterward, it was quenched with brine (30 mL) and acidified with 10 % aqueous solution of HCl. The resulting mixture was extracted with ethyl acetate (3 × 100 mL). Combined organic layer was washed with NaHCO₃, water, saturated LiCl and brine, dried over Na₂SO₄ and concentrated *in vacuo*. Obtained crude product **10** (16.3 g, 86 mmol, 94 % yield) as a yellowish liquid was used in the next step without further purification. ¹H NMR (400 MHz, Chloroform-d) δ 7.39–7.28 (m, 5H), 4.57 (s, 2H), 3.98 (qd, J = 6.4, 4.0 Hz, 1H), 3.61 (dd, J = 9.5, 3.9 Hz, 1H), 3.52 (dd, J = 9.5, 6.5 Hz, 1H), 2.54–2.48 (m, 1H), 2.46 (dd, J = 6.3, 2.7 Hz, 2H), 2.03 (t, J = 2.7 Hz, 1H). ¹³C NMR (75 MHz, Chloroform-d) δ 137.77, 128.46, 127.83, 127.74, 80.22, 73.93, 73.45, 72.79, 70.59, 68.75, 61.82, 23.49. IR (neat): 3416, 3290, 2916, 2862, 2359, 2242, 2118, 1496, 1453, 1362, 1309, 1252, 1205, 1099, 1073, 1027, 943, 909, 735, 697 cm⁻¹.

1-(benzyloxy)pent-3-yn-2-ol (11). This procedure is adapted from the one previously reported by Li *et al.*⁴⁶ To a DMSO (10 mL) solution of 10 (5 g, 26.3 mmol) under ambient conditions was added potassium tert-butoxide (5.90 g, 52.6 mmol) as a DMSO (40 mL) solution. The reaction was stirred at room temperature for 2 hours before quenching sequentially with brine and HCl (5 M). The aqueous layer was extracted with diethyl ether and the combined organic fractions were washed with aqueous NaHCO₃ and brine, dried over Na₂SO₄ and concentrated *in vacuo* to afford 11 (4.4 g, 23.13 mmol, 88 % yield) as a dark yellow liquid, which was used in the next step without further purification. ¹H NMR (400 MHz, Chloroform-d) δ 7.40–7.27 (m, 5H), 4.64–4.57 (m, 2H), 4.53 (tq, J = 4.3, 3.1, 2.2 Hz, 1H), 3.61 (dd, J = 9.8, 3.5 Hz, 1H), 3.52 (dd, J = 9.8, 7.7 Hz, 1H), 2.31 (s, 1H), 1.84 (d, J = 2.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 193.71, 137.65, 128.46, 127.85, 127.79, 82.07, 73.90, 73.36, 61.82, 3.59.

1-(benzyloxy)pent-3-yn-2-one (12). According to the General Procedure for Oxidation of Alcohols, the reaction using 11 (4.39 g, 23.08 mmol) and DMP (14.68 g, 34.6 mmol) afforded 12 (3.16 g, 16.79 mmol, 72.8 % yield) as an orange liquid, which was used in the next step without further purification. ¹H NMR (400 MHz, Chloroform-d) δ 7.44–7.27 (m, 5H), 4.63 (s, 2H), 4.18 (s, 2H), 2.02 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 184.95, 137.07, 128.49, 128.02, 127.98, 93.22, 78.07, 75.73, 73.33, 4.20. IR (neat): 3031, 2919, 2865, 2216, 1687, 1670, 1496, 1454, 1257, 1187, 1119, 957, 794, 794, 737, 697 cm⁻¹.

1-(benzyloxy)-3-(2-methyl-1,3-dithiolan-2-yl)propan-2-one (13). According to the General Procedure for Dithiolane Formation, the reaction using sodium methoxide (7.65 mL, 41.3 mmol), 12 (5.98 g, 31.8 mmol) and ethane-1,2-dithiol (3.29 g, 34.9 mmol) afforded **13** (7.97 g, 28.2 mmol, 89 % yield) as an orange liquid, which was used in the next step without further purification. ¹H NMR (400 MHz, Chloroform-d) δ 7.38–7.28 (m, 5H), 4.58 (s, 2H), 4.07 (s, 2H), 3.35–3.25 (m, 4H), 3.21 (s, 2H), 1.87 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 205.49, 137.10, 128.51, 128.03, 127.94, 75.59, 73.40, 61.81, 53.76, 39.63, 32.00.

1-((4-bromobenzyl)oxy)-4,4-difluoropentan-2-one (14). According to the General Procedure for Desulfurative Fluorination of Dithiolanes, the reaction using DBDMH (6.54 g, 22.87 mmol), PPHF (25 mL, 277 mmol) and 13 (3.23 g, 11.44 mmol) afforded a crude product as an orange liquid. It contained the mixture of 14 and 1-(benzyloxy)-4,4-difluoropentan-2-one (2.07 g, which when calculated for 14 is 6.74 mmol, 58.9 % yield). Attempts to separate the resulting mixture were unsuccessful, and it was used in the next step without further purification. ¹H NMR (400 MHz, Chloroform-d) δ 7.39–7.31 (m, 5H), 4.54 (s, 2H), 4.12 (d, J = 4.5 Hz, 2H), 3.05 (td, J = 14.7, 6.3 Hz, 2H), 1.73 (t, J = 18.9 Hz, 3H). ¹³C NMR (75 MHz, Chloroform-d) δ too low intensity of the signals. ¹⁹F NMR (376 MHz, Chloroform-d) δ -85.15– -85.43 (m).

1-bromo-4-(((2,2,4,4-tetrafluoropentyl)oxy)methyl)benzene (15). According to the General Procedure for Deoxofluorination of Ketones, the reaction using 14 (2.07 g, 6.74 mmol) and Morph-DAST (1.974 mL, 14.83 mmol) after purifying the crude product via flash chromatography (silica gel, hexane/ethyl acetate gradient separation) afforded compound 15 (1.88 g, 5.71 mmol, 85 % yield) as a colorless transparent oil. ¹H NMR (400 MHz, Chloroform-d) δ 7.49 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 4.57 (s, 2H), 3.68 (t, J = 12.7 Hz, 2H), 2.61 (p, J = 15.4 Hz, 2H), 1.72 (t, J = 19.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 138.73, 134.31, 132.03, 124.62, 123.94 (t, J = 3.9 Hz), 122.83 (t, J = 5.2 Hz), 75.75, 73.38 (tt, J = 31.4, 1.9 Hz), 43.92 (tt, J = 27.5, 24.6 Hz), 26.78 (tt, J = 26.8, 2.2 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -85.86 (qtt, J = 19.2, 14.8, 7.6 Hz), -102.62 (ttt, J = 15.7, 12.6, 7.7 Hz). IR (neat): 3006,2951, 2922, 2877, 1723, 1594, 1488, 1396, 1381, 1279, 1240, 1172, 1121, 1097, 1069, 1012, 968, 943, 921, 872, 827, 795, 714, 674 cm⁻¹. $C_{12}H_{13}BrF_4O$ (329.129): calculated C 43.79, H 3.98; found C 43.75 H 4.05. HRMS m/z: compound was suffering from ion suppression.

2,2,4,4-tetrafluoropentan-1-ol (16). Solution of 15 (0.43 g, 1.306 mmol) in methanol (10 mL) together with 10% palladium on carbon (0.139 g, 0.131 mmol) and few drops of HCl were mixed in autoclave. The system was closed and left stirring in the hydrogen atmosphere at 30 bar pressure for 24 hours. Afterward the autoclave was cooled with ice, the cold solution was dissolved in CH₂Cl₂ (50 mL), filtered through silica, then promptly washed with cold water and brine, dried over Na₂SO₄ and concentrated *in vacuo* (without putting pressure below 800 mbar, to avoid losses of alcohol due to its volatility). Obtained 2.72 g of crude solution of 16 in CH₂Cl₂ and methanol. The full conversion of 15 to 16 was confirmed by ¹⁹F NMR and to avoid further loss of the product, the crude solution was promptly used in the next step without further purification. For calculations, the quantity of alcohol 16 was used as if the yield is 99% (0.2 g, 1.249 mmol). ¹H NMR (400 MHz, Chloroform-d) δ 3.82 (t, J = 13.0 Hz, 2H), 2.61 (p, J = 15.3 Hz, 2H), 1.74 (t, J = 19.0 Hz, 3H). ¹³C NMR (75 MHz, Chloroform-d) δ too low intensity of the signals. ¹⁹F NMR (376 MHz, Chloroform-d) δ -86.19 (ddddd, J = 30.8, 15.0, 11.7, 7.4, 4.2 Hz), -105.15 (th, J = 20.7, 7.4 Hz).

2,2,4,4-tetrafluoropentyl 4-methylbenzenesulfonate (17). To a stirred solution of crude 16 (0.2 g, 1.249 mmol) from the previous step, were added N,N-dimethylpyridin-4-amine (DMAP, 0.015 g, 0.125 mmol) and DABCO (0.280 g, 2.498 mmol) at 0 °C in CH₂Cl₂ (2.5 mL), followed by 4-methylbenzene-1-sulfonyl chloride (0.298 g, 1.561 mmol), and the resulting solution was sealed and left warming up to room temperature and stirring overnight. Then it is washed with water, 1 N HCl, NaHCO₃, 1 N KOH, brine, dried and concentrated. The resulting crude product was purified using flash chromatography (silica gel, hexane/ethyl acetate gradient separation), affording compound 17 (0.126 g, 0.401 mmol) as a transparent yellowish oil. ¹H NMR (400 MHz, Chloroform-d) δ 7.86–7.75 (m, 2H), 7.37 (d, J = 8.1 Hz, 2H), 4.19 (t, J = 12.0 Hz, 2H), 2.55 (p, J = 15.2 Hz, 2H), 2.46 (s, 3H), 1.67 (t, J = 19.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 148.31, 134.57, 132.72, 130.72, 126.44–120.96

(m), 123.21–117.93 (m), 70.69 (tt, J = 34.5, 2.5 Hz), 43.83 (tt, J = 27.5, 24.2 Hz), 26.81 (tt, J = 26.6, 2.0 Hz), 24.36. ¹⁹F NMR (376 MHz, Chloroform-d) δ -86.76 (qtt, J = 19.0, 14.9, 7.9 Hz), -102.54 (ttt, J = 15.6, 12.0, 7.7 Hz). IR (neat): 3007, 2959, 2929, 1598, 1451, 1397, 1368, 1243, 1190, 1174, 1096, 1021, 923, 874, 813, 783, 666 cm⁻¹. C₁₂H₁₄F₄O₃S (314.296): calculated C 45.86, H 4.49, S 10.20; found C 46.77 H 4.67 S 10.13. HRMS m/z: $([M + NH_4]^+)$ calculated for C₁₂H₁₈F₄O₃S₁N₁ 332.09380; found 332.09440.

As the quantity of alcohol 16 could not be determined accurately, the exact yield of last two steps cannot be reported. However it is possible to determine the yield of the two-step transformation from compound 15 (0.43 g, 1.306 mmol) into the final product 17 (0.126 g, 0.401 mmol), which is 30.7%.

We assume the yield loss is due to the volatility of the alcohol **16** and the specific tosylation procedure. When applied for other substrates (*e.g.*,2-(2-ethoxyethoxy)ethanol) the average yield of this tosylation procedure is 60 %, which means an approximate yield of 51 % after an autoclave. Interestingly, the use of other procedures for tosylation of alcohols (*e.g.*,with NaOH, pyridine or triethylamine as a base and without DMAP) did not allow us to separate the pure product **17**.

2-methoxyacetyl chloride (19). This procedure is adapted from the one previously reported by Globisch *et al.*⁵⁰ DMF (20 μ L, catalytic amount) and oxalyl chloride (66.7 mL, 762 mmol) were added to a solution of 2-methoxyacetic acid (45 mL, 586 mmol) in CH₂Cl₂ (300 mL) at 0 °C under inert atmosphere, and the solution was stirred for 3 hours. The solvent was removed *in vacuo*, to give **19** (60 g, 553 mmol, 94% yield) as a pale yellow oil, which was used without further purification.

N,2-dimethoxy-N-methylacetamide (20). This procedure is adapted from the one previously reported by Globisch *et al.*⁵⁰ N,O-Dimethylhydroxylamine hydrochloride (59.3 g, 608 mmol) and pyridine (98 mL, 1216 mmol) were added to a crude solution of **19** (60 g, 553 mmol) in CH_2Cl_2 (400 mL) under inert atmosphere, and the solution stirred at room temperature for 18 hours before quenching with saturated NaHCO₃, extracting with CH_2Cl_2 ,

washing with water, 1 N HCl and brine. Organic layer was dried over Na₂SO₄ and concentrated *in vacuo* to give **20** (57 g, 428 mmol, 77 % yield) as a transparent colorless liquid. If the product purity is unsatisfactory, it can be distilled at 43 °C and 727 mTorr. ¹H NMR (400 MHz, Chloroform-d) δ 3.84 (s, 2H), 3.34 (s, 3H), 3.07 (s, 3H), 2.81 (s, 3H).

1-methoxypent-3-yn-2-one (21). This procedure is adapted from the one previously reported by Globisch *et al.*⁵⁰ To a solution of 20 (20 g, 150 mmol) in THF (200 mL) at -78 °C was added 0.5 M THF solution of prop-1-yn-1-ylmagnesium bromide (451 mL, 225 mmol), and the resulting mixture was stirred overnight at room temperature. The reaction was quenched with aqueous NH₄Cl solution (150 mL) and extracted with ethyl acetate (3 × 70 mL). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*, affording compound 21 (15 g, 134 mmol, 89% yield) as a yellowish liquid. If the product purity is unsatisfactory, it can be distilled at 74 °C and 9.69 Torr. ¹H NMR (300 MHz, Chloroform-d) δ 4.07 (s, 2H), 3.39 (s, 3H), 1.99 (s, 3H).

1-methoxy-3-(2-methyl-1,3-dithiolan-2-yl)propan-2-one (22). According to the General Procedure for Dithiolane Formation, the reaction using sodium methoxide (18.55 mL, 93 mmol), **21** (8 g, 71.3 mmol) and ethane-1,2-dithiol (7.39 mL, 78 mmol) afforded compound **22** (14 g, 67.9 mmol, 95 % yield) as a yellowish liquid, which was used in the next step without further purification. ¹H NMR (300 MHz, Chloroform-d) δ 3.96 (s, 2H), 3.36 (s, 3H), 3.34–3.19 (m, 4H), 3.13 (d, J = 2.3 Hz, 2H), 1.82 (s, 3H). ¹³C NMR (75 MHz, Chloroform-d) δ 205.40, 78.13, 61.75, 59.28 (d, J = 2.8 Hz), 58.19, 53.54, 39.61, 31.94. IR (neat): 2965, 2921, 2821, 1722, 1446, 1423, 1368, 1335, 1277, 1197, 1105, 1072, 1034, 982, 936, 851 cm⁻¹.

4,4-difluoro-1-methoxypentan-2-one (23). According to the General Procedure for Desulfurative Fluorination of Dithiolanes, the reaction using DBDMH (13.86 g, 48.5 mmol), PPHF (45 mL, 499 mmol) and 22 (5 g, 24.23 mmol) after distillation of a crude product at $41 \,^{\circ}$ C and 19.8 Torr or filtering the CH₂Cl₂ solution through silica afforded compound 23 (2.5 g, 16.43 mmol, 67.8 % yield) as a yellow liquid. Precautions have to be taken when working with product 23, as the rapid weight loss could be observed due to its volatility. ¹H NMR (400 MHz, Chloroform-d) δ 4.06 (s, 2H), 3.43 (s, 3H), 3.04 (t, J = 14.7 Hz, 2H), 1.73 (t, J = 18.9 Hz, 3H). ¹³C NMR (75 MHz, Chloroform-d) δ too low intensity of the signals. ¹⁹F NMR (376 MHz, Chloroform-d) δ -85.36 (qt, J = 18.9, 14.8 Hz).

2,2,4,4-tetrafluoro-1-methoxypentane (24). According to the General Procedure for Deoxofluorination of Ketones, the reaction using 23 (2.5 g, 16.43 mmol) and Morph-DAST (6.33 g or 4.81 mL, 36.2 mmol) afforded compound 24 (2.135 g, 12.26 mmol, 74.6 % yield) as a dark yellow liquid. If the product purity is unsatisfactory, it can be purified using column chromatography (CH₂Cl₂, $R_f = 0.84$). Precautions have to be taken when working with product 24, as the rapid weight loss could be observed due to its volatility. ¹H NMR (400 MHz, Chloroform-d) δ 3.60 (t, J = 12.8 Hz, 2H), 3.44 (s, 3H), 2.57 (p, J = 15.4 Hz, 2H), 1.71 (t, J = 19.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 126.76–121.39 (m), 123.93 (t, J = 3.9 Hz), 122.81 (t, J = 5.1 Hz), 120.39 (t, J = 5.2 Hz), 75.72 (tt, J = 31.1, 1.9 Hz), 62.41, 43.76 (tt, J = 27.5, 24.4 Hz), 26.72 (tt, J = 26.7, 2.3 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -85.51 (qtt, J = 19.1, 14.9, 7.7 Hz), -102.47 (ttt, J = 16.3, 13.0, 8.1 Hz). IR (neat): 2934, 2855, 1706, 1675, 1635, 1394, 1174, 1114, 924, 873 cm⁻¹.

2,2,4,4-tetrafluoropentan-1-ol (16). To an ice-cold stirred solution of 24 (0.4g, 2.297 mmol) in CDCl₃ (1.5 mL) in a sealed vessel with a septum cap under inert atmosphere, trimethylsilyl iodide (1.149 g, 0.782 mL, 5.74 mmol) was slowly added. The resulting solution was stirred at room temperature, until the full conversion of 24 to 16 was confirmed by ¹⁹F NMR (took 36 hours), after which it was quenched with methanol. The resulting mixture was extracted with ether, washed with NaHSO₃, water, NaHCO₃ and brine. Combined organic layers were dried and gently concentrated (without lowering the pressure below 800 mTorr), affording the crude solution containing 16. ¹H NMR (400 MHz, Chloroform-d) δ 3.83 (t, J = 13.0 Hz, 2H), 2.61 (p, J = 15.2 Hz, 2H), 1.73 (t, J = 19.1 Hz, 3H). ¹³C NMR (75 MHz, Chloroform-d) δ too low intensity of the signals. ¹⁹F NMR (376 MHz, Chloroform-d) δ -86.20 (ddddt, J = 26.5, 19.1, 14.9, 11.6, 7.3 Hz), -104.92- -105.29 (m). Precautions have to be taken when working with product 16, as the rapid weight loss could be observed due to its

volatility. To avoid further loss of the product, the crude solution was used without further purification in a tosylation reaction according to the abovementioned procedure. The total crude amount (0.34 g, 2.124 mmol, 92 % yield) was used for calculations. As the amount of alcohol **16** could not be determined accurately, the exact yield of the demethylation step cannot be reported. However it is possible to determine the yield of the two-step transformation from compound **24** (0.4 g, 2.297 mmol) into the final product **17** (0.122 g, 0.764 mmol), which is 19.88 %, and is lower compared to the benzyl protection route.

Supporting Information Available

 $^{1}\mathrm{H},$ $^{13}\mathrm{C}$ and $^{19}\mathrm{F}$ NMR spectra of compounds **2-17**, **20-24** and high-resolution mass spectrum of **17**.

Acknowledgements

This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). This is a publication by the FOM Focus Group "Next Generation Organic Photovoltaics", participating in the Dutch Institute for Fundamental Energy.

References

- Baasner, B.; Adcock, J. L.; Banks, R. E.; Bulan, A.; Burdon, J. Houben-Weyl Methods of Organic Chemistry Vol. E 10a, 4th Edition Supplement: Organo-Fluorine Compounds - Fluorinating Agents and Their Application in Organic Synthesis; Thieme, 2014.
- (2) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. Applications of Fluorine in Medicinal Chemistry. J. Med. Chem. 2015, 58, 8315–8359.
- (3) Gerus, I. I.; Balabon, O. A.; Pazenok, S. V.; Lui, N.; Kondratov, I. S.; Tarasenko, K. V.; Shaitanova, E. N.; Ivasyshyn, V. E.; Kukhar, V. P. Synthesis and Properties of Polyfunctional Cyclic β-Alkoxy-α,β-Unsaturated Ketones Based on 4-Methylene-1,3-Dioxolanes. *Eur. J. Org. Chem.* **2018**, 2018, 3853–3861.
- (4) Chambers, R. Fluorine in Organic Chemistry; Blackwell, 2004.
- (5) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications; Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications; Wiley, 2006.
- (6) Zhang, Q.; Kelly, M. A.; Bauer, N.; You, W. The Curious Case of Fluorination of Conjugated Polymers for Solar Cells. Acc. Chem. Res. 2017, 50, 2401–2409.
- (7) Meyer, F. Fluorinated Conjugated Polymers in Organic Bulk Heterojunction Photovoltaic Solar Cells. Prog. Polym. Sci. 2015, 47, 70–91.
- (8) Son, H. J.; Wang, W.; Xu, T.; Liang, Y.; Wu, Y.; Li, G.; Yu, L. Synthesis of Fluorinated Polythienothiophene- Co -Benzodithiophenes and Effect of Fluorination on the Photovoltaic Properties. J. Am. Chem. Soc. 2011, 133, 1885–1894.
- (9) Wang, X. C.; Zhang, Z. G.; Luo, H.; Chen, S.; Yu, S. Q.; Wang, H. Q.; Li, X. Y.; Yu, G.;
 Li, Y. F. Effects of Fluorination on the Properties of Thieno 3,2-B Thiophene-Bridged Donor-Pi-Acceptor Polymer Semiconductors. *Polym. Chem.* 2014, 5, 502–511.

- (10) Fei, Z.; Shahid, M.; Yaacobi-Gross, N.; Rossbauer, S.; Zhong, H.; Watkins, S. E.; Anthopoulos, T. D.; Heeney, M. Thiophene Fluorination to Enhance Photovoltaic Performance in Low Band Gap Donor–Acceptor Polymers. *Chem. Commun.* 2012, 48, 11130.
- (11) Fei, Z.; Boufflet, P.; Wood, S.; Wade, J.; Moriarty, J.; Gann, E.; Ratcliff, E. L.; Mcneill, C. R.; Sirringhaus, H.; Kim, J. S.; Heeney, M. Influence of Backbone Fluorination in Regioregular Poly(3-Alkyl-4-Fluoro)thiophenes. J. Am. Chem. Soc. 2015, 137, 6866–6879.
- (12) Homyak, P. D.; Liu, Y.; Harris, J. D.; Liu, F.; Carter, K. R.; Russell, T. P.; Coughlin, E. B. Systematic Fluorination of P3HT: Synthesis of P(3ht-Co-3H4FT)s by Direct Arylation Polymerization, Characterization, and Device Performance in OPVs. *Macromolecules* **2016**, 49, 3028–3037.
- (13) Boufflet, P.; Bovo, G.; Occhi, L.; Yuan, H. K.; Fei, Z.; Han, Y.; Anthopoulos, T. D.; Stavrinou, P. N.; Heeney, M. The Influence of Backbone Fluorination on the Dielectric Constant of Conjugated Polythiophenes. *Adv. Electron. Mater.* **2017**, *1700375*, 1–8.
- (14) Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular Optimization Enables Over 13% Efficiency in Organic Solar Cells. J. Am. Chem. Soc. 2017, 139, 7148–7151.
- (15) Tada, A.; Geng, Y.; Wei, Q.; Hashimoto, K.; Tajima, K. Tailoring Organic Heterojunction Interfaces in Bilayer Polymer Photovoltaic Devices. *Nat. Mater.* 2011, 10, 450–455.
- (16) Kang, B.; Kim, R.; Lee, S. B.; Kwon, S. K.; Kim, Y. H.; Cho, K. Side-Chain-Induced Rigid Backbone Organization of Polymer Semiconductors Through Semifluoroalkyl Side Chains. J. Am. Chem. Soc. 2016, 138, 3679–3686.

- (17) Ivasyshyn, V.; Ye, G.; Rousseva, S.; Hummelen, J. C.; Chiechi, R. C. *Emerging Photo-voltaic Materials*; John Wiley & Sons, Ltd, 2018; Chapter 11, pp 401–441.
- (18) Kurinec, S. *Emerging Photovoltaic Materials*; Silicon & Beyond; Wiley-Scrivener, 2018.
- (19) Liu, J.; Qiu, L.; Alessandri, R.; Qiu, X.; Portale, G.; Dong, J.; Talsma, W.; Ye, G.; Sengrian, A. A.; Souza, P. C. T.; Loi, M. A.; Chiechi, R. C.; Marrink, S. J.; Hummelen, J. C.; Koster, L. J. A. Enhancing Molecular N-Type Doping of Donor–Acceptor Copolymers by Tailoring Side Chains. *Adv. Mater.* **2018**, *30*, 1704630.
- (20) Poulsen, M.; Ducharme, S. Why Ferroelectric Polyvinylidene Fluoride Is Special. *IEEE Trans. Dielect. Elect. Insulation* 2010, 17, 1028–1035.
- (21) Liu, F.; Hashim, N. A.; Liu, Y.; Abed, M. R. M.; Li, K. Progress in the production and modification of PVDF membranes. 2011, 375, 1–27.
- (22) dong Kang, G.; ming Cao, Y. Journal of Membrane Science; 2014; Vol. 463; pp 145–165.
- (23) Liang, S.; Kang, Y.; Tiraferri, A.; Giannelis, E. P.; Huang, X.; Elimelech, M. Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles. ACS Appl. Mater. Interfaces 2013, 5, 6694–6703.
- (24) Nickon, A.; Weglein, R. C.; Mathew, C. T. The Brex-5-Yl System. A Uniquely Structured Norbornyl Homolog. Can. J. Chem. 1981, 59, 302–313.
- (25) Hauptschein, M.; Braid, M.; Lawlor, F. E. Thermal Syntheses of Telomers of Fluorinated Olefins. II. 1,1-Difluoroethylene1. J. Am. Chem. Soc. 1958, 80, 846–851.
- (26) Hauptschein, M.; Braid, M. Fluorocarbon Halosulfates and a New Route to Fluorocarbon Acids and Derivatives. I. Polyfluoroalkyl Chlorosulfates1. J. Am. Chem. Soc. 1961, 83, 2500–2505.

- (27) Haran, G.; Sharp, D. W. A. Photochemically initiated reactions of bistrifluoromethyl disulphide with olefins. J. Chem. Soc. Perkin Trans. 1 1972, 34–38.
- (28) Terjeson, R. J.; Gard, G. L. New Pentafluorothio(SF5)fluoropolymers. J. Fluorine Chem. 1987, 35, 653–662.
- (29) Aspey, G. C.; Chambers, R. D.; Salisbury, M. J.; Moggi, G. Polymer Chemistry. Part
 1. Model Compounds Related to Hexafluoropropenevinylidene Fluoride Elastomer. J. Fluorine Chem. 1988, 40, 261–282.
- (30) Manséri, A.; Améduri, B.; Boutevin, B.; Chambers, R. D.; Caporiccio, G.; Wright, A. P. Synthesis of Fluorinated Telomers. Part 4. Telomerization of Vinylidene Fluoride With Commercially Available α,ω-Diiodoperfluoroalkanes. J. Fluorine Chem. 1995, 74, 59–67.
- (31) Huang, J. Q.; Meng, W. D.; Qing, F. L. Synthesis and Repellent Properties of Vinylidene Fluoride-Containing Polyacrylates. J. Fluorine Chem. 2007, 128, 1469–1477.
- (32) Boutevin, G.; Tiffes, D.; Loubat, C.; Boutevin, B.; Ameduri, B. New Fluorinated Surfactants Based on Vinylidene Fluoride Telomers. J. Fluorine Chem. 2012, 134, 77–84.
- (33) Peng, S.; Hung, M. H. Fluorinated Sulfonate Surfactants. J. Fluorine Chem. 2012, 133, 77–85.
- (34) Coope, T.; Moloy, K.; Yake, A.; Petrov, V.; Taylor, C.; Hung, M.; Peng, S. Fluorinated Sulfamido Amphoteric Surfactants. J. Fluorine Chem. 2014, 161, 41–50.
- (35) Yake, A.; Corder, T.; Moloy, K.; Coope, T.; Taylor, C.; Hung, M.; Peng, S. Fluorinated Pyridinium and Ammonium Cationic Surfactants. J. Fluorine Chem. 2016, 187, 46–55.
- (36) Stepanov, I. V.; Burmakov, A. I.; Kunshenko, B. V.; Alekseeva, L. A.; Yagupol'skii, L. M. Reactions of Aliphatic β-Diketones With SF4. Zh. Org. Khim. 1983, 19, 244–248.

- (37) Tozer, M. J.; Herpin, T. F. Methods for the Synthesis of Gem-Difluoromethylene Compounds. *Tetrahedron* **1996**, *52*, 8619–8683.
- (38) Middleton, W. J. New Fluorinating Reagents. Dialkylaminosulfur Fluorides. J. Org. Chem. 1975, 40, 574–578.
- (39) Olah, G. A.; Welch, J. T.; Vankar, Y. D.; Nojima, M.; Kerekes, I.; Olah, J. A. Synthetic Methods and Reactions. 63. Pyridinium Poly(hydrogen Fluoride)(30% Pyridine-70% Hydrogen Fluoride): A Convenient Reagent for Organic Fluorination Reactions. J. Org. Chem. 1979, 44, 3872–3881.
- (40) Wang, Y.; Callejo, R.; Slawin, A. M. Z.; O'Hagan, D. The Diffuoromethylene (CF2) Group in Aliphatic Chains: Synthesis and Conformational Preference of Palmitic Acids and Nonadecane Containing CF2 Groups. *Beilstein J. Org. Chem.* **2014**, *10*, 18–25.
- (41) Jones, M. J.; Callejo, R.; Slawin, A. M. Z.; Bühl, M.; O'Hagan, D. Organofluorine Chemistry: Diffuoromethylene Motifs Spaced 1,3 to Each Other Imparts Facial Polarity to a Cyclohexane Ring. *Beilstein J. Org. Chem.* **2016**, *12*, 2823–2827.
- (42) Hamel, J. D.; Hayashi, T.; Cloutier, M.; Savoie, P. R.; Thibeault, O.; Beaudoin, M.;
 Paquin, J. F. Highly Regioselective Gold-Catalyzed Formal Hydration of Propargylic: Gem -Difluorides. Org. Biomol. Chem. 2017, 15, 9830–9836.
- (43) Mange, K. C.; Middleton, W. J. Fluorination of Cyclohexanols With 4-Morpholinosulfur Trifluoride [1]. J. Fluorine Chem. 1989, 43, 405–413.
- (44) Mykhailiuk, P. K.; Radchenko, D. S.; Komarov, I. V. 1-Amino-3,3-Difluorocyclobutanecarboxylic Acid. J. Fluorine Chem. 2010, 131, 221–223.
- (45) Kadirvel, M.; Fanimarvasti, F.; Forbes, S.; McBain, A.; Gardiner, J. M.; Brown, G. D.; Freeman, S. Inhibition of Quorum Sensing and Biofilm Formation in Vibrio Harveyi by

4-Fluoro-Dpd; A Novel Potent Inhibitor of Signalling. Chem. Commun. (Cambridge, U. K.) 2014, 50, 5000-5002.

- (46) Li, Z.; Parr, B. T.; Davies, H. M. L. Highly Stereoselective C–C Bond Formation by Rhodium-Catalyzed Tandem Ylide Formation/[2,3]-Sigmatropic Rearrangement Between Donor/Acceptor Carbenoids and Chiral Allylic Alcohols. J. Am. Chem. Soc. 2012, 134, 10942–10946.
- (47) Hashmi, A. S. K.; Choi, J.-H.; Bats, J. W. Synthesis of Allenyl Ketones and Their Palladium-Catalyzed Cycloisomerization/Dimerization: Approaching the Limits. J. Prakt. Chem. 1999, 341, 342–357.
- (48) Sneddon, H. F.; Van Den Heuvel, A.; Hirsch, A. K.; Booth, R. A.; Shaw, D. M.; Gaunt, M. J.; Ley, S. V. Double Conjugate Addition of Dithiols to Propargylic Carbonyl Systems to Generate Protected 1,3-Dicarbonyl Compounds. J. Org. Chem. 2006, 71, 2715–2725.
- (49) Sondej, S. C.; Katzenellenbogen, J. A. Gem-Difluoro Compounds: A Convenient Preparation From Ketones and Aldehydes by Halogen Fluoride Treatment of 1,3-Dithiolanes. J. Org. Chem. 1986, 51, 3508–3513.
- (50) Globisch, D.; Lowery, C. A.; McCague, K. C.; Janda, K. D. Uncharacterized 4,5-Dihydroxy-2,3-Pentanedione (DPD) Molecules Revealed Through NMR Spectroscopy: Implications for a Greater Signaling Diversity in Bacterial Species. Angew. Chem., Int. Ed. 2012, 51, 4204–4208.
- (51) Jung, M. E.; Lyster, M. A. Quantitative Dealkylation of Alkyl Ethers via Treatment With Trimethylsilyl Iodide. A New Method for Ether Hydrolysis. J. Org. Chem. 1977, 42, 3761–3764.

Graphical TOC Entry

