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ABSTRACT: A new method for the direct functionaliza-
tion of diamondoids has been developed using photore-
dox and H-atom transfer catalysis. This C–H alkylation 
reaction has excellent chemoselectivity for the strong 3º 
C–H bonds of adamantanes in polyfunctional molecules. 
In substrate competition reactions, a reversal in selectivi-
ty is observed for the new H-atom transfer catalyst re-
ported here when compared to six known photochemical 
systems. Derivatization of a broad scope of diamondoids 
and adamantane-containing drugs highlights the versatil-
ity and functional group tolerance of this C–H function-
alization strategy. 

The direct functionalization of aliphatic C–H bonds 
is critical to the large-scale processing of hydrocarbon 
feedstocks and its inherent chemical difficulty has in-
spired the development of new methods that push the 
frontiers of reactivity and selectivity in organic synthe-
sis. In particular, the selective functionalization of one 
type of C–H bond in the presence of a variety of differ-
ent C–H bonds represents a long-standing challenge.1 
Many successful strategies employ a directing group to 
guide a metal catalyst to the desired site of reactivity, 
while others rely on the innate reactivity of weak C–H 
bonds such as those at tertiary, benzylic or heteroatom-
substituted positions (Figure 1A).2,3,4 New methods that 
bypass such activated positions in favor of unactivated 
aliphatic C–H bonds would significantly broaden the 
potential applications of direct C–H functionalization.1 
A difficulty for the selective activation of strong alkane 
C–H bonds is the high kinetic barrier associated with 
their cleavage. Intermediates capable of activating these 
bonds often do so at the expense of selectivity, limiting 
applications in complex molecules due to poor function-
al group compatibility.  

The diamondoids are a compelling substrate class for 
the investigation of selective C–H functionalization due 
to the unusually high C–H bond strengths.5 The rigid 
caged structure of adamantane (1, Figure 1A) results in 
an increased 3º C–H bond dissociation energy (BDE) of  

 

Figure 1. Strong adamantane bonds lead to functionaliza-
tion challenges: previous methods unselective compared to 
amine radical cation 5.  

99 kcal/mol, which exceeds the 2º C–H BDE of 96 
kcal/mol and most other hydrocarbons. 6  The unique 
structure and chemical properties of diamondoids have 
led to many applications in nanoscale frameworks, opti-
cal materials and clinically approved drugs (e.g. anti-
dementia memantine). 7 , 8  Hydrogen atom abstraction 
methods that directly generate the adamantyl radical 
include halogen and alkoxyl radicals, as well as catalytic 
hydrogen atom transfer (HAT) species such as diarylke-
tone and decatungstate photocatalysts (Figure 1B).9 The 
high reactivity of these abstractors results in variable, 
often low selectivity between different types of C–H 
bonds.10,11 We sought to overcome previous limitations 
through the systematic study of adamantanes to identify 
a catalyst system that can target strong C–H bonds in the 
presence of weaker activated bonds. Recent reports have 
highlighted the power of HAT to activate a range of C–
H bonds using photoredox catalysis.12,13,14,15 Herein, we 
report a new 3º amine-based HAT catalyst system that 
leverages charge-transfer character in the C–H function-
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alization step to provide high chemoselectivity inde-
pendent of significant BDE differences (e.g. 4 à 6, Fig-
ure 1C).16 This dual catalyst system provides a general 
platform for the direct functionalization of diamondoids 
and an unprecedented selectivity profile in polyfunction-
al substrates. 

We began our studies by examining the reaction of 
adamantane with phenyl vinyl sulfone (7, Table 1).17 
Inspired by reports of C–H functionalization reactions 
via heteroatom-stabilized radicals by MacMillan and 
coworkers, we examined the use of quinuclidines as 
HAT catalysts due to the very strong N–H bond generat-
ed (≥ 100 kcal/mol).14a, 18 , 19 , 20  We identified optimal 
conditions using the highly oxidizing photocatalyst 
Ir(dF(CF3)ppy)2(d(CF3)bpy)PF6 (Ir-1) and newly de-
signed sulfonylated quinuclidinol Q-1 to provide alkyl-
ated product 8 in 79% yield by GC (72% isolated yield, 
Entry 1).21 The optimized sulfonate derivative Q-1 is 
more effective than the previously reported acetate Q-2 
or Q-3 (Entries 2 and 3). A synergistic effect between 
the two catalysts was observed, as shown by the im-
proved performance of Q-3 when paired with Ir-2 (66%, 
Entry 5 vs 3 and 4). While optimal yields are obtained 
with the alkene as limiting reagent, the reaction proceeds  
Table 1. Optimization studies of adamantane alkylationa 

 
aReaction performed on 0.5 mmol scale with 2x456 nm 
LED lamps. Conversion of 7 determined after 8h by 1H 
NMR with internal standard. Yield of 8 determined by GC 
with internal standard. Isolated yield in parentheses. bCon-
version of 1 after 24h by GC with internal standard.  

 

in 55% yield when performed with limiting hydrocarbon 
(Entry 6). In addition, reducing the Ir-1 loading to 0.5 
mol% maintains high conversion and good yield (73%, 
Entry 7). In all cases, we observed complete selectivity 
for the 3º (C1) position of adamantane and detected no 
C2 products.11 Control reactions demonstrate that the 
iridium catalyst, quinuclidine catalyst and light are all 
necessary for this direct C–H alkylation process.20 

With optimal catalytic conditions in hand, we inves-
tigated the scope of the alkylation reaction of adaman-
tane (Table 2). A number of alkenes with different elec-
tron-withdrawing groups including sulfones, nitriles, 
ketones and esters are effective partners, giving a single 
regioisomer of product (8, 10–14, 57–91% yield). 22 
Ethyl acrylate was successfully employed in this chem-
istry using catalysts Ir-2/Q-3 to facilitate the more chal-
lenging reduction step. A dehydroalanine derivative was 
an excellent substrate in this C–H alkylation, delivering 
amino acid derivative 15 in 89% yield.23 Olefins with 
two electron-withdrawing groups were particularly ef-
fective, including 1,2-disubstituted and trisubstituted 
variants (16–20, 82–94% yield). Adjacent tertiary and 
quaternary centers are forged, highlighting the power of 
radical chemistry to generate highly congested centers.24 

We also investigated the scope of adamantane cou-
pling partners. As shown in Table 2, a broad range of 
substituents at the 1-position including alkyl, aryl, OH, 
halides and nitriles were well tolerated, providing the 
corresponding 3-alkylated products in 64–72% yield 
(21–26). Selected examples using only 1.5 equivalents 
of adamantane are shown in parentheses with a modest 
decrease in yield. Electron-deficient 2-adamantanone 
and 1-acetyladamantane could be alkylated in 60% and 
75% yield, respectively. Diamantane, the simplest high-
er order diamondoid, gave the corresponding sulfone 
product 29 in 62% yield and succinate product 30 in 
65% yield as a 1.1–1.2:1 mixture of regioisomers. This 
implies a moderate inherent selectivity (~3:1) for the 
apical position.25 We also investigated the alkylation of 
clinically approved drug derivatives such as N-Boc-
amantadine (31, 63% yield). N-Boc-memantine was al-
kylated with good efficiency using it as the limiting rea-
gent to give tetrasubstituted adamantane 32 in 74% 
yield. A precursor to the anti-acne medication differin 
underwent alkylation at the 3º position without signifi-
cant interference of the electron-rich aryl and methoxy 
groups (33, 51% yield). The success of this HAT strate-
gy in medicinally relevant substrates demonstrates a 
level of versatility and predictability that is necessary for 
late-stage functionalization applications. 

Next we investigated the selectivity of amine catalyst 
Q-1 in polyfunctional substrates with multiple Csp

3–H 
bonds (Scheme 1). Boc-protected 34 derived from anti-
viral drug rimantadine was monoalkylated in 68% yield  
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Table 2. Scope of direct alkylation of substituted adamantanes and diamantanes with electron deficient alkenes.a 

 
aReaction performed on 0.5 mmol scale with 2x456 nm LED lamps, standard conditions, typically 8–48 h. All yields are isolated 
yields. bYield in parentheses with 1.5 equiv adamantane partner, determined by GC with internal standard. cReaction performed 
using Ir-2 and Q-3. dSolvent is CH3CN. eReaction temperature approximately 38 ºC. fRegioisomeric ratio (r.r.) was determined by 
1H NMR of the purified product. Major isomer shown, minor site of reaction highlighted. g1 equiv N-Boc-memantine, 2 equiv 7. 

at the 3º position. We did not observe functionalization 
at the α-amino methine position, which is electronically 
activated but sterically hindered.18 An adamantane ester 
substrate bearing an additional tertiary site undergoes 
alkylation on the adamantane group (35, 70% yield, 
>20:1 r.r.). Aldehyde product 36 was formed in 70% 
yield with only 3% ketone product resulting from activa-
tion of the weak aldehyde C–H bond. Notably, Glorius 
and coworkers described a carboxyl radical HAT system 
that shows the opposite selectivity in closely related sub-
strates, favoring activation of the weaker bonds.14d,g,j As 
such, these methods represent complementary strategies 
for targeted C-H functionalization. 

To assess the limits of the observed selectivity, we 
performed intermolecular competition experiments with 

prototypical substrates for HAT methodologies includ-
ing alkanes, ethers, aldehydes, alcohols and amides. In 
all cases, the reactivity of adamantane was dominant and 
46–80% of alkylation product 8 was obtained. Only oc-
tanal, THF and isopropanol, having very electronically 
activated C–H bonds, gave significant amounts of prod-
uct (14–27%), but adamantane 8 was still the major 
product. We then performed a competition with poly-
functional natural products and observed high chemose-
lectivity. Menthol (16) was essentially unreactive, 
providing only 4% of the corresponding product along 
with 75% of adamantane 8. Progesterone, limonin and 
sclareolide (not shown) were also tested and no alkyla-
tion products were identified using catalyst Q-1, instead 
affording only adamantane product 8.20  
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Scheme 1. Competition experiments demonstrating the 
selective functionalization of adamantanes in the pres-
ence of activated C–H bonds. 

We compared the remarkable chemoselectivity of 
amine Q-1 for the strong C–H bonds of adamantane to 
several previously reported photocatalytic HAT sys-
tems.9,14,15 While the amine-based catalyst system pro-
vided 4.5:1 selectivity for adamantane over octanal 
(Scheme 1), all other catalysts investigated were either 
poorly selective (e.g. 1:2 for quinones) or favored func-
tionalization of the weaker C–H bond (Table S#).20 The 
decatungstate photocatalyst and carboxyl radical gave 
moderate yields but a 1:5 ratio favoring octanal. Similar 
trends were observed with THF competitions, highlight-
ing the unique selectivity profile of the 3º amine-based 
catalyst Q-1 and the complementarity of substrate selec-
tivity through proper catalyst selection. 

In order to shed light on this new photoredox cata-
lyzed reaction, we performed a series of mechanistic 
experiments. The alkylation reaction is inhibited by rad-
ical scavengers BHT and TEMPO. Stern–Volmer lumi-
nescence studies showed no quenching by adamantane 
or phenyl vinyl sulfone, however HAT catalyst Q-1 re-
sulted in a dramatic decrease in luminescence.20 This is 
consistent with the redox potentials of these species; the 

excited photocatalyst Ir-1* (E1/2
red (*IrIII/IrII) = +1.68 V 

vs saturated calomel electron (SCE) in CH3CN)14b is a 
sufficiently strong oxidant to generate the radical cation 
from quinuclidine Q-1 (E1/2

red = +1.41 V vs SCE in 
CH3CN).20 Similarly, photocatalyst Ir-2 is well matched 
with quinuclidine Q-3.26,19 We also performed deuteri-
um labeling experiments to investigate the HAT step 
(Figure 2). No incorporation of deuterium into the start-
ing material or adamantyl C–H bonds of the product was 
observed, suggesting that HAT is irreversible. Small 
kinetic isotope effect (KIE) values obtained from an in-
tramolecular competition experiment with 1-D2 (kH/kD = 
1.6) and intermolecular competition experiments in par-
allel reactions (kH/kD = 1.3) indicate that the HAT pro-
cess is likely not the turnover-limiting step in the cata-
lytic cycle.27 These data are consistent with HAT as an 
irreversible, exergonic process with an early transition 
state, although other mechanistic possibilities cannot be 
ruled out at this point.14a,28 

 

Figure 2. Deuterium labeling experiment and kinetic iso-
tope effect experiments.  

Based on this evidence, the proposed mechanism be-
gins with excitation of the photocatalyst followed by 
oxidation of quinuclidine Q-1 to yield the radical cation 
5 (Scheme 2). Subsequent HAT gives the corresponding 
ammonium 48 and adamantyl radical 2, which rapidly 
adds to the electron-deficient olefin 49 to generate α-
acyl radical 50.17 Reduction of radical 50 (E1/2

red = –0.66 
V vs SCE in CH3CN)29 by iridium(II) intermediate 47 
(E1/2

red (IrIII/IrII) = –0.69 V for Ir-1 and –1.37 V for Ir-2 
vs SCE in CH3CN)26,14b and protonation by quinu-
clidinium 48 (or water as a proton shuttle) provides the 
final product 13 and closes both catalytic cycles.  

The optimal performance of quinuclidine Q-1 is in 
part because the electron-withdrawing substituent leads 
to an increase in the ammonium N–H BDE and the driv-
ing force for HAT.19 Furthermore, HAT is known to be 
highly influenced by polar effects and radical cation 5 is 
the only species examined that is positively 
charged.14a,16 ,18 This suggests that the high chemoselec- 
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Scheme 2. Proposed mechanism of dual catalytic alkyla-
tion process and charge transfer model for selectivity.  

tivity of Q-1 can be attributed to increased charge-
transfer character in the HAT transition state TS-1.16 
Increased positive charge development on adamantane is 
favorable due to the high stability of the 3º-adamantyl 
carbocation 51.6 This model also explains the superior 
C1/C2 selectivity compared with other protocols using 
neutral, oxygen-centered radicals as HAT species and 
contributes to the remarkable selectivity for adaman-
tanes over substrates with weaker C–H bonds. 

In summary, we have reported a highly selective C–
H functionalization strategy for the direct alkylation of 
adamantanes in the presence of weaker alkyl and α-
heteroatom C–H bonds. A synergistic effect between the 
photocatalyst and electron-deficient quinuclidine HAT 
catalyst was observed for the first time, providing an 
unprecedented selectivity profile based on polar effects. 
New quinuclidine catalyst Q-1 enables a broad substrate 
scope with respect to alkenes, substituted adamantanes, 
diamantane and derivatives of clinically approved ada-
mantyl amines. The demonstration of the accelerating 
effect induced by electron-withdrawing groups will ben-
efit the design of stronger HAT catalysts based on the 
quinuclidine scaffold. We anticipate that this catalytic 
strategy will be amenable to other direct C–H function-
alization reactions of adamantanes and higher order di-
amondoids and will greatly expand synthetic access to 
these fascinating molecules. 
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