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Abstract

Molecular simulations see widespread use in calculating various physical properties

of interest, with a key goal being predictive molecular design. These simulations, in-

cluding molecular dynamics (MD) simulations, begin with a underlying energy model

or force field and then, based on this model, use simulations to compute properties of

interest. However, one of the most significant challenges in molecular dynamics and

modeling studies is ensuring that the force field is a good enough approximation of the

underlying physics that computed quantities can be used to reproduce experimental

properties with the desired level of accuracy. Parameterization of force fields depend

on various experimental properties including as much of the chemistry of interest as

possible. Physicochemical properties measurable in a relatively straightforward man-

ner are particularly interesting for developers. Such properties can be measured for

a relatively diverse chemical set and used to expand the parameterization dataset as
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needed. Here, we examine infinite dilution activity coefficients (IDACs) which are ex-

perimental quantities that can play this role. We retrieved 237 empirical IDACs from

NIST’s ThermoML, a database of measured thermodynamic properties, and we esti-

mated the corresponding values using solvation free energy calculations. We found that

calculated IDAC values correlate strongly with experiment. Specifically, the natural

logarithm of calculated and experimental IDAC values shows a Pearson correlation co-

efficient of 0.85± 0.02. The calculated IDAC values allow us to identify strengths and

potential weaknesses of force field parameters for specific functional groups in solutes

and solvents, suggesting these may be a valuable source of data for force field parame-

terization, capturing some of the same type of information as hydration and solvation

free energies and thus potentially providing a useful new source of experimental data.

1 Introduction

Infinite dilution activity coefficients (IDACs) tell us how far an infinitely dilute mixture is

from ideal solution conditions1–5 and they are of considerable experimental and theoretical

interest.4,6,7 Deviations from ideality indicate whether a solute is particularly good or par-

ticularly poor for a given solvent. This means that activity coefficients have a variety of

downstream applications, such as for input to chemical engineering models studying liquid-

vapor coexistence.3,5

Ideal solutions are mixtures where the interactions between two solvent molecules are

equal to the interactions between two solute molecules and to the interactions between a

solvent and a solute molecule.1 Real solutions, however, do not satisfy this condition; in

most cases, solute and solvent molecules have self-interactions which are not identical to

their mutual interactions in solution. In this sense, activity coefficients can be interpreted

as a measure of the propensity of a solute molecule to interact with the solvent.

Activity coefficients are also important because they help us determine the effective con-

centration of a particular component, or its propensity to react. Specifically, the activity of
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a component in a system, or its effective concentration, is the product between the compo-

nent’s activity coefficient and its real concentration and is related to the chemical potential

of a component in a mixture (µi) (Eq. 1).

µi = µ0
i +RT ln γ · [i]

[i0]
, (1)

where γ is the activity coefficient, µ0
i is the standard chemical potential of the component,

[i] and [i0] are its concentration and standard concentration, R is the ideal gas constant, and

T is the absolute temperature. If γ = 1, the mixture is ideal; if γ > 1 or 0 < γ < 1, the

mixture behaves non-ideally.

There are different ways to express activity coefficients, including in terms of concen-

tration, mole fraction, or partial pressure. Here, we focus on activity coefficients expressed

in terms of mole fraction (χ) henceforth, but it is worth remembering the connections to

concentration and other forms. The reference ideal state also plays an important part in the

definition of activity coefficients. Here, we define activity coefficients with reference to an

ideal solution in the sense of Raoult’s law, where, for each component in a mixture, γi → 1

as χi → 1.8 In this definition, the pure liquid is considered an ideal solution because all the

interactions between its components have the same magnitude. With this reference state

(called the Lewis-Randall standard state), the activity coefficient is 1 for the pure solution.

Other reference states are also commonly employed. For example, a common textbook defi-

nition uses an ideal dilute solution as a reference state, where the activity coefficient is 1 for

a solute at infinite dilution. Here, however, we use the Lewis-Randall reference state as it is

the state employed by the database of experimental values we will compare to.

An infinite dilution activity coefficient (IDAC) is the activity coefficient of a component

when its concentration is infinitely small in a mixture. It is related to the slope of isothermal

pressure-composition phase diagrams when the mole fraction tends to zero, and is propor-

tional to the Henry’s Law constant.9 The measurement of IDACs depends on factors such

as the volatility of solvent and solute.5 Techniques such as gas-liquid chromatography,5,10
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high-performance liquid chromatography10 and differential ebulliometry5,10,11 are tradition-

ally used to measure activities in extremely dilute systems at varying concentrations, leading

to the infinite dilution activity coefficient by extrapolation.10 There has been considerable

interest in predicting these coefficients5–7,10–21 due to their use in phase equilibria studies in

chemical engineering applications.2–4,14

IDACs (also represented by γ∞) are related to solvation free energies by the following

equation:6,7,13

γ∞i = exp
(∆Gsolv

i −∆Gself solv
i

kBT

)
(2)

where ∆Gsolv
i is the solvation free energy of a solute i, ∆Gself solv

i is the solvation free energy of

a solute i in its bulk phase, kB is the Boltzmann constant, and T is the absolute temperature.

The solvation free energy is the free energy change of transferring a molecule from an

ideal gas state to a solvent.22–26 If the solvent is water, we call the solvation free energy a

hydration free energy (∆Ghyd). Solvation free energies tell us which phase a given molecule

prefers in a multiphasic system and also provide information on how a solute behaves in

different environments.24,27

In this work, our interest is in physical models which can be used to calculate activ-

ity coefficients and related properties from molecular simulations. Particularly, molecular

simulations begin with a description of the energy and forces in a physical system as a

function of the coordinates — what is known as a “force field” — and allow calculation of

numerous physical properties from simulations of such systems28 . In addition to poten-

tially providing predictions of various quantities like host-guest and protein-ligand binding

affinities,29–33 distribution and partition coefficients,34,35 solvation free energies36–38 or other

physical properties for design applications, comparison of such results to experiment provides

a quantitative test of the underlying physical model or force field.

Hydration and solvation free energies have proved particularly valuable in quantitatively

testing all-atom molecular simulations and force fields and in highlighting systematic errors,
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in part because ∆Gsolv and ∆Ghyd for small molecules can be calculated to a precision

better than 0.1 kcal/mol.39,40 The SAMPL series of blind challenges for computation have

helped illustrate this, with several challenges focusing on solvation and hydration free energy

prediction.27,41–44 SAMPL1 through SAMPL4 featured blind prediction of hydration free

energies.27,41–43 SAMPL5 included the prediction of partition coefficients, which also required

the calculation of solvation free energies in water, cyclohexane, and octanol.44,45 Likewise, the

FreeSolv database of calculated and experimental hydration free energies has been broadly

useful for similar reasons.26,46 Work on FreeSolv has helped highlight and resolve various

force field problems, such as with hydroxyl group parameters.47

Even though there are experimental and calculated hydration free energy databases such

as FreeSolv26,46 and ATB,48,49 ∆Gsolv and ∆Ghyd measurements are difficult and require

considerable expertise and specialized equipment, so few to no experimental measurements

are presently made.27 Infinite dilution activity coefficients, however, are a critical property of

consideration when studying binary mixtures, and even more so as the number of components

and/or the system size grows for industrial applications,3 meaning that they are subject to

considerable experimental attention. Additionally, they are easier to measure than ∆Gsolv

and ∆Ghyd,3,4,50,51 and can be calculated with similar precision as the aforementioned free

energies. This means they are an ideal candidate as an alternative to hydration free energies

for benchmarking computational chemistry methods and force fields.

2 Computational Methods

We obtained experimental activity coefficients at infinite dilution from ThermoML,52–54 an

XML-based system for storage and exchange of thermochemical data. ThermoML was ac-

cessed on July 27, 2017 using thermopyl,55 a Python tool that allows interaction with the

database and provides access via a Pandas Dataframe. We made a search for IDACs of or-

ganic compounds containing less than 40 heavy atoms at temperatures between 250 K and
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400 K. All the activity coefficients were obtained approximately at 101 kPa. The search

was restricted to molecules containing no elements other than C, O, N, F, P, S, and Cl.

The heaviest solute molecule of the set was hexadecane (226.44 Da) and the lightest was

methanol (32.04 Da). The heaviest solvent molecule was tetradecanoic acid (228.37 Da)

and the lightest was water (18.02 Da). Most molecules were fairly rigid with less than three

rotatable bonds, but a few, such as hexadecane and undecane, had up to 13 rotatable bonds.

We found 263 coefficients but limited our study to 237 coefficients. The reduced set

size resulted from problems building the simulation boxes for some systems with solutes or

solvents with long chains, as well as parameterization issues for some tertiary amines. The

final set contains a variety of combinations of a moderate number of different solvents and

solutes. This allows us to look for trends in accuracy both as a function of solute and as

function of solvent.

All solvation free energy calculations were performed using now relatively standard al-

chemical free energy calculations described further below, but automated via the OpenEye

Orion cloud computing platform. The calculations could have been done on local computing

resources using an identical protocol, but Orion allowed for higher throughput.

Setup of calculations began with processing the solute and solvent names from the data

obtained from ThermoML. From names, SMILES strings were generated using OpenEye’s

OEChem toolkits, and stored as OEMol objects,56 with one OEMol for each solvation free energy

calculation to be done (i.e. one for calculation of the solvation free energy of each solute in

pure solute, and one for calculation of solvation free energy of the solute in pure solvent).

In each case we attached the SMILES string of the solvent (generated with OEChem) to the

OEMol for the solvent, along with the target temperature and pressure for each simulation

(as these were required by the Orion workflow we constructed) and then output the resulting

set of molecules to an OpenEye binary file (.oeb) for use on Orion.

The Orion workflow then conducted solvation free energy calculations from these input

files in a straightforward manner, ultimately using Yank57 to run free energy calculations
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as further detailed below. Before input into Yank, however, simulation boxes were built

and parameters were assigned. Specifically, starting geometries for simulation boxes were

built (in PDB format) from the solute and the specified solvent (as indicated by SMILES

strings attached to the input molecule) using the OpenEye toolkits to generate molecular

structures and conformers, and PACKMOL (version 17.221) to build boxes consisting of the

solvated systems.58 Force field parameters were then assigned via Antechamber and Am-

bertools (version 16.16.0), using the GAFF 1.8 small molecule force field59 and AM1-BCC

charges60,61 (the latter as assigned by the OpenEye toolkits, version 2018.2.1) to describe

solvents and solutes, with the exception of water, which was modeled by using TIP3P.62

Once parameterized, the resulting systems were stored as ParmEd63 (version 2.7.3) objects

and attached to the OpenEye data record to progress through the workflow.

Following parameterization, equilibration stages were run using OpenMM64–66 (version

7.1.1), followed by production free energy calculations done with Yank (version 0.20.1),

using protocols that are now relatively standard (e.g. as in26). Nonbonded interactions were

calculated for all inter-atomic distances under a cutoff of 9 Å. Electrostatic interactions

were computed using particle mesh Ewald (PME).67,68 Each Hamiltonian replica exchange

simulation run using Yank had 1000 iterations of 500 MD steps of 2 femtoseconds each at each

λ value, totaling one nanosecond per replica. Bonds involving hydrogen were constrained.

All simulations were conducted at the target temperature and pressure associated with the

ThermoML data for the experiment, as provided by our input files. Solvation free energies

were estimated with the Multistate Bennett Acceptance Ratio69 (MBAR), an extension of

the Bennett Acceptance Ratio70 that considers the overlap between a given state and all

the others in the path between the end states, as provided by Yank. MBAR is the most

consistently well-performing free energy estimator71 and is the default free energy estimator

in Yank.
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3 Results

IDACs (γ∞), as defined in the Introduction, tell us how far from ideality a mixture is when the

concentration of the solute is infinitely small. They are widely used as input for engineering

models, such as for prediction of liquid-vapor equilibria, and they can be calculated from

solvation free energies (Eq. 2).6,7,13 The natural logarithm of γ∞ is proportional to the

difference between the free energy of solvation of a solute i in a given solvent (∆Gsolv
i ) and

the free energy of solvation of the solute molecule in its pure bulk phase (∆Gself solv
i , free

energy of ”self-solvation”):

kBT ln γ∞i = ∆Gsolv
i −∆Gself solv

i (3)

where kB is the Boltzmann constant and T is the absolute temperature.

Here, we calculated the solvation free energies using MBAR69 and compared to experi-

mental values as shown in Figure 1.
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Figure 1: Calculated versus experimental kBT ln γ∞ for 237 solute – solvent pairs taken from
ThermoML. Calculated values are on the vertical axis and experimental on the horizontal.
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We found an average error (in free energy units, as in Equation 3) of -0.08 ± 0.05

kcal ·mol−1, a root-mean-square (RMS) error of 0.81 ± 0.05 kcal ·mol−1, an average unsigned

error of 0.58 ± 0.04 kcal ·mol−1, a Kendall τ value of 0.61 ± 0.02, and a Pearson R value of

0.85 ± 0.02.

Given that each IDAC tells us how well a solute molecule interacts with the solvent

with respect to how well it interacts with itself, Fig. 1 can potentially also give us some

idea whether a given force field underestimates or overestimates the intermolecular forces

between solvent and solute. The diagonal line in Fig. 1 corresponds to the cases where the

simulation agreed with the experiment. If a point is located below the diagonal line, the

force field potentially underestimates solute – solvent interactions relative to solute – solute

interactions. On the other hand, if a point is located above the diagonal line, the force field

potentially overestimates solute – solvent interactions relative to solute – solute interactions.

Having an extensive set of IDAC values allows us to look for systematic errors in the

force field and how it describes particular functional groups and solvents, as has been done

previously in studies with hydration free energies.40,72 Here, in order to detect possible issues

with force field parameters, we partitioned our dataset by functional groups and by solvents.

The absolute value of the average error of the free energy differences for functional groups

with more than five occurrences in the set can be seen in Figure 2.

Here (Fig. 2), analysis of errors by functional group is slightly complicated by the fact

that errors could depend on the identity of the solvent or the identity of the solute. In the

limit of very large datasets this should be easily surmountable, because a large number of

samples would ensure that analysis by solute would involve averaging over a large number

of solutes, and analysis by solvent would involve averaging over a large number of solutes.

Here, however, our set is relatively small, so it is important to not place too much confidence

in any analysis of systematic errors. Still, such analysis can suggest likely targets needed for

follow up studies to confirm potential problems, and some trends seem clear.

Here, based on our analysis of errors in activity coefficients broken down by the functional
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Figure 2: Absolute values of the average errors (AE) for functional groups with more than
five occurrences in the set. Error bars denote the standard error in the mean of the quantity
on the vertical axis.

group observed in the solute, we found that sulfoxide had the largest absolute value of

the average error of the set (Figure 2). In fact, the only sulfoxide present in the set was

dimethylsulfoxide (DMSO), and all IDACs involving DMSO were for this molecule in different

solvents (DMSO was never present as a solvent in the simulations). The average error of

+1.7 ± 0.2 kcal/mol suggests a systematic error in the GAFF description of DMSO (Fig.

3).

We did a similar analysis of IDAC values broken down by functional groups appearing in

the solvent. The absolute average error of the free energy differences by solvents with more

than five occurrences can be seen in Figure 4.

Given that solvents tended to occur many times in IDAC measurements, our analysis by

solvent provided more data concerning potential systematic errors than did our analysis by

solute. Methanol, formamide, and ethylene glycol were the solvents whose IDACs showed
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Figure 3: As a solute, dimethylsulfoxide (DMSO) shows a positive shift (average error of 1.7
± 0.2 kcal·mol−1 for DMSO) with respect to the y = x line, suggesting a potential systematic
error in the force field. The set contained no measurements where DMSO was a solvent.

the largest average absolute errors of the set (Figure 5).

Figure 5 singles out solvents containing four different functional groups for particular

analysis, and highlights several potentially important trends. For instance, when examining

water as a solvent, IDAC values are nearly evenly spread around the x = y line for IDACs in

water (Fig. 5(d)), which suggests that the differences with respect to the experimental IDACs

are random in nature or are caused by solute parameters. This is perhaps expected, given

that water models are typically given special attention and parameterized quite carefully.

In contrast, Fig. 5 (a), (b), and (c) show clear systematic shifts away from the diagonal

line, suggesting potential systematic errors for these solvents. Average errors were -1.2 ±

0.3 kcal·mol−1, -1.1 ± 0.2 kcal·mol−1 and -0.9 ± 0.1 kcal·mol−1 for kBT log γ for solutes in

methanol, formamide and ethylene glycol, respectively. The plots in Fig. 5(a), (b) and (c)

suggest the potential presence of systematic errors, but the size of our sample (7, 7 and 12

IDACs per solvent in (a), (b), and (c)) limits our ability to investigate in much detail. We

believe, however, that the expansion of the data set can help confirm our analysis.
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Figure 4: Absolute values of the average errors (AE) for solvents with more than five occur-
rences in the set. Error bars denote the standard error in the mean of the quantity on the
vertical axis.

4 Discussion

Here, we calculated a large number of infinite dilution activity coefficients and compared

with experimental values extracted automatically from NIST’s ThermoML database. We

used relatively standard (if computationally demanding), easily-automated approaches for

calculation of solvation free energies, and performed the calculations in a high-throughput

manner on OpenEye’s Orion cloud computing platform. Interestingly, agreement between

calculated and experimental values is actually quite good, and these calculations are also

able to highlight clear systematic issues for particular functional groups or types of so-

lutes/solvents, suggesting promising areas for investigation of possible force field deficien-

cies. The fact that infinite dilution activity coefficients can also be measured in a relatively

straightforward manner means these will likely serve as a valuable source of data for future
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(a) (b)

(c) (d)

Figure 5: Plots highlighting the IDACs for solutes in methanol (a), formamide (b), ethylene
glycol (c), and water (d) simulations. While points in (d) are consistently spread around
the y = x line, the remaining plots suggest systematic errors in the description of methanol,
formamide and ethylene glycol. Additional data can be found in the Supporting Information.
AE stands for the average error of the green star-shaped points.

13



tests of computational methods.

Our calculations were kept rather short for computational efficiency, resulting in some-

what high statistical errors. For computational efficiency, we ran only 1 ns per lambda value,

allowing each kBT log γ∞ to be computed quite quickly. With additional sampling at each

lambda value we could further reduce the statistical error and better ensure that sampling

is adequate, so extending the simulations may be something to explore in future work. Ad-

vances in hardware have already provided considerable gains in this area, already making

it possible to perform the large number of calculations reported here in a relatively short

amount of time, in part due to the availability of GPUs.73

Each calculated kBT log γ∞ value requires two solvation free energy calculations, which

modestly increases the computational cost in comparison to our traditional approach of us-

ing hydration free energies, which requires a single free energy calculation26 . This small

increase is worthwhile given that hydration free energies involve gas-to-water transfers while

many events computational chemistry seeks to predict (e.g. binding, solubility, partitioning,

permeation, etc.) involve transfer between condensed phases. Thus IDACs may be particu-

larly appealing for force field parameterization since IDAC calculations involve the transfer

of molecules between condensed phases, similar to biological and pharmacological events

which typically involve transfer from one condensed phase environment to another.

We also believe that there are two other advantages of using IDACs: First, IDACs for a

given solute of interest can be obtained in different solvents, allowing the potential to explore

how well a force field represents molecules both as solutes and as solvents. Second, molecules

become polarized when transferred from gas phase to water and hydration free energies with

conventional force fields (excepting polarizable force fields) might not be able to describe this

phenomenon well; parameterization to hydration free energies could even build in systematic

error resulting from lack of treatment of polarization. This may be particularly important;

while an IDAC calculation also involves a transfer between environments, it is a transfer

between two condensed phases, which usually is associated to a much smaller change in
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polarization of the solute molecule in comparison to transfer from the gas phase, as in the

case of hydration free energies. IDAC values thus could potentially be an even better way to

test how a force field represents a condensed-phase environment than hydration free energies,

and potentially a better source of parameterization data.

The abundance of kBT ln γ∞ values around zero (Figure 1) is noteworthy and is poten-

tially an artifact of the type of data which is available in ThermoML. Recall that a value of

0 here corresponds to an activity coefficient of 1 (see Section 1). Specifically, a large portion

of the available data is for transfer of solute molecules to solvents of similar polarity — for

example, transfer of a polar solute to a polar solvent, or (more commonly) transfer of a

nonpolar solute to a nonpolar solvent. If the dataset contained more cases of transfer of a

nonpolar solute to a polar solvent, or a polar solute to a nonpolar solvent, we would expect to

see more values substantially different from 0. Thus, we believe that the IDAC data should

be expanded to include more activity coefficients for compounds of very different polarity

than the solvent, to capture more features of transfers between nonpolar (or weakly polar)

environments to very polar environments.

5 Conclusion

Here we reported our results calculating some 237 different infinite dilution activity coef-

ficients (IDACs) for small molecules in various solvents, and comparing to experiment. In

general, results were quite promising and showed considerable predictive power over a range

of 6 kcal/mol in free energy units.

Our results suggest that IDAC values can potentially play an important role in testing

force fields and assisting with force field parameterization. They are frequently measured

for applications in engineering while other commonly used quantities, such as hydration free

energies (∆Ghyd), are not routinely measured. Furthermore, since IDACs can be calculated

in a straightforward manner using solvation free energy calculations, they can be calculated
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with essentially the same degree of precision as solvation free energies, and with the same

procedures. IDACs actually could be even better than solvation free energies, which involve

transfer between gas and liquid phases, since they are related to transfer between two con-

densed phases – pure solute and pure solvent – which makes them an ideal candidate to test

how a force field represents condensed-phase environments.

Not only are IDAC calculations appealing in principle, but our results suggest that these

calculations can indeed be helpful in identifying force field issues needing attention. Specif-

ically, graphic analysis of experimental and calculated kBT ln γ∞ values enabled the identi-

fication of possible systematic errors in the force field used in this study. We hope that the

evidence shown in this work drives future research in expanding the number of experimental

activity coefficients at infinite dilution in the literature, and in using γ∞ as a new source of

constraints for force field parameterization and method development.
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