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PubChem and ChEMBL beyond Lipinski 

Alice Capecchi, [a] Mahendra Awale, [a] Daniel Probst, [a] and Jean-Louis Reymond*[a] 

 
Abstract: Seven million of the currently 94 million entries in 

the PubChem database break at least one of the four Lipinski 

constraints for oral bioavailability, 183,185 of which are also 

found in the ChEMBL database. These non-Lipinski 

PubChem (NLP) and ChEMBL (NLC) subsets are interesting 

because they contain new modalities that can display 

biological properties not accessible to small molecule drugs. 

Unfortunately, the current search tools in PubChem and 

ChEMBL are designed for small molecules and are not well 

suited to explore these subsets, which therefore remain 

poorly appreciated. Herein we report MXFP (macromolecule 

extended atom-pair fingerprint), a 217-D 

fingerprint tailored to analyze large molecules in terms of 

molecular shape and pharmacophores. We implement MXFP 

in two web-based applications, the first one to visualize NLP 

and NLC interactively using Faerun (http://faerun.gdb.tools/), 

the second one to perform MXFP nearest neighbor searches 

in NLP (http://similaritysearch.gdb.tools/). We show that 

these tools provide a meaningful insight into the diversity of 

large molecules in NLP and NLC. The interactive tools 

presented here are publicly available at http://gdb.unibe.ch 

and can be used freely to explore and better understand the 

diversity of non-Lipinski molecules in PubChem and 

ChEMBL. 
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1 Introduction 

PubChem and ChEMBL are public repositories of molecules 

and their biological activity.[1] While both databases contain a 

vast majority of small molecules, they also contain a small 

percentage of larger biomolecules such as peptides, 

oligonucleotides, oligosaccharides, and large natural products, 

as well as synthetic macromolecules such as peptide nucleic 

acids, fullerene derivatives, modified porphyrins and 

dendrimers. Such large molecules are interesting because 

they might serve as new modalities to address drug design 

problems which cannot be solved by small molecule drugs, for 

example blocking protein-protein interaction sites or delivering 

siRNA cargos into cells.[2] Unfortunately, PubChem and 

ChEMBL do not offer many options to explore these larger 

molecules. For instance, no overview of the database 

contents is provided, and the similarity search tools currently 

available on the respective websites focus on substructures, 

which is not well suited when relatively large molecules such 

as peptides are used as queries. An overview and searching 

across the entire content of this diverse family of large 

molecules is also not possible through specialized databases 

of biomolecules,[3] such as those for peptides,[4] 

oligonucleotides,[5] lipids,[6] or glycans.[7] Furthermore, the 

descriptions of chemical spaces for large molecules to date 

have remained focused on specific classes such as peptides 

and peptide macrocycles.[8]  

Here we address this problem by designing web-based 

interactive tools to explore large molecules in PubChem and 

ChEMBL. We focus on molecules breaking at least one of the 

four Lipinski constraints for oral bioavailability (rule of 5: 

Molecular weight MW ≤ 500, number of hydrogen bond donor 

atoms HBD ≤ 5, number of hydrogen bond acceptor atoms 

HBA ≤ 10, calculated octanol/water partition coefficient clogP 

≤ 5).[9] Although many orally available drugs, including 

peptides in particular, largely exceed Lipinski’s rule of 5 

limits,[10] Lipinski’s criteria represent a useful definition to 

identify molecules that are clearly different from classical small 

molecule drugs. This concerns seven million of the 94 million 

entries in PubChem and 180,185 of the nearly 2 million  

entries in ChEMBL 24.1, which are described herein as the 

non-Lipinski PubChem (NLP) and non-Lipinski ChEMBL 

(NLC).[11]   

To describe NLP and NLC, we aimed to create an 

interactive map of the databases and a similarity search tool 

to identify analogs of user-defined query molecules. We have 

previously reported interactive 2D- and 3D-maps and 

similarity search tools for a variety of small molecule 

databases.[12] In these applications, composition fingerprints 

such as MQN (Molecular Quantum Numbers)[13] and SMIfp 

(SMILES fingerprint)[14] provided readily interpretable maps 

when projected by principal component analysis (PCA).[15] 

Composition fingerprints also provide interesting associations 

between molecules in similarity search tools.[16] However, 

maps and similarity searches based on these composition 

fingerprints are not well suited for larger molecules. For 

example, they do not distinguish between peptides of different 

sequences if they have the same amino acid composition.   

To obtain a meaningful classification of NLP and NLC, we 

use the principle of atom-pair fingerprints, which consider 

pairs of atoms and the distance separating them as structural 

features, and assign these features to bit values either by 

hashing or by counting.[12b, 17] Atom pair fingerprints tailored 

for small molecules such as CATS,[17c] Xfp[12b] and 3DXfp[18] 

have been shown to represent molecular shape and 

pharmacophores. Furthermore, we have already used atom 

pair fingerprints successfully to describe large molecules, in 

one case for detailed comparisons of 3D-models of 
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biomacromolecules such as proteins and nucleic acids in the 

Protein DataBank (PDB),[19] and in the second case to perform 

virtual screening in libraries of peptide dendrimers and bicyclic 

peptides.[20] In the latter case our atom-pair fingerprint 

analysis perceives meaningful differences between peptides 

of identical composition but different sequences.  

Here we introduce a new fingerprint denoted MXFP 

(macromolecule extended atom-pair fingerprint), which counts 

atom pairs in seven different categories up to topological 

distances exceeding 300 bonds. We show that MXFP is well 

suited to describe NLP and NLC in the form of two web-based 

applications. First, we present interactive chemical space 

maps based on MXFP featuring an easily interpretable 

classification of NLP and NLC. Second, we report a similarity 

search tool identifying analogs of any query molecules based 

on MXFP similarity. These web-based tools offer an 

unprecedented insight into the contents of NLP and NLC and 

reveal associations between large molecules which are 

otherwise difficult to identify.  

 
2 Methods 

2.1 Non-Lipinski subsets  

Compound ID (CID) and SMILES were extracted for each 

entry in the PubChem Compound Database (downloaded 

April 5, 2018). For each entry, if more than one molecule was 

present, only the biggest fragment SMILES (based on its 

length) was considered for property and fingerprint 

calculations, however the entire SMILES was preserved. The 

SMILES were protonated (pH 7.4) using ChemAxon 

MajorMicrospecesPlugin (https://chemaxon.com). Hydrogen 

bond donor and acceptor count, cLogP and MW were 

computed for the largest fragment in each entry using RDKit, 

with Lipinski, Descriptors and Crippen modules respectively. 

All molecules violating more than one Lipinski rule were then 

classified as non-Lipinski. This led to 7,132,623 entries 

forming NLP and 183,185 entries forming NLC. 

2.2 Property calculation 

For each NLP and NLC entry atoms were classified into the 

following categories: heavy atom (HA), hydrophobic (HY), 

aromatic (AR), hydrogen bond acceptor and donor (HBA, HBD), 

positively and negatively charged (POS, NEG). AR, and 

HBA/HBD were assigned with, respectively, the ChemAxon 

TopologyAnalyzerPlugin, and the ChemAxon HBDAPlugin. HY 

was assigned to aromatic carbons, halogens, sulfur atoms without 

heteroatom neighbors, and to carbon atoms with at least one 

hydrogen atom neighbor. POS and NEG were assigned based on 

the atom formal charge.  

2.3 Fingerprint calculation 

MXFP is a 217D atom pair topological distance fingerprint 

calculated using an in-house Java program in a similar manner to 

our previously reported atom pair fingerprints 3DP and 2DP 

tailored for peptides and proteins.[19-20] Topological distances are 

measured using the TopologyAnalyzerPlugin provided as part of 

the JChem library by ChemAxon. There are seven atom 

categories: heavy atom (HA), hydrophobic (HY), aromatic atoms 

(AR), hydrogen bond acceptor and donor (HBA, HBD), positively 

charged (POS) and negatively charged (NEG), and only same-

category atom pairs are considered. Each of the 217 values is the 

sum of contributions of atom pairs at a given distance for a given 

atom category. For each category C, all possible atom pairs jk 

contribute the value gjk(di)/sjk to each of the 31 distance bins value 

vCi as described in Equation 1. 

 

Atom pair distances djk are topological distances counted in bonds 

through the shortest path between two atoms. For each atom pair 

jk, gjk(di) is the value at distance di of a Gaussian of 18 % width 

centered on djk (Figure 2a). Gaussian values gjk(di) are sampled at 

the following 31 distance values di: 0, 1, 2, 3, 4, 5, 6, 7.1, 8.4, 9.9, 

11.6, 13.7, 16.2, 19.1, 22.6, 26.6, 31.4, 37.1, 43.7, 51.6, 60.9, 71.8, 

84.8, 100.0, 118.0, 139.3, 164.4, 193.9, 228.9, 270.0, 318.7. Each 

of these 31 gaussian values is normalized to the sum of all 31 

values, sjk, so that each atom pair contributes equally to the 

fingerprint. The sum of normalized gaussian contributions from all 

atom pairs of a certain atom category at distance di, is normalized 

by the number of category atoms to the power 1.5 to reduce the 

sensitivity of the fingerprint to molecule size, multiplied by 100 and 

rounded to unity to give the final fingerprint bit value vci. The 31 

fingerprint bit values from each of the 7 atom categories are finally 

corrected by a category specific factor and joined, yielding the 

217D fingerprint vector. In this work, we corrected the fingerprint 

bit values for the heavy atoms (HA) and aromatic atom (AR) 

categories by a factor 0.5 because the bit values were too high 

relative to the other atom categories. We calculated MXFP for the 

largest fragment in each NLP entry, but retained the complete 

SMILES in each entry.  

2.4 Linearity calculation 

The linearity of molecule m, L(m), is a descriptor derived from 

MXFP. L(m) is defined as the ratio of w(m) and w(a), where a 

is the linear alkane with the same number of heavy atoms as 

m, and w is the weighted mean of MXFP HA category, 

calculated according to equation (2). 

 

2.5 Similarity map calculation 

Reference molecules were selected by sampling NLP across 

value triplets (HAC, AR/HAC, linearity) covering the range of 
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each of these three descriptors in 10% value increments. One 

compound was selected at random in each of the 1,000 

resulting value triplets, which provided 324 reference 

molecules (676 of the value triplets did not contain any entry). 

For each database entry, the city-block distance in the MXFP 

chemical space, CBDMXFP, to each of these 324 reference 

molecules was then calculated, giving a 324D NLP similarity 

space. The same approach was used to select reference 

molecules for NLC. Of the 1,000 triplets, 800 were discarded 

as they were not occupied by any entry, leading to a 200D 

NLC similarity space. The 324 NLP and 200 NLC references 

have very diverse structures (SMILES are provided in the SI).    

2.6 Visualization in Faerun 

The first three PCA components of the NLP and NLC similarity 

spaces were visualized in Faerun (variance covered, 

respectively: PC1 49%, PC2 28%, PC3 8%, and PC1 70%, 

PC2 15%, PC3 6%). A plain text file containing CID, SMILES, 

fingerprint, and properties of each NLP entry was processed 

using the Faerun preprocessing chain, which also includes a 

PCA service. Then Faerun was run using a docker container 

(https://github.com/reymond-group/faerun). Color coding of 

the Fearun map was enabled for HAC, HY/HAC (hydrophobic 

atoms fraction), AR/HAC (aromatic atom fraction), HBA/HAC 

(H-bond acceptor fraction), HBD/HAC (H-bond donor fraction), 

POS/HAC (positive charged atoms fraction), NEG/HAC 

(negative charged atoms), C/HAC (carbon fraction), RBC 

(rotatable bond count), CY/HAC (cyclic atom fraction), MW, 

HBA, HBD and clogP. Fraction values of atom categories are 

calculated from MXFP values, carbon fraction, rotatable 

bonds, cyclic fraction, MW, HBA, HBD and clogP are 

calculated with RDKit.  

2.7 NLP-NLC comparison 

20,000 entries were randomly picked from NLP or NLC and 

cut in two subsets of 10,000 entries each, A and B. Five series 

of 10,000 CBDMXFP distances were then calculated as follows: 

a) ANLP to the entire NLC, keeping the smallest non-zero value 

in each case; b) ANLC to the entire NLC, keeping the smallest 

non-zero value in each case; c) ANLP to BNLP; d) ANLC to BNLC; 

e) ANLP to ANLC. 

2.8 Similarity Search 

The similarity search tool is a Python Flask 

(http://flask.pocoo.org/) app which uses Annoy 

(https://github.com/spotify/annoy) to search the MXFP NLP 

and NLC chemical spaces. Annoy is a C++ library with Python 

bindings developed by Erik Bernhardsson. Given its high 

speed and low memory requirements, Annoy was used to 

create two separate Annoy search files of NLP and NLC (for 

both, using n_trees = 50, matrix = Manhattan). In each 

similarity search instance, the user chooses to search NLP or 

NLC, and the correspondent Annoy file is selected. The Annoy 

file is used by the web app (with search_k = default) to retrieve 

the compound IDs of a pool of nearest neighbors (the no. of 

molecules to retrieve is a user choice). Then the compound 

IDs are associated back to the correspondent PubChem or 

ChEMBL SMILES. The results are displayed using 

SmilesDrawer.[21] The Similarity Search code is available open 

source at https://github.com/reymond-group/SimilaritySearch. 

3 Results and Discussion 

3.1 Non-Lipinski subsets 

We define non-Lipinski molecules as those breaking at least 

one of the four Lipinski criteria (MW ≤ 500, HBD ≤ 5, HBA ≤ 

10, clogP ≤ 5). For each PubChem and ChEMBL entry we 

applied the analysis to the largest molecular fragment, 

ignoring counter ions in the case of salts. When applied to the 

currently 94 million PubChem entries, these criteria selected 

7,132,623 entries, which are defined here as NLP. NLP is a 

diverse set, with MW spanning from 181.15 Da to 19511.8 Da, 

clogP from -219.4 to +132.4, HBA from 0 to 442, and HBD 

from 0 to 235 (Figure 1, in green). The same analysis applied 

to ChEMBL led to 183,185 molecules, defined here as NLC, 

with MW spanning from 298.1 to 10173.49 Da, clogP from -

67.9 to +101.8, HBA from 0 to 286, and HBD from 0 to 124 

(Figure 1, in magenta). 

 
Figure 1. 1D-Histrograms of NLP (green) and NLC (magenta). a) MW, 

b) clogP, c) HBA, d) HBD. the vertical red dashed line indicates 

Lipinski’s rule thresholds (MW = 500 Da, clogP = 5, HBA = 10, 

HBD = 5). 

 

3.2 Macromolecule extended atom-pair fingerprint MXFP 

MXFP is a 217D fingerprint counting atom-pairs using a fuzzy 

approach to assign atom-pairs to distance bins as done 

previously in our analysis of proteins and peptides.[19-20] In the 

case of proteins, we used an atom-pair fingerprint called 3DP 

which considers through-space distances between atoms in 

experimental 3D-structures from the Protein Databank.[19] To 

analyze peptides, we adapted our approach to use topological 

distances between residues in a related fingerprint called 2DP, 

with all atoms in a residue positioned at the α-carbon atom.[20a] For 

both fingerprints we consider four categories of atom pairs 

deemed essential for peptides, namely all heavy atoms (HA), 

hydrophobic (HY), positively charged (POS), and negatively 

charged atoms (NEG). For the MXFP presented here, we 

compute exact topological distances between atoms, which is 

suitable for any molecule. Furthermore, we use seven atom 

categories by additionally computing aromatic (AR), H-bond 

MW clogP

HBA count HBD count

a) b) 

c) d) 
MW
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donor (HBD), and H-bond acceptor atoms (HBA), which are 

important to differentiate molecules such as polycyclic 

aromatic hydrocarbons, oligosaccharides, and 

oligonucleotides. As for 3DP and 2DP, we do not consider 

cross-category atom pairs in MXFP.   

MXFP values are calculated using the same approach and 

the same parameters as used previously for 3DP and 2DP. In 

detail, each atom pair is converted to a Gaussian of 18 % 

width centered at the atom pair topological distance, which is 

the shortest path between the two atoms counted in bonds. 

This Gaussian is then sampled at 31 distances di spanning 

from d0 = 0 to d30 = 317.8 bonds at exponentially increasing 

intervals (Figure 2a). The sampled Gaussian values are 

normalized and added to the MXFP distance bins for the 

corresponding atom-pair category, and distance bins of each 

category are normalized to size (see Methods and Equation 1 

for details). Sampling atom-pair Gaussians at exponentially 

increasing distances allows to describe molecules up to a very 

large size using only a limited number of dimensions in the 

atom pair fingerprint. The approach furthermore partly erases 

differences between atom pairs separated by a similar number 

of bonds at large distances, which favors the perception of 

global molecular shape over structural detail.  

 

 
Figure 2. (a) In red Gaussian gjk for an atom pair at topological distance djk = 220. In blue the 31 distances d0 to d30 at which gjk is sampled for 

calculating the contributions to MXFP. (b) Distribution of database entries in the unique MXFP-value bins (NLP in blue, NLC in green) and in the 

Faerun bins (NLP in orange, NLC in magenta). (c) Values of the first 31 MXFP bits for C70 Fullerene (magenta) and C70 linear alkane (grey). 

 

The 7,132,623 molecules in NLP correspond to 4,753,197 

unique MXFP value bins. The occupancy of the MXFP bins 

follows a power law distribution with 75% of the bins 

containing only a single NLP entry (blue line, Figure 2b). A 

similar molecules/MXFP-bins distribution is found for NLC, 

where the 183,185 molecules correspond to 153,616 unique 

MXFP values bins (green line, Figure 2b). The multiply 

occupied MXFP bins mostly contain entries sharing the same 

largest molecular fragment, or molecules with different 

structures but identical MXFP values such as diastereomeric 

carbohydrates (MXFP does not consider stereochemistry), or 

molecules with identical frameworks but different degrees of 

unsaturation such as lipids with fatty acids of equal length but 

different numbers of double bonds (MXFP does not 

distinguish non-aromatic carbon atoms with different degree 

of unsaturation). Note that grouping salts of the same 

compound with different counter ions, diastereoisomers of the 

same molecule or molecules only differing in the number of 

non-aromatic double bonds, makes perfect sense in the 

perspective of an analysis aiming at providing an overview of 

the database rather than a unique identifier for each entry. 

Atom-pair fingerprints such as MXFP perceive molecular 

shape because spherical or cyclic molecules have a larger 

number of atom-pairs separated by short distances compared 

to linear molecules of the same size. Here we define a linearity 

descriptor L as a measure of topological molecular shape 

derived from the MXFP fingerprint. The linearity L(m) of 

molecule m is defined as the ratio of the weighted mean of the 

heavy atom pair bin index in the MXFP of molecule m, w(m), 

to the same value for a linear alkane a with the same number 

of heavy atoms, w(a) (equation 2). The linearity value is 1 for 

the linear alkane, and lower for more globular molecules, e.g. 

L(fullerene) = 0.4 (Figure 2c). The linearity does not depend 

on building a 3D-model of the molecule as for the principal 

moments of inertia,[22] and is applicable to any molecule 

independent of its conformational flexibility.  

3.3 MXFP chemical space visualization in Faerun 

To lower the dimensionality of MXFP for visualizing NLP and 

NLC, we first attempted a direct principal component analysis 

(PCA) of the two datasets, however the first three PCs only 

gave partial coverage of data variance (48 % and 49%, 

respectively). We therefore constructed a representation 

based on the principle of similarity mapping.[23] Similarity 

mapping involves calculating similarities to a series of 

reference molecules in order to create a high-dimensional 

similarity fingerprint, which is then projected to lower 

dimensions by principal component analysis (PCA). The 

approach is interesting because the calculation of similarity 

maps is much faster than other dimensionality reduction 

methods for visualizing chemical space,[24] and is therefore 

applicable to very large datasets. Furthermore, many high-

dimensional fingerprints, including MXFP, do not project well 
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into lower dimensions if PCA is applied directly to the 

fingerprint values, even when adding molecules with extreme 

properties, called satellites, as introduced by Oprea and 

coworkers.[25] However the projection of the corresponding 

similarity space often produces good results. 

Similarity maps calculated by randomly choosing a few 

hundred reference molecules usually provide an 

approximately constant representation which is independent 

of the choice of references. However, the representation can 

be optimized for specific purposes by selecting the reference 

molecules, for example series of active compounds to 

visualize a structure-activity relationship study,[26] or 

references obtained by sampling regularly across important 

molecular properties to produce an ordered overview of a 

dataset.[27] Here we constructed similarity maps by calculating 

MXFP similarities to reference molecules selected across the 

range of MW, aromaticity and linearity covered by the NLP 

and NLC datasets, and then performing PCA (see methods). 

The procedure gave 3D-similarity maps covering 85% (NLP) 

and 91% (NLC) of the data variance, which was judged as 

sufficient to provide a good overview of the databases.   

The 3D-similarity maps were then imported into Faerun, 

an open-source application recently reported by our group for 

rendering 3D-data interactively on the web.[12g] In this 

application each molecule is represented as a sphere, color-

coded by a selected property, while its molecular structure is 

displayed on hover using SmilesDrawer, a compact molecular 

drawing program.[21] These interactive 3D-maps enable rapid 

browsing through NLP and NLC to gain an overview of their 

contents. As for the MXFP space itself, the distribution of NLP 

and NLC entries into Faerun bins follows a power law (Figure 

2b, NLP orange line, NLC magenta line). The high-resolution 

NLP map contains a total of 1,413,817 bins, corresponding to 

an average of five molecules per bin. Multiple occupancies per 

bin in the NLP similarity map occur in part for the same 

reasons as for the MXFP bins, but also due to rounding of 

coordinates in the similarity map since bins (spheres) are 

placed on a 500 × 500 × 500 grid. The similarity map of NLC 

contains 123,878 bins, with an average of 1 molecule per bin. 

Note that each bin (sphere) in the Faerun map can be opened 

in a separate tab showing the distribution of molecules in the 

similarity space at higher resolution. 

The MXFP-similarity 3D-maps of NLP and NLC are best 

inspected by using the web-based view 

(http://faerun.gdb.tools/). We have color-coded these maps 

according to different descriptors from lowest (blue) to highest 

(magenta) value (see methods for details). A selection of 

images of these color-coded representations illustrate the 

organization of NLP (Figure 3) and NLC (Figure 4) in the 

MXFP similarity space.  

NLP forms a curved 3D-shape resembling a wave in which 

the smallest molecules are grouped on one side of the wave’s 

head, intermediate sized molecules occupy the rest of the 

wave’s head and the wave’s body, and the largest molecules 

form the wave’s tail, as illustrated by color-coding according 

to molecule size (Figure 3a). Color-coding by aromatic atom 

fraction shows that the outer shell of the wave’s head contains 

molecules with the highest fraction of aromatic atoms 

(magenta), which are mostly polycyclic hydrocarbons (Figure 

3b). The same view shows that the inner shell along the entire 

wave contains molecules with very few aromatic carbon atoms 

(blue), which comprise many linear alkanes, 

polyethyleneglycols, polyamines, as well as peptides. The 

intermediate layer contains molecules with intermediate 

aromatic atom fraction values (green), which are linker-

extended drug-type molecules in the wave’s head containing 

the lower size range, and oligonucleotides at the edge of the 

wave’s tail containing the largest molecules. Oligonucleotides 

at the wave’s tail are well visible in the map, color-coded by 

the fraction of negatively charged atoms (Figure 3c). This map 

also shows a group of smaller and more compact anionic 

molecules within the wave’s head, which correspond to a 

variety of aliphatic polyphosphates and polycarboxylates.  

 The NLP similarity map also separates molecules 

according to their shape as measured by the MXFP derived 

linearity descriptor L discussed above (Figure 3d). The narrow 

blue region at the wave’s head corresponds to globular 

molecules with a high percentage of aromatic carbons such 

as fullerenes. A second narrowly defined region at the center 

of the inner shell is colored in magenta and features strictly 

linear molecules containing long alkyl or polyethylene-glycol 

chains without any branching points. Peptides and 

oligonucleotides appear at intermediate values of linearity 

(yellow), which reflects the fact that these molecules are 

multiply branched by the attachment of amino acid side-chains 

(peptides) and nucleosides (oligonucleotides) along the main 

peptide respectively phosphodiester chain. 

The different compound families are nicely separated by 

color-coding by the fraction of carbon atoms (Figure 3e). The 

figure shows examples of polycyclic hydrocarbons 

(exabenzocoronene, carbon fraction = 1.0, magenta), 

carbohydrates (difucosyllacto-N-hexaose, carbon fraction = 

0.56, blue), peptides (exenatide, carbon fraction = 0.62, 

green) and oligonucleotides (mipomersen sodium, carbon 

fraction = 0.50, blue). Note that a close inspection of the MXFP 

similarity map of NLP using Fearun reveals many entries that 

are obvious mistakes in the PubChem database. For example, 

most mipomersen structures in PubChem are not drawn as 

the correct phosphorothioates but as the incorrect phosphate 

thioesters. Further structures of doubtful identity are also 

visible that contain linear chains of nitrogen and oxygen atoms. 

NLC forms a similar but more sparsely populated wave-

shaped 3D-similarity map. As with NLP, molecular size 

increases when navigating the map from the wave’s head to 

its tail (Figure 4a, HAC color code). Aromaticity is higher in the 

outer shell of the wave head and diminishes upon traversing   

http://faerun.gdb.tools/
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Figure 3. Similarity map of the NLP chemical Space colored using HAC (a), AR/HAC (b), NCHRG/HAC (c), linearity (d), and carbon fraction (e). 

In d are shown different rotation of the map. In e is shown the placement and the structure of hexabenzocoronene, difucosyllacto-N-hexaose, 

exenatide, and mipomersen sodium, as representative compounds of, respectively, polycyclic hydrocarbons, carbohydrates, peptides, and 

oligonucleotides. 
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Figure 4. Similarity map on the MXFP NLC chemical Space colored using HAC (a), AR/HAC (b), NCHRG/HAC (c), linearity (d), and carbon 

fraction (e). In d are shown different rotation of the map. In e is shown the placement and the structure of hopenyl Palmitate, acemannan, 

pramlintide, andagatolimod, as representative compounds of, respectively, high carbon fraction molecules, carbohydrates, peptides, and 

oligonucleotides. 
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the map towards its inner shell (Figure 4b, AR/AHC color 

code). Compared to NLP (Figure 3b) the highly aromatic outer 

shell is less populated. Browsing this area in Fearun reveals 

an almost total absence of polycyclic hydrocarbons. As for 

NLP, the inner shell of the wave-shaped map contains mostly 

polyethylene-glycols, polyamines, and peptides, however the 

linear alkanes seen in NLP are mostly missing. As in NLP, the 

intermediate shell at the edge of the wave’s tail with 

intermediate aromatic fraction (in green) contains 

oligonucleotides. Oligonucleotides are also well visible in blue 

using the NEG/HAC color code (Figure 4c). In terms of 

molecular shape, color coding by linearity L shows a similar 

distribution as for NLP (Figure 4d).  

As with NLP, coloring the NLC similarity map by carbon 

fraction separates different compound families (Figure 3e). 

The figure shows examples of steroids (hopenyl palmitate, 

carbon fraction = 0.96, magenta), carbohydrates (acemannan, 

carbon fraction = 0.57, blue), peptides (pramlintide, carbon 

fraction = 0.62, green) and oligonucleotides (agatolimod, 

carbon fraction = 0.49, blue). 

3.5 Comparing NLC with NLP 

Because ChEMBL is one of the sources that feeds into 

PubChem, NLC represents a small (2.7%) subset of NLP.[28] 

To investigate if the remaining 97,8% of NLP cover a broader 

or different chemical space compared to this small NLC 

subset, we analyzed the CBDMXFP distance distribution 

between 10,000 randomly picked NLP molecules and their 

NLC nearest neighbors, between NLC nearest neighbors, and 

between random pairs in NLP, NLC, and between NLP-NLC 

cross-pairs (Figure 5).  

 

 
Figure 5. Distribution of CBDMXFP distances between NLC and NLP 
molecules for nearest neighbors (NNs) and random pairs (RPs). See 
text and methods for details.   

 
The analysis shows that 50% of NLP molecules have a 

nearest neighbor in NLC within CBDMXFP 170, and more than 

90% within CBDMXFP 300 (Figure 5, green line), which is only 

a slightly larger distance distribution compared to the distance 

separating NLC nearest neighbors (Figure 5, magenta line). 

These nearest neighbor distances are much shorter than 

distances between random pairs of molecules within NLP 

(Figure 5, cyan line), within NLC (Figure 5, orange line), or 

between NLP and NLC molecules (Figure 5, blue line). We 

conclude that NLC and NLP cover a similarly broad chemical 

space, that NLC represents an almost random subset of NLP, 

and that NLP, although being 37-fold larger than NLC, does 

not cover a significantly different chemical space.  

3.6 MXFP similarity search 

PubChem currently offers a similarity search window in its 

beta version, which provides meaningful analogs of most 

query molecules. Unfortunately, this search option is designed 

for small molecules and fails to return any analog or does not 

return meaningful analogs when challenged with large 

molecules, most often when the query molecule is not itself 

present in PubChem. The same issue is experienced using 

the search function in ChEMBL. Examples of failed searches 

are shown in Table S1.  

 Here we designed an MXFP-similarity search tool for NLP 

and NLC as a web-portal using the approximate nearest 

neighbor search Annoy (Approximate Nearest Neighbors Oh 

Yeah, https://github.com/spotify/annoy) (Figure 6). This 

search option allows the user to browse NLP or its subset NLC 

and returns hundreds of MXFP-analogs of a query molecule 

in approximately 30 second per query. The similarity search 

tool is available at http://similaritysearch.gdb.tools/, and 

results are displayed on-screen using SmilesDrawer[21] and 

can be downloaded as a SMILES list. 

 The MXFP similarity search often returns results 

comparable to those provided by the PubChem and ChEMBL 

webpages whenever matched molecules have comparable 

substructures. However, compared to the PubChem and 

ChEMBL websites, which often fail to return results for 

unusual queries, MXFP similarity search provides a list of 

analogs in all cases. Analogs identified by MXFP similarity 

often comprise molecules with an overall molecular shape 

comparable to the query molecules, but with different 

structural composition. A good example is provided by 

searching NLP and NLC for analogs of T7, an antimicrobial 

peptide dendrimer with an unusual multi-branched peptide 

architecture which is active against multidrug resistant Gram-

negative bacteria.[20c] While the PubChem and ChEMBL 

webpages do not find any meaningful analogs for this query, 

returning smaller and linear peptides, our MXFP similarity 

search points to related polycationic dendritic molecules of 

very different detailed structure. Besides many structures 

coming from patents, one example of interest at rank 4 in the 

search is CID 49775868, which is a peptide derivatized 

dendrimer of overall similar size, charge and shape as T7, but 

with very different detailed structure, reported to be active 

against HIV (Figure 6).[29] 
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Figure 6. MXFP web interface. MXFP similarity search results for peptide dendrimer T7. 
 

4 Conclusions  

Here we focused on developing interactive tools to visualize 

and search large molecules in PubChem and ChEMBL 

breaking at least one of Lipinski’s constraints for bioavailbility, 

defined here as NLP (7 million molecules) and NLC (180 185 

molecules). We defined a 217D atom-pair fingerprint, MXFP, 

to describe these molecules in terms of molecular shape and 

pharmacophores. While MXFP is in principle suitable to 

describe molecules across the entire size range, here we 

focused on using this fingerprint to represent NLP and NLC in 

an interactive 3D-map and to enable a similarity search tool. 

These tools allow to rapidly browse through these diverse 

collections of macromolecules with unprecedented efficiency 

and identify interesting compound families and similarities 

between molecules which are otherwise difficult to perceive. 

The interactive tools presented here are publicly available at 
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http://gdb.unibe.ch and can be used freely to explore and 

better understand the diversity of non-Lipinski molecules in 

PubChem and ChEMBL. 

 

Acknowledgements 

This work was supported by a grant from the Vice-

Rectorate Development of the University of Bern to A. C., and 

by the Swiss National Science Foundation. We thank 

ChemAxon Pvt. Ltd. for providing free academic and web 

licenses for their products. 

 

References 
 
[1] a) A. Gaulton, A. Hersey, A. Karlsson, D. Mendez, E. Cibrián-

Uhalte, F. Atkinson, G. Papadatos, I. Smit, J. P. Overington, 

J. Chambers, L. J. Bellis, M. Davies, M. Nowotka, N. Dedman, 

P. Mutowo, A. R. Leach, A. P. Bento, M. P. Magariños, 

Nucleic Acids Res. 2016, 45, D945-D954; b) A. Gindulyte, B. 

A. Shoemaker, B. Yu, J. He, J. Zhang, J. Chen, L. Zaslavsky, 

P. A. Thiessen, Q. Li, S. He, S. Kim, T. Cheng, E. E. Bolton, 

Nucleic Acids Res. 2018, 47, D1102-D1109. 

[2] H. Waldmann, E. Valeur, S. M. Gueret, H. Adihou, R. 

Gopalakrishnan, M. Lemurell, T. N. Grossmann, A. T. 

Plowright, Angew. Chem., Int. Ed. Engl. 2017, doi: 

10.1002/anie.201611914. 

[3] D. J. Rigden, Xosé M. Fernández, Nucleic Acids Res. 2018, 

47, D1-D7. 

[4] a) T. Shtatland, D. Guettler, M. Kossodo, M. Pivovarov, R. 

Weissleder, BMC Bioinformatics 2007, 8, 280; b) J. Wang, X. 

Jiang, Y. Wang, T. Yin, X. Xiao, Z. Xue, D. He, Database 

2018, doi: 10.1093/database/bay1038. 

[5] D. E. Newburger, G. Natsoulis, S. Grimes, J. M. Bell, R. W. 

Davis, S. Batzoglou, H. P. Ji, Nucleic Acids Res. 2012, 40, 

D1137-D1143. 

[6] a) E. Fahy, S. Subramaniam, H. A. Brown, C. K. Glass, A. H. 

Merrill, Jr., R. C. Murphy, C. R. Raetz, D. W. Russell, Y. 

Seyama, W. Shaw, T. Shimizu, F. Spener, G. van Meer, M. 

S. VanNieuwenhze, S. H. White, J. L. Witztum, E. A. Dennis, 

J. Lipid Res. 2005, 46, 839-861; b) T. C. Kuo, Y. J. Tseng, 

Bioinformatics 2018, 34, 2982-2987. 

[7] a) E. Gasteiger, F. Lisacek, J. Mariethoz, K. F. Aoki -

Kinoshita, M. P. Campbell, R. Peterson, Y. Akune, N. H. 

Packer, Nucleic Acids Res. 2013, 42, D215-D221; b) J. Birch, 

M. R. Van Calsteren, S. Perez, B. Svensson, Carbohydr. 

Polym. 2019, 205, 565-570; c) O. Clerc, J. Mariethoz, A. 

Rivet, F. Lisacek, S. Perez, S. Ricard-Blum, Glycobiology 

2019, 29, 36-44. 

[8] a) W. M. Berhanu, M. A. Ibrahim, G. G. Pillai, A. A. Oliferenko, 

L. Khelashvili, F. Jabeen, B. Mirza, F. L. Ansari, I. ul -Haq, S. 

A. El-Feky, A. R. Katritzky, Beilstein J. Org. Chem.  2012, 8, 

1146-1160; b) B. I. Díaz-Eufracio, O. Palomino-Hernández, 

R. A. Houghten, J. L. Medina-Franco, Mol. Div. 2018, 22, 

259-267. 

[9] C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Adv. 

Drug Delivery Reviews 1997, 23, 3-25. 

[10] a) G. B. Santos, A. Ganesan, F. S. Emery, 

ChemMedChem 2016, 11, 2245-2251; b) B. C. Doak, B. Over, 

F. Giordanetto, J. Kihlberg, Chem. Biol. 2014, 21, 1115-

1142; c) V. Poongavanam, B. C. Doak, J. Kihlberg, Curr. 

Opin. Chem. Biol. 2018, 44, 23-29; d) D. A. DeGoey, H.-J. 

Chen, P. B. Cox, M. D. Wendt, J. Med. Chem. 2018, 61, 

2636-2651. 

[11] a) Bradley C. Doak, B. Over, F. Giordanetto, J. Kihlberg, 

Chem. & Biol. 2014, 21, 1115-1142; b) P. D. Leeson, Adv. 

Drug Delivery Reviews 2016, 101, 22-33. 

[12] a) M. Awale, R. van Deursen, J. L. Reymond, J. Chem. 

Inf. Model. 2013, 53, 509-518; b) M. Awale, J. L. Reymond, 

Nucleic Acids Res. 2014, 42, W234-W239; c) J. L. Reymond, 

Acc. Chem. Res. 2015, 48, 722-730; d) M. Awale, J. L. 

Reymond, J. Cheminform. 2016, 8, 25; e) M. Awale, J. L. 

Reymond, J. Cheminform. 2017, 9, 11; f) M. Awale, D. Probst, 

J. L. Reymond, J. Chem. Inf. Model. 2017, 57, 643-649; g) D. 

Probst, J. L. Reymond, Bioinformatics 2018, 34, 1433-1435. 

[13] K. T. Nguyen, L. C. Blum, R. van Deursen, J.-L. Reymond, 

ChemMedChem 2009, 4, 1803-1805. 

[14] J. Schwartz, M. Awale, J.-L. Reymond, J. Chem. Inf. 

Model. 2013, 53, 1979-1989. 

[15] R. van Deursen, L. C. Blum, J. L. Reymond, J. Chem. Inf. 

Model. 2010, 50, 1924-1934. 

[16] L. C. Blum, R. van Deursen, J. L. Reymond, J. Comput.-

Aided Mol. Des. 2011, 25, 637-647. 

[17] a) R. E. Carhart, D. H. Smith, R. Venkataraghavan, J. 

Chem. Inf. Comput. Sci. 1985, 25, 64-73; b) R. P. Sheridan, 

M. D. Miller, D. J. Underwood, S. K. Kearsley, J. Chem. Inf. 

Comput. Sci. 1996, 36, 128-136; c) G. Schneider, W. 

Neidhart, T. Giller, G. Schmid, Angew. Chem., Int. Ed. Engl. 

1999, 38, 2894-2896. 

[18] M. Awale, X. Jin, J. L. Reymond, J. Cheminf. 2015, 7, 3. 

[19] X. Jin, M. Awale, M. Zasso, D. Kostro, L. Patiny, J. L. 

Reymond, BMC Bioinformatics 2015, 16, 339. 

[20] a) I. Di Bonaventura, X. Jin, R. Visini, D. Probst, S. Javor, 

B.-H. Gan, G. Michaud, A. Natalello, S. M. Doglia, T. Kohler, 

C. van Delden, A. Stocker, T. Darbre, J.-L. Reymond, Chem. 

Sci. 2017, 8, 6784-6798; b) I. Di Bonaventura, S. Baeriswyl, 

A. Capecchi, B. H. Gan, X. Jin, T. N. Siriwardena, R. He, T. 

Kohler, A. Pompilio, G. Di Bonaventura, C. van Delden, S. 

Javor, J. L. Reymond, ChemComm 2018, 54, 5130-5133; c) 

T. N. Siriwardena, A. Capecchi, B. H. Gan, X. Jin, R. He, D. 

Wei, L. Ma, T. Kohler, C. van Delden, S. Javor, J. L. 

Reymond, Angew. Chem., Int. Ed. Engl. 2018, 57, 8483-8487. 

[21] D. Probst, J. L. Reymond, J. Chem. Inf. Model. 2018, 58, 

1-7. 

[22] W. H. Sauer, M. K. Schwarz, J. Chem. Inf. Comput. Sci. 

2003, 43, 987-1003. 

[23] a) A. S. Raghavendra, G. M. Maggiora, J. Chem. Inf. 

Model. 2007, 47, 1328-1240; b) J. L. Medina-Franco, G. M. 

Maggiora, M. A. Giulianotti, C. Pinilla, R. A. Houghten, Chem. 

Biol. Drug. Des. 2007, 70, 393-412; c) M. Awale, J. L. 

Reymond, J Chem Inf Model 2015, 55, 1509-1516; d) J. J. 

Naveja, J. L. Medina-Franco, F1000Res 2017, 6, Chem Inf 

Sci-1134. 

[24] a) A. M. Wassermann, M. Wawer, J. Bajorath, J. Med. 

Chem. 2010, 53, 8209-8923; b) H. A. Gaspar, I. I. Baskin, G. 

Marcou, D. Horvath, A. Varnek, J. Chem. Inf. Model. 2014, 

55, 84-94; c) T. Sander, J. Freyss, M. von Korff, C. Rufener, 

J. Chem. Inf. Model. 2015, 55, 460-473. 

http://gdb.unibe.ch/


                       

 11 

[25] a) T. I. Oprea, J. Gottfries, J. Comb. Chem. 2001, 3, 157-

166; b) J. Rosen, J. Gottfries, S. Muresan, A. Backlund, T. I. 

Oprea, J. Med. Chem. 2009, 52, 1953-1962. 

[26] C. Delalande, M. Awale, M. Rubin, D. Probst, L. C. 

Ozhathil, J. Gertsch, H. Abriel, J.-L. Reymond, Eur. J. Med. 

Chem. 2019, 166, 167-177. 

[27] R. Visini, J. Arus-Pous, M. Awale, J. L. Reymond, J. 

Chem. Inf. Model. 2017, 57, 2707-2718. 

[28] a) S. Kim, P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, 

A. Gindulyte, L. Han, J. He, S. He, B. A. Shoemaker, J. Wang, 

B. Yu, J. Zhang, S. H. Bryant, Nucleic Acids Res. 2016, 44, 

D1202-D1213; b) D. Yonchev, D. Dimova, D. Stumpfe, M. 

Vogt, J. Bajorath, Drug Discov. Today 2018, 23, 1183-1186. 

[29] I. Bon, D. Lembo, M. Rusnati, A. Clo, S. Morini, A. 

Miserocchi, A. Bugatti, S. Grigolon, G. Musumeci, S. 

Landolfo, M. C. Re, D. Gibellini, PLoS One 2013, 8, e76482. 

 

 


