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Abstract

Modern molecular mechanics force fields are widely used for modelling the dynam-

ics and interactions of small organic molecules using libraries of transferable force field

parameters. However, for molecules outside the training set, the parameters are poten-

tially inaccurate and it may be preferable to derive molecule-specific parameters. Here

we present an intuitive parameter derivation toolkit, QUBEKit (QUantum mechan-

ical BEspoke Kit), which enables the automated generation of system-specific small

molecule force field parameters directly from quantum mechanics. QUBEKit is writ-

ten in python and combines bond, angle, torsion, charge and Lennard-Jones parameter

derivation methodologies alongside a method for deriving the positions and charges

of off-center virtual sites from the partitioned quantum mechanical electron density.

As a proof of concept, we have re-derived a complete set of parameters for 109 small

organic molecules, and assessed the accuracy by comparing computed liquid proper-

ties with experiment. QUBEKit gives competitive results when compared to standard

transferable force fields, with mean unsigned errors of 0.024 g/cm3, 0.79 kcal/mol and

1.17 kcal/mol for the liquid density, heat of vaporization and free energy of hydration

respectively. This indicates that the derived parameters are suitable for molecular

modeling applications, including computer-aided drug design.
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Introduction

Complex biological processes such as protein-ligand binding,1,2 enzyme catalysis, and protein

folding are often best understood when studied at the atomic scale which has driven an

increase in the popularity of molecular mechanics (MM) and computational experiments.

The ability of MM to model systems ranging in sizes from thousands to millions of atoms

makes it indispensable across a wide range of sciences from biology to materials physics. The

key to the general success of MM stems from the force field (FF) and its functional form,

which allow the approximate description of the potential energy surface of a system as a

simple function of its geometry.3

Transferable FFs such as GAFF (general AMBER FF),4 CGENFF (CHARMM general

FF)5 and OPLS-AA6 are designed to be used in conjunction with their respective highly

optimized and benchmarked biological FF counterpart. They are primarily used in simulat-

ing drug-like components of systems in, for example, computer-aided drug design, and give

non-expert users the ability to parametrize highly diverse expanses of chemical space at very

little computational cost. The requirement that a FF be transferable stems from two key

points, 1) the parametrization process is a complex and error-prone task that is daunting to

the inexperienced user, and 2) an attempt to accurately parametrize all of chemical space

would be inconceivable. It is therefore generally assumed that as long as a wide selection

of chemical space is covered in the parametrization set then these results can readily be

applied to new molecules. Each of the general FFs use libraries composed of thousands of

pre-tabulated parameters,7 intensively fit to experimental and QM data for a set of small

molecules that make up their training set. The parametrization goal of these particular FFs

focusses on recreating experimental data concerning the condensed phase thermodynamic

properties of small organic molecules, such as liquid densities, heats of vaporization and free

energies of hydration.5 This parametrization philosophy follows sound logic as these prop-

erties describe the FF’s ability to accurately characterize the non-bonded interactions that

are also key in protein-ligand binding events. Furthermore, the accuracy and applicability
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of transferable FFs are aided by efforts such as ForceBalance8 and the Open Force Field

Consortium,9 which aim to expand the areas of chemical space that can be automatically

parametrized via well-documented protocols.

However, no matter how much effort is put into parameterizing small molecules against

experimental data, the assumption of transferability remains. That is, the assumption that

parameters that are optimal for small organic molecules are also suitable for larger molecules,

such as drug-like compounds or even biomolecules. It is well-established that charges polar-

ize in response to their environment, for example the presence of electron donating or with-

drawing groups.10 Indeed, users of transferable FFs typically derive system-specific charges

to account for this polarization, either from semi-empirical or QM calculations.11–13 More-

over, it is becoming increasingly apparent that van der Waals parameters themselves show

interesting environment-dependent responses.14,15 Accounting for changes in van der Waals

parameters with changes in FF charges, or the atomic environment, is beyond the scope of

most transferable FF protocols.

A fundamentally different approach to FF parameterization is to instead derive the FF

directly from quantum mechanical (QM) simulations of the molecule under study. The po-

tential of using such calculations to develop intermolecular FF potentials for small molecules

has long been recognized.16–20 Here, instead of assuming transferability, the user is able to

derive parameters that are specific to their system using a range of automated protocols.

Perhaps the most conceptually straightforward approach to QM-based intermolecular force

field derivation is to generate many configurations of the system, and fit force field parame-

ters to reproduce the QM energies and/or forces.21–24 This approach may be applied to quite

large molecules using the fragmentation reconstruction method, but extensive sampling of

the intermolecular potential energy surface is required for accurate parameter derivation.25

Alternatively, ab initio force fields have been developed that break down the QM interaction

energy into physically motivated components using intermolecular perturbation theory.26–28

These methods incoporate important electronic effects, allow for systematic improvement of
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intermolecular energies, and can potentially be derived from a very small number of high

level ab initio calculations.29 However, compared with more widely-used transferable force

fields, ab initio force fields generally employ a more complex functional form, which is slower

to evaluate, and due to the cost of the underlying QM calculation the majority of applica-

tions are to relatively small system sizes. In this regard, Grimme’s quantum mechanically

derived force field (QMDFF) has several advantages. It takes as input only the QM equi-

librium structure, partial charges, Hessian matrix, covalent bond orders and semi-empirical

torsion scans, and outputs a full molecule-specific force field.30 The QM input can be rela-

tively cheap, it is has been applied to molecules comprising more than 100 atoms, and can

even be used to model bond dissociation and metals. However, it again uses a more com-

plex functional form compared to standard, transferable force fields, and its accuracy in the

condensed phase and the feasibility of extending the approach to heterogeneous problems,

such as protein-ligand binding, are yet to be established.

Our goal in this paper is to describe a QM-derived force field that has the potential

to be easily extended to the types of problems usually reserved for standard, transferable

force fields, such as host-guest binding in solution,31 simulation of biomolecular assemblies,32

and computer-aided drug design.33 To set up a transferable FF for a small molecule, a user

typically performs a QM geometry optimization to fit atomic charges (typically to the QM

electrostatic potential), and maybe performs torsional scans for key dihedrals. In order to

be competitive with transferable FFs, our FF derivation technique should i) allow users

to derive all system-specific bonded and non-bonded FF parameters from these two simple

QM input calculations, ii) scale up to relatively large system sizes (e.g. 50–100 atoms), iii)

provide parameters suitable for use in mixed simulations (e.g. for the molecule in a solvent

or in host-guest simulations), iv) retain the simple functional form of transferable FFs for

implementation in the majority of classical MD codes and for use in free energy calculations,

v) retain or improve on the accuracy of transferable FFs for modelling of condensed phase

properties (and hence implicitly account for many-body effects). That is, we aim to remove
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any FF limitations associated with parameter transferability, and instead adopt a transfer-

able FF derivation methodology akin to the semi-empirical models routinely used for charge

derivation.

Towards this goal, we have investigated and developed a range of methods for deriving

FF parameters directly from QM calculations with minimal experimental fitting. One of

the techniques employed in this study is the modified Seminario method,34,35 which enables

the derivation of bond stretching and angle bending force constants directly from the QM

Hessian matrix computed at the optimized geometry. Deriving bonded FF parameters from

QM data,36–39 and in particular from the Hessian matrix35,40–45 is a well-established concept.

Our recent adaptation of the original Seminario method35 yields high quality parameters

without relying on iterative fitting of the MM Hessian matrix, which avoids interdependency

between force field parameters.34 In particular, the modified Seminario method has been

shown to give parameters that are able to reproduce QM vibrational frequencies with an

average error of 49 cm−1 for a test set of 70 molecules, which is slightly lower than that

achieved by OPLS-AA (59 cm−1) and competitive with methods that rely on iterative fitting

of the MM Hessian matrix.30,44,46 The second of the methods employed here is atoms-in-

molecule (AIM) analysis, which provides a means to partition the QM molecular electron

density amongst the constituent atoms, and hence assign atom-centered partial charges,

even for systems comprising many thousands of atoms.47,48 Furthermore, the partitioned

atomic electron densities can also be used in conjunction with the Tkatchenko-Scheffler (TS)

relations14 to calculate all of the L-J parameters for a molecule. This method of using

QM-derived non-bonded parameters has been shown to perform well in recreating liquid

densities and thermodynamic properties when applied to a test set of 40 organic molecules.48

Collectively these methods form the basis of the QUantum mechanical BEspoke (QUBE)

FF.49

Here, we present QUBEKit, a software toolkit designed to help users derive QUBE

FF parameters in an intuitive and consistent way that minimizes parameter interdepen-
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dency. This first iteration combines previously benchmarked QM derivation methods for

non-bonded, bond stretching, angle bending and torsion parameters, using the same func-

tional form as the OPLS-AA FF, and is freely available to the community via our Github

page (https://github.com/cole-group/QUBEKit). Continuing a previous study that bench-

marked the accuracy of the atoms-in-molecule non-bonded parameter derivation method, we

re-derive parameters for a larger test set comprising over 100 small organic molecules using

QUBEKit in a proof-of-concept workflow. We also expand upon the original non-bonded pa-

rameter derivation process by adding new fitting parameters that allow the derivation of FF

terms for compounds containing bromine, as well as implementing a method for the deriva-

tion of off-center virtual site positions and charges directly from the QM electron density to

model anisotropic electron densities. Combining these techniques we show through the use

of the standard FF metrics described that the level of accuracy achievable with a QUBE FF

is comparable to that of widely-used general transferable FFs. In this way, we provide the

community with a tool for checking and refining parameter sets assigned through chemical

similarity, and a starting point for FF improvements through optimization of the derivation

protocols.

Theoretical background

FFs are traditionally described using bond-stretching, angle-bending, dihedral rotation, elec-

trostatic and L-J contributions, as exemplified by the OPLS functional form:

U =
∑
Bonds

kr
2

(r − ro)2 +
∑
Angles

kθ
2

(θ − θo)2

+
∑

Dihedrals

[
V1

2
(1 + cos(φ)) +

V2

2
(1− cos(2φ)) +

V3

2
(1 + cos(3φ)) +

V4

2
(1− cos(4φ))

]
+
∑
Pairs

qiqj
rij

+

(
Aij
r12
ij

− Bij

r6
ij

) (1)
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The bond-stretching and angle-bending contributions require estimates of the force constants

kr and kθ respectively as well as reference bond lengths (ro) and angles (θo). The dihedral

term is described as a four component cosine series with four corresponding parameters

V1, V2, V3, V4, where φ is the torsion angle of the dihedral being described. The OPLS

FF also employs an improper dihedral term through the same potential form, using only

a V2 parameter. The final term accounts for all non-bonded interactions between pairs of

atoms seperated by a distance rij. The standard Coulomb potential is used to calculate the

interaction between two charges qi and qj. Finally, the short-range repulsion and longer-

range attractive van der Waals interactions are described using the L-J 12-6 potential. Here

Aij = 4εijσ
12
ij and Bij = 4εijσ

6
ij where the ε and σ values of the L-J potential govern the

energy well depth and minimum energy separation distance respectively. In the OPLS FF,

non-bonded interactions are excluded for atoms separated by one or two covalent bonds, and

are scaled by a factor of 0.5 for those separated by three bonds. The same set of non-bonded

parameters are used to compute inter- and intra-molecular components of the FF.

A complete set of parameters for any molecule described by this FF functional form

requires the derivation of all the parameters of eq 1. Traditionally each term has its own

parameter fitting protocol and order that varies between FFs. Our derivation scheme follows

this idea, breaking the problem down into individual tasks that have an order of best practice.

In particular, we begin by calculating the stretching and bending terms, followed by non-

bonded, and finally the dihedral parameters. Next, we shall discuss the motivation behind

the derivation and optimization methods combined in QUBEKit.

Bond and Angle Parameters

For each bond and angle in our molecule, we require a force constant and equilibrium value

in order to describe the internal energy contribution associated with the vibrational motion.

It has been noted that, to describe all of the basic atom type combinations in GAFF, some

20,000 angle parameters would be required.4 Such large parameter libraries are commonplace
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with OPLS3 containing 15,236 angle-bending parameters, with a continuing effort to expand

this list as new chemistries are encountered.7 To generate these parameters, general FFs

have to use a wide range of reference data combining experiment and QM. QM data actually

already play a role in the derivation of the majority of the transferable parameters in these

FFs due to the lack of experimental data available for unique chemical species and the

ease of generating accurate QM data on-the-fly. While many of the equilibrium terms are

collected from x-ray crystallography and NMR studies of small molecules, some have to

be determined from QM predicted minimum energy structures.4–7 Force constants are then

manually fit in an iterative process which aims to recreate the QM vibrational frequencies

using an initial guess for the other required parameters as described in the development of

CGENFF5 and AMBER.4 While this method is effective, it does create interdependencies in

the FF parameters as the force constants are dependent on the rest of the original parameter

set, meaning that ideally all parameters should be continually updated in a self-consistent

fashion until convergence is reached.5

Instead, we have adopted the modified Seminario method for deriving bond and angle

force field parameters. The standard Seminario method derives force constants directly

from the QM Hessian matrix35 and has been incorporated into specialized FF fitting tools

for metal complexes such as the VFFDT plugin,50 or in the MCPB.py51 program which is

part of AmberTools. This method estimates force constants by projecting the decomposed

forces felt by an atom due to the displacement of a neighboring atom onto their mutual

bond vector.35 However, this method results in undesirably stiff force constants due to the

double counting of angle bending contributions in larger molecules.34 The modified method,

however, accounts for an atom’s chemical environment and has been shown to recreate QM

vibrational frequencies with a low average error of 6.3% across all vibrational modes for a

wide range of molecules.34 The ability to accurately derive the bonded parameters directly

from the QM Hessian matrix without the need for initial parameter guesses simplifies the

procedure for non-expert users by removing sources of human error and also speeds up the
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process making it suitable for automation. We shall also show that the derived force constants

retain a low percentage error in recreating QM vibrational frequencies when combined with

the rest of the QUBE FF.

Non-Bonded Parameters

The non-bonded interactions incorporate multiple QM effects, such as electrostatics, induc-

tion, dispersion and exchange-repulsion, through effective non-bonded Coulombic and L-J

interactions. In fixed point charge models there are many methods to derive partial charges

from high-level QM calculations using a mixture of population analysis techniques, but ulti-

mately no unique solution. While ab initio calculations yield high-quality charges they are

often disregarded as being too computationally expensive and are substituted by a variety

of semi-empirical QM based methods. These methods allow the rapid assignment of charges

and are heavily parametrized in order to reproduce charges observed at higher levels of the-

ory. For example, GAFF employs Mulliken charges produced from semi-empirical Austin

Model 1 (AM1) calculations52 that are then subject to bond charge corrections (BCC) to

better recreate experimental hydration free energies.11,12 The resulting electrostatic potential

is then comparable to that calculated at the HF/6-31G∗ level which was used to parame-

terize the AMBER restrained electrostatic potential (RESP) charges.4 OPLS-AA, on the

other hand, uses Cramer-Truhlar CM1A13 charges, and recently also included an AM1-BCC

inspired localized BCC version of the OPLS-AA/CM1A FF that is available through the

LigParGen server.53–55 It should also be noted that, as these semi-empirical QM calculations

are performed in vacuum, they have to be modified to include polarization effects to make

them suitable for condensed phase modelling. This is often performed via the inclusion of

the BCC mentioned in the case of GAFF and OPLS, and/or in the form of charge scaling

factors all of which are only used on neutral molecules.

On the other hand, CGENFF relies heavily on ab initio calculations. CGENFF I charges

can be first assigned by a similarity search through a library of parametrized fragments or
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can be derived using MP2/6-31G(d) Merz-Kollman charges.5 With either starting guess, the

charges are subsequently optimized by fitting to QM-calculated scaled interaction energies

at the HF/6-31G(d) level between the molecule and water in a variety of conformations.

Again we note the choice of low-level theory, this an artefact from the initial derivation of

the CHARMM additive FF, to ensure any new parameters are compatible with the biolog-

ical CHARMM terms. Importantly this means the overall charge description is compatible

between systems that require a mix of transferable and biological FFs.

Computational cost is also kept to a minimum in standard transferable FFs by assigning

the L-J parameters from a library of pre-fit parameters. This has become standard practice

across transferable FFs, with OPLS3 containing 124 different atom types so far, and many

general FFs borrowing terms from their biological counterparts.4,7 The L-J potential param-

eters are often tuned to accurately recreate experimental liquid properties.5,6,39,56 While this

technique works very well for atoms covered in the original parameterization, more atom

types often have to be introduced to account for new chemical environments. During the

optimization of the GAMMP/GAFF-LJ* parameters, for example, it was found that for a

test set of 430 compounds the 41 standard atom types of GAFF were restricting the maxi-

mum achievable accuracy of the FF. The performance was then substantially increased with

the addition of 11 new atom types, reducing the average unsigned relative error in the heat

of vaporization from 17.9% to 5.9%.39 Clearly increasing the number of atom types will help

increase the overall accuracy of a FF as new exceptions to current atom types arise. Logi-

cally this implies that system-specific FF parameters have the potential to lead to an overall

more accurate FF.

The QUBE FF follows this QM-based philosophy by deriving both L-J parameters and

AIM charges from a single ground state QM electron density. The AIM partitioning method

divides the total molecular electron density (n(r)) into approximately spherical, uniform
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overlapping atomic densities (ni(r)) via:

ni(r) =
wi(r)∑
k wk(r)

n(r) (2)

The weighting factor wi(r) is determined by the choice of AIM partitioning method, in our

case the density derived electrostatic and chemical charges (DDEC)57,58 scheme is employed.

This method iteratively optimizes the weighting factor to resemble the spherical average of

ni(r) and the density of a similar reference ion using a mixture of iterative Hirshfeld (IH)

and iterative Stockholder atoms (ISA).48,57 The charges are then found by integrating the

atomic electron density over all space:

qi = zi −Ni = zi −
∫
ni(r)d3r (3)

Where Ni is the number of electrons associated with atom i and zi is the nuclear charge. The

electron density is calculated as the direct solution of the inhomogeneous Poisson equation in

a medium with a dielectric constant ε = 4.48 It was found that “half-polarizing” the molecule

with a low dielectric constant resulted in non-bonded terms that are suitable for condensed

phase modelling. Including polarization in this manner allows us to avoid parametrizing any

BCC or charge scaling factors as employed by CGENFF, OPLS/CM1A and OPLS/CM5.59

Additionally, the QUBE FF employs the TS method to derive the Aij and Bij terms of

the FF in equation 1 by rescaling reference free atom data, proportionally to AIM electron

densities.14 The dispersion coefficient Bi is estimated as:

Bi =

(
V AIM
i

V free
i

)2

Bfree
i (4)

The atomic volume is readily calculated from the same AIM partitioned electron density as
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used in charge assignment via:

V AIM
i =

∫
r3ni(r)d3r (5)

TheBfree
i coefficients are computed using time-dependent density functional theory (TDDFT)

calculations on free atoms in vaccum.60 V free
i is the reference volume of the atom calculated

using the MP4(SDQ)/aug-cc-pVQZ method in Gaussian 0961 and the chargemol code62 for

each of the elements in our model (Table S1). To ensure that the dispersion and repulsion

coefficients result in a minimum in the L-J potential close to the van der Waals radius of the

atom, it can be shown that the Ai coefficient can be approximated by:

Ai =
1

2
Bi(2R

AIM
i )6 (6)

Here we found the AIM effective radius RAIM of each atom by rescaling the reference free

atom radius using the TS method:

RAIM
i =

(
V AIM
i

V free
i

)1/3

Rfree
i (7)

The only parameters in our model that are fit to experiment are the eight free atom

radii (Rfree
i ), one for each of the elements studied so far (H, C, N, O, F, S, Cl, Br). This

version sees the addition of a bromine parameter that was fit in the same spirit as the rest,

that is empirically tuning the free atom radii to recreate liquid properties of a selection

of bromine-containing molecules. The dependence of computed liquid properties on the

Rfree
i parameter of bromine is displayed in Table S2. A full description of the non-bonded

parameter derivation methods can be found in Ref. 48.
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Anisotropy

While atom-centered point charges provide a good representation of the QM electrostatic po-

tential (ESP) if the partitioned atomic electron density is spherical, in many cases this simple

representation is inadequate.48 This situation occurs when there is significant anisotropy in

the underlying electron distribution, and is common in molecules containing nitrogen, sul-

fur or halogens.63 Here, to model electron anisotropy, we employ off-center, “virtual” sites,

which have been shown to be competitive with the use of more computationally expensive

higher-order multipole electrostatics.64 Virtual sites are commonly used in water models,

such as TIP4P,65 and various force fields for modelling lone pairs and σ-holes,66 but the

positions and charges of the virtual sites require fitting to experiment. On the other hand,

it has recently been shown that virtual site positions may be derived directly from local-

ized QM molecular orbitals,67,68 but currently the magnitudes of the charges are derived by

fitting to the molecular dipole moment, which may be problematic for extension to larger

molecules that contain multiple sites. In keeping with our goal of avoiding fitting FF param-

eters to experiment and developing methods that scale to biological molecules, we proposed

a method that relied on the dipole and quadrupole moments of the partitioned atomic elec-

tron density, to optimize the charges and locations of virtual sites.48 However, the method

employed did not consistently converge and resulted in a large number of off-center point

charges. Modifications were required to correct these issues and improve the usability of the

method in an automated high-throughput scenario.

Here, we propose a method for the derivation of virtual site positions and charges directly

from the QM electron density in which the virtual sites are positioned so as to reproduce

as closely as possible the QM ESP of the partitioned atomic electron density. By determin-

ing the virtual site parameters only using atomic properties, the method scales trivially to

macromolecules such as proteins. In order to reduce the search space we limit the virtual site

positions to those dictated by the symmetry of the atom’s bonding environment. Together

these improvements allow us to define virtual sites that improve the electrostatic properties
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of the simulated molecule in an automated manner.

The QM ESP (Φref
i ) is calculated from the partitioned atomic electron density (ni(r)).

This is advantageous as the method may be applied equally well to both surface and buried

atoms. The ESP is taken at a series of points on sets of spheres with radii between 1.4− 2.0

times the van der Waals radius of the atom. The error F (Φ,Φref ) is given by:

F (Φ,Φref ) =
M∑
i=1

|Φi − Φref
i |

M
(8)

where M is the number of sampling points. The MM ESP (Φi) is calculated as:

Φi =
N∑
j=1

qj
4πε0rij

(9)

where N is the number of sites on an atom, rij is the distance from the site to the sampling

point and qj is the charge on site j. An additional threshold parameter (Fthresh) was required

to distinguish between atoms that required extra sites and those that did not. Above this

threshold the anisotropy method is used, below the threshold, no off-center charges are

added. As well as this, extra charges are only added when there is a reduction in error which

is controlled by a second parameter (Fchange).

One Additional Off Center Charge

For atoms with ESP error above the threshold, we begin by attempting to model the

anisotropy using a single off-center charge. The vectors for one additional off-center point

charge that preserve symmetry are shown in Fig. 1. The vector direction is governed by the

number of atoms bonded to the atom exhibiting anisotropy:

1. One bond. The atom A (which exhibits anisotropy) has one neighbor, atom B. The

vector along which the extra charge is positioned is r1 = λ1rAB, where rAB is a vector

between atom A and atom B and λ1 is to be determined.
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2. Two bond. The atom A has two neighbors, atoms B and C. The vector for the extra

charge is r1 = λ1(rAB + rAC), which is along the bisector of the two bond vectors.

3. Three bond. The atom A has three neighbors, atoms B, C and D. The vector for the

extra charge is r1 = λ1(rAB − rAC)× (rAD − rAC), which makes an equal angle with

all three bond vectors.

Figure 1: The directions along which off-center point charges are placed for an atom with
one, two or three bonds.

After the vector is assigned, the optimal position along the vector and the charge of the

off-center point is determined. This is carried out using a grid search of parameters to find

the values which best recreate the QM ESP. Assigning a symmetry-derived search direction

reduces the number of variables that need to be optimized from four (the x, y, z coordinates

and the charge) to two (the distance along the vector and the charge). This simplification

is particularly important when multiple off-center point charges are added, as described in

the following section. The atom-centered point charge is assigned a value such that the net

charge of the atom is unchanged. The method is summarized with a flowchart in Figure S1.

Multiple Off-Center Charges

In Ref. 48, it was often necessary to add more than one off-center point charge to recreate

the anisotropy seen in the QM ESP. Therefore, our approach was extended to add multiple

charges. Again, the method depends on the number of atoms bonded to the atom exhibiting

anisotropy:
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1. One bond. A second off-center charge is placed along the same vector, r2 = λ2rAB.

2. Two bonds. If two extra point charges are used, the original vector is a line of symmetry.

The two charges are then placed in the same plane as the vectors that point from the

atom to the neighboring atoms, r1,2 = λ‖(rAB + rAC)±λ⊥(rAB + rAC)× (rAB× rAC),

or perpendicular to this plane, r1,2 = λ‖(rAB + rAC) ± λ⊥(rAB × rAC). An example

is shown in Fig. 2. A third extra charge can also be added and is placed along the

bisector r3 = λ3(rAB + rAC).

3. Three bonds. A second off-center charge is placed along the same vector, r2 = λ2(rAB−

rAC)× (rAD− rAC). An exception is made for primary amine groups with the second

off-center charge placed along the bisector of the NH2 angle r2 = λ2(rNH1 + rNH2).

This is necessary as the regions between the nitrogen and hydrogen atoms exhibit

anisotropy in ESP.

A disadvantage of using the partitioned electron density to calculate the QM ESP is that

it includes regions that are not accessible during MM simulations, such as between bonds.

This is the case for the amine group and results in other regions of the QM ESP not being

adequately reproduced. The addition of an off-center site between the nitrogen and hydrogen

atoms helps to overcome this issue.

Figure 2: An example of off-center charge placement for the case (left) perpendicular to the
plane of the bond vectors or (right) in the plane of the bond vectors.
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Torsional Parameters

The final stage in the fitting procedure is the optimization of torsional parameters. Torsional

rotation is an important factor controlling the conformational preference of a molecule due

to its association with QM stereoelectronic effects, and the parameters are therefore often a

target for re-optimization.7,46,69–74 In this work, we follow a standard procedure of fitting the

parameters to minimize the difference between MM and QM constrained one dimensional

torsional scans. In particular, we aim to fit the four Vn parameters of the OPLS FF torsion

potential shown in eq 1 by automating the scheme outlined in Ref. 70 into QUBEKit with

some additional considerations. The steepest descent algorithm is employed to find the

torsional parameters that minimize the regularized Boltzmann weighted error function:

Ω =

√∑n
i=1(∆Ei

MM −∆Ei
QM)2e−∆Ei

QM/kBT

n
+ λ

∑
torsions

4∑
j=1

|V ref
j − Vj| (10)

where kB is the Boltzmann constant, T is a temperature weighting factor, n is the number of

sampling points and V ref
j is a reference torsional parameter. ∆EQM and ∆EMM are the QM

and MM optimized energies at each sampled torsional angle relative to the lowest QM or

MM energy. MM scans allow all other degrees of freedom to optimize, and so the structures

are similar but not identical to the QM optimized structures. Overfitting is often a concern

at this point in the fitting process. Here, we introduce a regularization function controlled

by a variable parameter λ, which constrains the fitted torsional parameters to be close to

the reference values, V ref
j . In this work, V ref

j were taken from the OPLS force field, but

could also be set to zero.75 It is also important to note that it is not possible to always

perfectly recreate the entire QM potential energy surface hence users should concentrate on

relatively low energy regions as these are most likely to be sampled during room temperature

simulations. The weighting temperature T can be adjusted to preferentially weight the low-

energy regions of the QM potential energy surface.

In molecules containing multiple flexible dihedral angles, it was found that torsional
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parameters were best fit in an order that started with rotations that would involve the

movement of the fewest number of atoms. For example, a long chain molecule with no

repeated dihedral types would be best fit by starting at the ends and working inwards.

Larger molecules could also be fragmented during fitting to reduce the computational cost

of the fitting procedure. It should also be noted that we do not derive any improper torsion

parameters in this workflow, instead taking them from the OPLS-AA FF.

Computational Implementation

QUBEKit has been designed as a python command line toolkit with simple, intuitive com-

mands allowing the user to perform three main tasks: 1) writing QM input files for atoms-

in-molecule, Hessian matrix and torsional scan calculations, 2) derivation of bond, angle,

torsion and non-bonded MM parameters from the results of the QM calculations, and 3)

the output of the parameters in widely-used MM topology and force field files. The only

required inputs are the molecule’s structure and some initial reference parameters, which

are included in a BOSS z-matrix, which is freely available via the LigParGen web server

(http://jorgensenresearch.com/ligpargen/).53–55 LigParGen provides a straightforward inter-

face for generation of z-matrices. Users can draw, enter the SMILES string or upload a PDB

file of a molecule (up 200 atoms), which is then automatically converted to a z-matrix. The

use of internal coordinates makes defining and choosing the dihedral angle to be optimized

conceptually straightforward.

In this first version of QUBEKit, QM calculations are currently performed using the

Gaussian0961 and ONETEP76 software packages. QUBEKit interfaces with the BOSS77

molecular simulation package to perform all MM tasks, including torsional fitting and vi-

brational mode analysis, and incorporates code from the modified Seminario method34 to

calculate the bond and angle parameters. Future support for additional open source MM

and QM software packages is planned. The derived parameters can be written in a variety of

MM package formats such as BOSS/MCPRO style (z-matrices, .sb and .par structural and
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force field files), OpenMM .xml files, and GROMACS .gro and .top files. A full description

of the workflow (Figure S3) used in this project with a list of commands can be found on

our Github page (https://github.com/cole-group/QUBEKit) alongside a tutorial.

Computational Methods

Quantum Mechanical Calculations

All Gaussian09 input files were prepared using QUBEKit, which takes PDB files and the

corresponding BOSS/MCPRO style z-matrices generated using the LigParGen web server

as input. All optimization routines and frequency calculations used for the bond stretch-

ing and angle bending terms were performed with the ωB97X-D78 functional using the

6-311++G(d,p) basis set and a vibrational scaling factor of 0.957.34 Users of QUBEKit are

free to choose their own QM methods based on required accuracy and computational ex-

pense. For comparison, Tables S7 and S8 show the derived bond and angle parameters of N-

butyl-1-butanamine computed using ωB97X-D/6-311++G(d,p) and MP2/6-311++G(d,p).

Torsional constrained optimizations were performed in Gaussian0961 with the same func-

tional and basis set so as to be consistent with the other bonded terms. The torsional scan

optimizations were performed in 15◦ increments from 0◦ to 360◦. The majority of the di-

hedral parameter fitting was done using no Boltzmann weighting (corresponding to T=∞)

and regularization against OPLS reference values was applied with λ = 0.1. This was only

changed in rare cases where it was particularly difficult to recreate the QM energy landscape,

in which case λ = 0 and T = 2000K were used as previously suggested.70

Ground-state electron density calculations for non-bonded parameter derivation were

performed using the linear-scaling DFT code ONETEP.76 Four nonorthogonal generalized

Wannier functions (NGWFs), with radii of 10 Bohr, were used for all atoms with the excep-

tion of hydrogen, which used one. NGWFs were expanded in a periodic sine (psinc) basis,

with a grid size (0.45ao), corresponding to a plane wave cut-off energy of 1020 eV. The PBE

exchange-correlation functional was used with PBE OPIUM norm-conserving pseudopoten-
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tials.79 The calculation was carried out in an implicit solvent using a dielectric of 4 to model

induction effects.48,80,81 The DDEC module implemented in ONETEP was used to partition

the electron density and assign atom-centered point charges and atomic volumes.47,82 The

charges were assigned with a IH to ISA ratio of 0.02. The ESP error threshold, Fthresh, was

set to 0.9025 kcal/mol. The additional charges are only added if the decrease in ESP error

is larger than Fchange = 0.0625 kcal/mol. The locations of the virtual sites were restricted

using maximum distance cut-offs chosen by element, as virtual sites near the van der Waals

radius can be detrimental. The cut-offs were defined as follows: 0.8 Å for N, 1 Å for O, S

and F, and 1.5 Å for Cl and Br.

Pure Liquid Simulations

Pure liquid simulations were performed using OpenMM83 with a custom non-bonded poten-

tial to describe the mixing rules and 1-4 interactions employed by the OPLS (and QUBE)

FF. The required .xml files were generated using QUBEKit with extra sites included auto-

matically using the local coordinate site construction function in OpenMM. All extra sites

were modelled as virtual particles, and do not contribute bond and angle force field terms.

For the construction of neighbor lists for 1-4 interactions, their only connection is made to

the parent atom. A plot showing the agreement in single point energies calculated using

the correction implemented in OpenMM and the BOSS software can be found in Figure

S2. Instructions on how to perform the single point energy check for a new molecule using

QUBEKit can be found at the Github (https://github.com/cole-group/QUBEKit/wiki) wiki

page along with other examples and tutorials.

Simulations were performed in the isothermal-isobaric (NPT) ensemble at 1 atm and

comprised 267 molecules in a periodic cubic box. Long-range electrostatic interactions were

calculated using the Particle-Mesh-Ewald (PME) method,84 with a 0.0005 tolerance error

while also applying a long-range correction to the system energy. As in previous stud-

ies,48,54 non-bonded interactions were truncated at distances based on molecular size (15 Å
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for molecules with 5 or more heavy atoms, 13 Å for 3–5 and 11 Å for fewer than 3) and

smoothed over the last 0.5 Å. No long-range corrections to the Lennard-Jones energy were

applied. Following minimization of the initial configuration, 3 ns simulations were run for

each molecule using a 1 fs time step. The first nanosecond was treated as equilibration.

Data showing the insensitivity of the computed liquid data to the choice of time step are

shown in Table S3. The liquid and corresponding gas-phase simulations were run at 25◦C or

the molecule’s boiling point if it was lower. The resulting densities and heats of vaporiza-

tion were averaged over 2000 data points collected in the production part of the run. The

heats of vaporization were computed using eq 8 in Ref. 85. Following their recommended

protocol, we employed Langevin dynamics temperature regulation with a collision frequency

of 5 ps−1. The pressure was regulated using a Monte Carlo barostat as implemented in

OpenMM. Examples of the scripts used for both the liquid and gas simulations along with

input files for all molecules in the study can be found in the Supporting Information. The

uncertainties were found to be less than 0.003 g/cm3 and 0.02 kcal/mol for densities and

heats of vaporization respectively. Graphs showing the convergence of the properties with

simulation time can also be found in Figures S4 and S5.

Free Energies of Hydration

Free energies of hydration were calculated using GROMACS86 due to its ability to include

extra sites during alchemical perturbation. All input files were generated using QUBEKit

which writes OPLS FF style GROMACS .top and .gro files. The virtual sites were all

constructed by hand using the simplest method available for each molecule, with a connection

being added between the site and parent to again make the 1-4 interaction lists consistent

with OpenMM and BOSS. Each molecule of the test set was annihilated from a cubic box

containing approximately 1500 TIP4P water molecules using a two-step approach over 21

λ-windows, first turning of the charges followed by the L-J terms. The solute-solvent non-

bonded interactions were switched off via coupling to the λ reaction parameter using soft-core

22



potentials with settings α = 0.5, p = 1 and σ = 0.3.87 The charges were decoupled using λ

values of (0.00 0.25 0.50 0.75 1.00) and van der Waals using λ values of (0.00 0.05 0.10 0.20

0.30 0.40 0.50 0.55 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00). The simulations were again run

in the NPT ensemble at 1 atm and 25◦C. All solvent-solute and solvent-solvent non-bonded

interactions were truncated at 10 Å and smoothed over the last 0.5 Å. PME was used with

a long-range correction applied to the total energy and pressure. Each λ-window was run

using Langevin dynamics and a two femtosecond time step with bonds involving hydrogen

constrained using the LINCS algorithm.88 The starting configurations at each λ-window were

first minimized before being equilibrated twice. The first was a 100 ps run in the canonical

ensemble (NVT) followed by a 200 ps run in the NPT ensemble. Finally, the production

stage was run for 1 ns and the free energy of hydration was calculated using Bennett’s

acceptance ratio as implemented in the GROMACS BAR module.89 All uncertainties for

the calculations were found to be less than 0.3 kcal/mol.

Results and Discussion

Condensed Phase Properties

A common measure of the quality of FF parameters for use in biomolecular simulations is

a comparison of the predicted condensed phase properties of molecules simulated using the

FF with experiment. These properties, such as liquid density, the heat of vaporization and

free energy of hydration, can be calculated routinely due to low sampling requirements, thus

making FF inaccuracies the main contributor to any differences between the computed data

and experiment. In this study, we have chosen a benchmark dataset comprising 109 small

organic molecules, which are representative of the key functional groups commonly observed

in biology and drug design. Importantly most of the molecules used in the set are also part

of the training data used during the parametrization of many of the general transferable FFs

mentioned, including the OPLS/1.14*CM1A-LBCC FF, which allows for direct comparison
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Figure 3: Force field liquid property metrics (a) liquid density, (b) heat of vaporization (c)
free energy of hydration. Calculated for the organic molecule test set using QUBE FF
parameters. MUE compared to experiment and r2 correlation are also included.
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Table 1: Mean unsigned errors between calculated liquid properties and experiment for
various FF parameter sets.

Force field ρ (g/cm3) ∆Hvap (kcal/mol) ∆Ghyd (kcal/mol)

OPLS/1.14*CM1A54 0.024 1.40 1.26
GAFF/AM1-BCC54 0.039 1.31 0.94
OPLS/CM554 0.024 1.06 0.94
OPLS/1.14*CM1A-LBCC54 0.024 1.40 0.61
DDEC/OPLS48 0.014 0.65 1.03
QUBE (this work) 0.024 0.79 1.17

of the FFs. Figure 3 shows the results of the condensed phase property calculations for

the test set where experimental data are available, along with the correlations and mean

unsigned errors (MUE), while Table 1 compares the latter with some examples of widely-

used transferable FFs for the same test set.7,48,54 The average errors in the density and heat

of vaporization (0.024 g/cm3 and 0.79 kcal/mol, respectively) indicate that QUBE performs

extremely well in the prediction of pure liquid properties, that is despite only using eight

fitting parameters in the derivation of non-bonded parameters (the van der Waals radii of

the elements H, C, N, O, S, F, Cl, Br used in this study). Table S4 lists thirteen molecules

the used for fitting and shows that removing them from the validation set has negligible

effect on the analysis. Some of the outliers in the heat of vaporization predictions include

interactions between aromatic rings, which may be due to the difficulty of describing van der

Waals interactions using a simple r−6 interaction, which neglects higher-order dispersion and

many-body effects. The general transferable force fields are of similar accuracy to QUBE,

despite being extensively parametrized against data sets similar to these.

As we have found previously,48 hydration free energies are more difficult to predict (MUE

1.17 kcal/mol). This could be due to limitations in the functional form, particularly the

neglect of an explicit polarization term, in describing the transfer of a molecule between low

dielectric (vacuum) and high dielectric (water) media, or the mixing rules used to compute

L-J interactions. Though it should be noted that a MUE of 0.72 kcal/mol is reported using

the OPLS3 FF on an expanded 239 molecule test set, which indicates that there is room
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for further improvement within the current FF functional form.7 The largest outliers in

Figure 3(c) are for apolar molecules with a low (less negative) free energy of hydration,

for which QUBE under-estimates their solubility. This is particularly problematic again for

molecules containing aromatic rings, and may indicate an imbalance between dispersive and

electrostatic contributions to hydration when QUBE is used in combination with a standard

transferable water model (TIP4P).

Table 2: The non-bonded parameters for the head group oxygen in 1-octanol are shown for
a variety of FF and charge combinations. The LigParGen server was used to parameterize
the OPLS variants, and Antechamber for GAFF with QUBE coming from this work.

Force field charge σ ε

OPLS/1.14*CM1A -0.588 3.120 0.170

OPLS/1.14*CM1A-LBCC -0.687 3.120 0.170

GAFF/AM1-BCC -0.598 1.721 0.210

QUBE -0.673 3.129 0.127

Another potentially problematic group of compounds are aliphatic alcohols as we found

the ten in our test set to have a relatively high MUE (1.27 kcal/mol) in hydration free en-

ergy. The poor description of alcohol groups was also previously found to be a trait of the

OPLS/CM1A FF.54,90 The charges assigned to the head group of 1-octanol by OPLS/CM1A

are shown in Table 2. It has been suggested that scaled CM1A charges are too positive, re-

sulting in the poor prediction of densities and heats of vaporization as shown in Table 3.90

To tackle problematic groups such as these, the OPLS/1.14*CM1A-LBCC parametrization

was developed which adds a systematic bond charge correction to various functional groups

and was fit to better reproduce experimental free energies of hydration.54 In the case of the

aliphatic alcohols, the correction transfers a 0.1e− charge to the oxygen of the head group

from the neighboring carbon atom as can be seen in Table 2. Thus with the same L-J pa-

rameters, the density, heat of vaporization and free energy of hydration are subsequently

improved for 1-octanol, as shown in Table 3 along with the values obtained by the QUBE
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FF. This same BCC was also found to reduce the MUE for the hydration free energy from

1.95 to 0.43 kcal/mol for 32 aliphatic alcohols in the development of the LBCC parameters.54

Importantly the fitted correction scheme gives roughly the same charge as our AIM parti-

tioning method which demonstrates the successful inclusion of polarization into our charges

at the point of derivation rather than via subsequent corrections. We also observe similar

σ parameters between the QUBE FF and OPLS, which is reassuring considering OPLS is

extensively fit to reproduce liquid properties. While the ε values do differ noticeably, it has

been found that liquid property predictions can be greatly improved with the systematic

tuning of this parameter.85 However, this would not be compatible with the philosophy of a

QM derived FF, and future work will instead investigate modifications to the FF functional

form.

Table 3: The liquid properties of 1-octanol predicted using different FF and charge
parametrization methods are displayed and compared with experiment.

Force field ρ (g/cm3) ∆Hvap (kcal/mol) ∆Ghyd (kcal/mol)

OPLS/1.14*CM1A 0.807 15.201 -1.26

OPLS/1.14*CM1A-LBCC 0.809 16.038 -3.12

GAFF/AM1-BCC 0.834 20.354 -3.12

QUBE 0.793 16.206 -2.19

Experiment90,91 0.822 17.208 -4.09

Finally, it should be noted that there is an increase in the MUE of each of the properties

computed using the QUBE FF compared with our original benchmark study (Table 1), which

used AIM-derived non-bonded parameters in combination with OPLS bonded parameters

(DDEC/OPLS).48 This is likely the result of the expanded test set used here as on further

inspection of the data concerning only the same molecules that were included in the original

benchmark we find the MUEs to be 0.017 g/cm3, 0.59 kcal/mol and 1.08 kcal/mol for the

density, heat of vaporization and free energy of hydration respectively, which are very similar

to the original values. We therefore, conclude that bonded parameters, while crucial to the
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conformational preferences of larger molecules, are not too important in the description of

the liquid properties of small molecules.

With the inclusion of larger molecules and molecules that contain multiple functional

groups, the increase in overall error of the liquid properties is to be expected if we con-

sider the accuracy on a per functional group basis. This effect is exemplified by the case

of o-chloroaniline, which has unsigned errors in ∆Hvap of 2.61 kcal/mol and in ∆Ghyd of

3.49 kcal/mol. By way of comparison, the smaller molecules aniline and chlorobenzene

showed unsigned errors in ∆Hvap of 1.63 and 1.17 kcal/mol and in ∆Ghyd of 2.66 and

1.67 kcal/mol, respectively. This should be kept in mind when applying QUBE (and other

force fields) to the study of, for example, absolute protein-ligand binding free energies for

larger organic molecules containing multiple functional groups.

Bond, Angle and Dihedral Parameters

As discussed in the previous section, it appears that the bonded parameters have little

effect on the accuracy of liquid properties. However, given the importance of torsional

parameters in determining conformational preferences of larger molecules, and bond and

angle parameters in modelling molecular vibrations, which are important for example in

photochemistry applications, we examine the properties of the derived parameters here in

more detail.

The first point to note is that by deriving bond and angle parameters directly from

the QM Hessian matrix, there is no possibility of missing parameters in the QUBE FF.

In contrast, even for this small test set, we found one missing bond parameter and six

missing angle parameters using a standard transferable FF. The QUBE predicted values for

these terms along with the OPLS atom types are shown in Tables S5 and S6. In practice,

these parameters would be inferred from similar atom types or re-parameterized by the user,

which may introduce inaccuracy. QUBE allows the user to rapidly and automatically derive

all necessary parameters with no compromise in accuracy. In this study, the QUBE FF
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maintains a low mean percentage error in MM vibrational frequencies of 6.5% (MUE of

54 cm−1), which is very similar to the values initially reported reaffirming the wide-scale

applicability of the method.34 We note that the modified Seminario method derives the

force constants directly from the QM Hessian matrix with no information required about

the torsional and non-bonded parameters. In practice, these components of the FF will

also contribute to molecular vibrations. It appears that slight improvements in accuracy

are achievable by fitting the full MM Hessian matrix to the QM Hessian.30,44 For example,

a MUE of 44 cm−1 is reported using the QMDFF on a set of 22 molecules.30 Where high

accuracy in molecular vibrations is key, for example in spectroscopic applications, it may be

desirable to include coupling FF terms which account for off-diagonal terms in the Hessian

matrix.92 However, for our intended applications in computer-aided drug design, we favor

the relative simplicity of the modified Seminario method.
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Figure 4: A common bond type is analyzed by comparing the QM predicted equilibrium
bond length to the associated derived force constant of each molecule they appear in for
the CT-CT bond type. The OPLS parameters are shown in red.

Given the widespread use of transferable bond and angle parameters, it is worth analyzing

to what extent these parameters vary in our benchmark test set. Figure 4 plots the range

of QUBE bond lengths and force constants for all atoms defined with CT-CT bond types
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in the test set, and compares them with the OPLS parameters. Further plots like this for

all bonds and angles that are present in at least ten of the molecules in the test set can

be found in Figures S7-S28. As reported previously,34 the modified Seminario method gives

bond-stretching force constants that are on average lower than their OPLS counterpart. The

QUBE parameters typically span a range of around 0.05 Å and 100 kcal/mol/Å2 for the bond

length and force constant respectively, indicating that use of a single average, transferable

value should not introduce significant error. Interestingly, there is a negative correlation

between force constant and equilibrium bond length, supporting the use of bond length

to infer force constants in early studies.93 These results indicate that it may be possible

to derive more explicit algorithms for ‘learning’ force field parameters directly from the

molecular geometry. We also envisage QUBE parameters as providing a reasonable starting

point for optimization if further fitting to QM potential energy surfaces is desired.8

Torsional parameters, like the bond and angle parameters, were derived separately for

each molecule. Due to the use of virtual sites, we found that parameters were often not

transferable between similar molecules, and those that were such as methyl group rotations

remained close to the initial OPLS parameters. The overall accuracy of the torsional scan

fitting was very good when regularization was used and only a handful of molecules with poor

predicted energy surfaces required the setting to be switched off. A sample of torsion fitting

data taken directly from the QUBEKit output can be found in Figures S29-S31, along with

the overall error and regularization error bias where appropriate. We have also included the

dihedral parameters for every molecule in the test set in the Supporting Information along

with an analysis in which we have grouped the torsions together based on their OPLS atom

types. We envisage these as forming the basis of a community-led library to be used to

replace or speed up future fitting efforts.
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methanethiol chloromethane dimethyl sulfoxide dimethyl ether

triethylamine pyridine methylamine dimethyl sulfide

dimethyl amine anisole bromoethane 1,2-dibromoethane

Figure 5: A selection of 12 molecules from the benchmark test set with their extra sites
depicted as purple spheres. Charges and positions of the extra sites were derived from the
partitioned atomic electron density.

Extra sites

To test the effect of the additional off-center point charges, the liquid properties for the

benchmark test set were also calculated in the absence of extra sites. This led to a general

worsening of the results with the MUEs becoming 0.023 g/cm3, 0.85 kcal/mol and 1.51 kcal/-

mol in the density, the heat of vaporization and free energy of hydration respectively (Figure

S6). As expected, since it is governed mostly by Lennard-Jones interactions, the error in

the density remained approximately constant. However, the decline in accuracy of the other

properties indicates that modelling of anisotropy in electron density is required to accurately

describe intermolecular interactions. This is consistent with the increasing use of virtual sites

in multiple FFs.7,94

While there is no unique way to derive virtual site parameters, it would seem that deriving

the parameters to minimize the error in ESP for an individual atom is effective. Figure 6

compares the ESP error around atoms before and after the addition of virtual sites. While
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Figure 6: The average and range of the ESP error around each element for molecules in the
test set before and after the addition of virtual sites. The dashed line represents the
average error across all atoms in the benchmak set.

some residual error is to be expected given the simplicity of the FF functional form, the

errors on these atoms displaying highly anisotropic electron density is now much closer

to, and in many case below, the average ESP error across every atom in the benchmark

set. Figure 5 shows a selection of molecules from the test set that required virtual sites,

the rest of the derived site positions and corresponding charges can also be found in the

Supporting Information. Here we can see that the derived positions are chemically intuitive,

with σ-holes and lone-pairs well-represented. In total 50 of the 109 molecules in the test set

required at least one virtual site, and on average a molecule whose functional group ESP

error is initially above the chosen threshold requires 2.1 virtual sites. While this is more than

is typical in molecular mechanics simulations, the computational cost of virtual sites in an

MD simulation is small.64 Furthermore, QUBEKit substantially simplifies the process for the

user by deriving the virtual site parameters from QM and writing them to simulation-ready

input files.

Some molecules with large ESP errors were not assigned off-center virtual sites. Chloroben-

zene, for example, was found to have a large ESP error on the Cl atom just below the set
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threshold of 0.90 kcal/mol. However, the resulting liquid property predictions were not

significantly affected (Table S9). Methanol was another example of a molecule that was

not assigned virtual sites despite having an ESP error of 1.50 kcal/mol, which is above the

threshold. After performing the grid search it was found that the addition of virtual sites did

not substantially reduce the ESP error of the oxygen atom by the required amount Fchange.

This was the case for all aliphatic and aromatic alcohols in the test set which could also

contribute to the poor performance of alcohols overall.

Test cases

While the molecules in the validation set represent many of the functional groups often used

in drug design, they contain many fewer rotatable dihedral bonds and functional groups

than a typical drug-like molecule. Thus, following previous work investigating the use of QM

derived FF parameters we have used QUBEKit to derive a QUBE FF for 3-hydroxypropionic

acid (3-HA).71 The molecule shown in Figure 8 incorporates carboxyl and hydroxyl functional

groups, has been identified as a potentially useful agent for organic synthesis and is also a

surrogate for a typical fragment scaffold. QM-based fitting techniques have previously been

used to derive the bonded parameters for the molecule from a series of single point energy

calculations, with the L-J terms being taken from AMBER and the partial charges assigned

according to the CHelpG scheme.78 In addition, we have selected two further molecules from

the FreeSolv database,91 which allows us to compare computed hydration free energies with

experiment for more challenging small drug-like molecules.9 The two molecules, captan and

bromacil (Figure 8), were selected due to the presence of halogens, and they therefore provide

an additional test of the virtual site assignment procedure in QUBE.

Starting with the molecule 3-HA, Figure 7 compares the QUBE and OPLS force fields

with QM single point calculations for a range of molecular geometries. Since we compute the

bond and angle force constants in a one-off calculation directly from the QM Hessian matrix,

with no iterative fitting, it is not obvious how accurate they will be in reproducing QM con-
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Figure 7: Comparison of the calculated relative single point energies using QM, OPLS and
QUBE for C-OH bond-stretching and C-OH-HO angle-bending motions in 3-HA.

formational energetics when combined with the rest of the QUBE FF parameters. However,

Figure 7 reveals that the QUBE FF reproduces extremely well, not only the QM minimum

energy conformations, but also describes small changes in these same bond lengths and an-

gles. This is also well replicated across all calculated vibrational modes for the molecule with

an average percentage error of 6.7% compared to the QM vibrational frequencies.

Next, with the goal of evaluating the ability of QUBE to recreate intramolecular energet-

ics including torsional rotations, separate liquid simulations of 3-HA, captan and bromacil

solvated in boxes containing 1000 TIP4P water molecules were performed. We then extracted

500 conformations from each simulation and computed the relative single point energies of

each snapshot of the molecule using OPLS, QUBE and QM (with the same DFT functional

and basis sets as used for the parameter derivation). Figure 8 shows the correlation between

the relative MM and QM energies for each of the three molecules. We note in making this

comparison that, unlike QUBE, the OPLS FF was not parametrized against this QM model

chemistry. Compared to OPLS, the correlation between MM and QM energetics is improved,

and significantly QUBE does not sample any configurations that are lower in energy than

the optimized QM structures. Figure S32 shows in more detail the fitting of QUBE torsion
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Figure 8: Comparison between the relative QM and MM energies using the QUBE FF and
OPLS for 500 conformations extracted from a MD simulation of 3-HA (top), captan
(center) and bromacil (bottom) which are shown as insets.
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parameters to QM potential energy scans, as well as the dihedral angles sampled during MM

dynamics in water. Encouragingly, despite the simple MM functional form used, and the fact

that it is optimized for reproducing condensed phase properties, QUBE is not only able to

reproduce the minimum energy structures, but also sample physically reasonable structures

in liquid simulations, which is encouraging for future use in computer-aided drug design.

Table 4: The free energy of hydration predicted for two molecules from the FreeSolv
database using the QUBE FF, compared to GAFF and experiment.91

∆Ghyd (kcal/mol)

QUBE GAFF Experiment

Captan -5.48 -8.72 -9.01

Bromacil -14.05 -14.50 -9.73

Finally, the free energies of hydration of captan and bromacil were calculated using

the same protocol described earlier, and the results are shown in Table 4 alongside the

experimental data and those computed using a GAFF parametrization.91 The errors of

around 4 kcal/mol in the QUBE FF are higher than those reported for the small molecule

benchmark set, but consistent with expected cumulative errors in hydration free energy

prediction. Nevertheless, improvements in accuracy are required, particularly for hydration

free energy calculations, if QUBE is to be used in predictive computer-aided drug design.

Future strategies along these lines are discussed in the next section.

Conclusions

With the spread of low-cost computing and access to automated software, it is becom-

ing increasingly common for users to perform parameter set optimization prior to running

molecular mechanics simulations. However, this optimization is typically used to supplement

existing transferable force fields and is limited to the charge and torsional parameters, for

which well-established protocols for fitting to QM data exist. On the other hand, QM de-
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rived force fields allow the user to obtain all (or most) of the force field parameters directly

from ab initio calculations, but for these methods scaling to large molecules is problematic

and there is no clear route to the simulation of, for example, biomolecular complexes. In

this paper, we present the QUBEKit software for automated derivation of virtually all force

field parameters required to model the dynamics of small organic molecules. QUBEKit is

a python interface that brings together methods for charge and Lennard-Jones parameter

derivation from atoms-in-molecule analysis of the QM electron density, and a method for de-

riving bond and angle force constants directly from the QM Hessian matrix. We also include

a method for off-center virtual site derivation along with an automated implementation of a

standard one-dimensional torsion fitting scheme.

Overall, we achieve mean unsigned errors of 0.024 g/cm3, 0.79 kcal/mol and 1.17 kcal/-

mol in the prediction of liquid densities, heats of vaporization and free energies of hydration

for a benchmark set of 109 molecules, compared to experiment. This accuracy is particu-

larly impressive compared to standard, transferable force fields when considering heats of

vaporization and liquid densities. While competitive with many transferable FFs, there

is substantial room for improvement in the prediction of hydration free energies. This is

particularly highlighted when comparing the QUBE data in Table 1 with OPLS3, or when

considering the larger molecules, captan and bromacil, in Table 4. Importantly, however,

we emphasize that to describe all molecules in the benchmark data set, we have only fit

8 parameters (the van der Waals radii of eight elements in vacuum) to experimental data

(Table S4). This reduction in empiricism has two key advantages. Firstly, it has the po-

tential to substantially simplify the FF fitting process, since the parameters come directly

from QM and do not rely on extensive collection of experimental fitting data, which is time-

consuming for small molecules, and is rarely done for larger molecules. Secondly, the ease

of FF design presents the opportunity to derive new protocols, and move beyond the stan-

dard functional form of the FF whilst retaining the ability to derive non-bonded parameters

for large molecules. Opportunities for FF improvement include: i) update of the atoms-
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in-molecule partitioning scheme,95–99 ii) the introduction of more rigorous descriptions of

van der Waals interactions,100–102 iii) inclusion of explicit polarization, iv) a more accurate

functional form for the short-range repulsion,28,100 v) investigation of a QUBE-compatible

water model103 and vi) the investigation of Lennard-Jones combination rules. Such efforts

would typically require significant re-fitting of the parameter libraries for transferable FFs.

However, with the software infrastructure provided by QUBEKit, iterative improvements in

the accuracy of the FF metrics presented here, particularly the hydration free energy, are

envisaged.

One example of the update of our FF design protocol, is the addition in this paper of

a method for off-center virtual site parameter derivation for the modelling of anisotropic

electron density. Compared to our previous method,48 the parameter derivation process is

faster and more user-friendly. By deriving the virtual site charges and positions from the

molecular symmetry and partitioned atomic electron density, we do not require any exper-

imental data for fitting. Furthermore, since the bond, angle and Lennard-Jones parameter

derivation methods are independent of the charge derivation, we can trivially add extra sites

without substantially altering the force field. Notably, the mean unsigned error in the free

energies of hydration of our benchmark set increases to 1.51 kcal/mol if virtual sites are

not included. QUBEKit writes the virtual site positions in OpenMM .xml file format for

ease-of-use.

In contrast to our previous work,48 we have supplemented the atoms-in-molecule non-

bonded parameters with molecule-specific bonded parameters derived from the QM Hessian

matrix and torsional scans. In agreement with our previous study,34 we showed that the

so-called modified Seminario method is able to reproduce QM normal mode vibrational fre-

quencies to high accuracy (6.5% here). Closer examination of bond and angle force field

parameters for widely used atom types reveals that these parameters are reasonably trans-

ferable between closely-related molecules. Such analyses of more complex molecules could be

used to identify problems with standard force fields where bonded parameters may require
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re-fitting or the inclusion of more atom types. In addition, we have shown that for three

molecules, QM relative energies of an ensemble of structures are modelled reasonably well

with the QUBE FF when combined with torsional fitting. It should be noted that torsional

fitting is the major computational expense in QUBE (since it requires a constrained QM opti-

mization at each torsion angle), and methods to reduce this expense are under investigation.

In this regard, we have provided a library of all of the torsional parameters derived in this

study, and these could be used as initial estimates for approximate dynamics, or as an initial

guess in the fitting process. Improper torsional parameters are not derived in this study,

and we have used those from the OPLS FF here. Potential future improvements include

support for 2D torsion scans,37 and the use of direct fitting to the Hessian matrix to allow

derivation of stiff, harmonic torsional parameters and cross-terms to account for coupling

between internal coordinates.30,43,44,92 Such improvements are especially important in, for ex-

ample, spectroscopic applications where a faithful representation of the QM intramolecular

potential energy surface is crucial.104,105

We have provided with this paper the QUBEKit software toolkit, tutorials and data sets

(https://github.com/cole-group/QUBEKit). This first version utilizes the BOSS molecular

mechanics software,77 and Gaussian0961 and ONETEP76 QM packages for parameter deriva-

tion. Simulation-ready files are output in OpenMM, Gromacs or BOSS format. Future work

will widen the choice of available software, particularly for parameter derivation. Additional

validation of QUBE against metrics such as condensed phase dielectric constants,90 host-

guest binding31 and many more are envisaged, and we hope that QUBEKit will facilitate

this process. In parallel, we are also releasing the QUBE protein force field,49 which employs

the same non-bonded parameter derivation techniques implemented in linear-scaling DFT

software,106 alongside a torsion library for the twenty naturally-occurring amino acids. To-

gether these tools will allow users to derive compatible and accurate QUBE force fields for

both proteins and small molecules for use in computer-aided drug design applications.
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(74) Zgarbová, M.; Rosnik, A. M.; Luque, F. J.; Curutchet, C.; Jurečka, P. Transferability
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Graphical TOC Entry

def QUBEKit(QM, Seminario, AIM(DDEC), torsions):
    with open('PDB', ‘r’) as molecule:
        molecule.parametrize()
    return MM_parameters
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