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Abstract One-pot reactions of simple precursors, such as those found
in the formose reaction or formamide condensation, continuously lead
to combinatorial explosions in which simple building blocks capable of
function exist, but are in insufficient concentration to self-organize,
adapt, and thus generate complexity. We set out to explore the effect
of recursion on such complex mixtures by ‘seeding’ the product
mixture into a fresh version of the reaction, with the inclusion of
different mineral environments, over a number of reaction cycles.
Through untargeted UPLC-HRMS analysis of the mixtures we found
that the overall number of products detected reduces as the number
of cycles increases, as a result of recursively enhanced mineral
environment selectivity, thus limiting the combinatorial explosion. This
discovery demonstrates how the involvement of mineral surfaces with
simple reactions could lead to the emergence of some building blocks
found in RNA, Ribose and Uracil, under much simpler conditions that
originally thought.

The mechanism which led to the first genetic-machine, an
adaptive, chemical system that uses a genetic code to organise
metabolic function, and propagate that code, is one of the most
important outstanding questions in science.["?l Modern organisms
are genetic machines that take part in open-ended information
transfer using biopolymers such as RNA and DNA, which are
ubiquitous to all known life forms. De novo DNA and RNA
synthesis has been accomplished from isolated ribose and
nucleobases in a multi-step synthesis, but not from a simple or
prebiotic route to sugars or purines.’®®! The one-pot synthesis of
all the required compounds can be achieved through a diverse set
environmental conditions,”-'% but they always result in a
convoluted, and analytically intractable, complex mixture of
products.['-19] |dentification of the direct transition of such units
into polymers from these mixtures is very challenging analytically,
and complete chemical characterization is nearly impossible, as
in the case of tholins.['® As such, the combinatorically large
number of products can justify employing a less product-explosive
process involving a multi-step synthesis approach. However, the
interaction of simple molecules with the environment has been
proven to steer the chemical networks into different outcomes or
product populations, giving them a higher level of order as a result
of environmental constraints (such as inorganic catalysts).['-2%|n
particular, the presence of mineral surfaces is known to
sometimes truncate the combinatorial explosions generated by
one-pot reaction of simple compounds. Two relevant examples
are the preferential formation of ribose when borate minerals were
added to the formose reaction,?'! a system known for the
incredible complexity of its product distribution, and the clear
selectivity towards the production of certain nucleobases when
formamide condensation was carried out on different mineral
surfaces.[?l Notably, these previous results were obtained in

batch reactions, leaving the possibility that this effect could be
amplified if the reaction mixture was cycled over a given
environment.
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Figure 1. Recursive cycles: A formose reaction (green) in

formamide/water (purple) is carried out in the presence of a mineral. After
each cycle of 48 hours at 50 °C, a fraction of the total volume (70%, from
the top) is removed and the vial is replenished with fresh starting materials
to start the next cycle. UPLC-MS/MS analysis: An untargeted analysis,
followed by a targeted data processing was conducted in order to explore
the resulting product distribution with an ‘omics’ approach.

To investigate this, we set out to explore the effect of reaction
cycling by seeding with the products of the previous reaction cycle
(recursion) on well-known combinatorial explosions. We carried
out the formose reaction in formamide with different mineral
environments, see Figure 1, to assess whether the selectivity
imparted by the environment can be amplified through recursion,
whilst truncating the combinatorial explosion by reducing the
overall number of products. We found that the recursive action
resulted in a lower number of individual products, with or without
a mineral surface, demonstrating that reaction cycling has a
significant effect on the product distribution. We also observed a
significant increase in the yields of certain species when minerals
were present, showing that selection by the environment also
plays a role in determining the product mixture, see Figure 2.
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Figure 2. Mass spectral features: Features are based on unique exact mass (m/z) and retention time (RT). Over recursive cycles, differences in the
number of features and MS? fragments (of each feature) can be observed for both (a) the recursive formose reaction in formamide control (no mineral)
and (b) the recursive reaction in the presence of a mineral surface (Chalcopyrite, CuzFeS). A heatmap of the features (c) was generated by grouping the
features into 50m/z bins, resulting in a unique pattern for each reaction environment over the three recursive cycles.

In order to investigate and establish the nature of any differences
in the product distribution without bias, untargeted analysis of the
mixtures was conducted. Ultra-Performance Liquid
Chromatography (HILIC) coupled to tandem mass-spectrometry
(UPLC-MS/MS) was carried out in a data dependent fashion,
which allowed us to investigate the resulting chemical space
without having to target any particular compound. By generating
features based on exact mass (m/z) and retention time (RT), we
were able to achieve a meaningful representation of the product
distribution from mass-spectral data. The features represent
unique reaction products and their number maps to the number of
individual species, providing a way to gauge the complexity of the
mixture.

To make the large volume of data more accessible, detected
features were binned by their m/z values as a means to fingerprint
the product distribution (Figure 2). The number of features in
each range of molecular weight changes as an effect of recursive
action, with a general trend that the number decreases from Cycle
1 to Cycle 3 (Figure 2 a & b). Differences in the distribution also
arise as an effect of the environment, as observed in Figure 2 c,

between the reaction with no mineral and with the inclusion of a
mineral surface. For each environment, the features generate a
different pattern which also changes across recursive cycles. The
number of detected features decreases from Cycle 2 to Cycle 3
for all reactions, demonstrating that the action of recursive cycles
is limiting the combinatorial explosion expected from these
reactions. In the case of Chalcopyrite, Quartz and in the absence
of any mineral surface (control), the number of features reduces
linearly from Cycle 1 to Cycle 3, while all other mineral
environments see the number of features peak in Cycle 2 and
decrease again in Cycle 3. This suggests that the reactions
proceed along different trajectories, towards different product
distributions, as a direct result of the mineral environment. To
validate our in-house feature generator and ‘omics’ based
approach to complex mixture analysis, we processed the data
using CompoundDiscoverer™  (Thermo  Scientific),?® a
conventionally used software for processing untargeted mass-
spectral data, which also enabled the extraction of ion
chromatograms (EIC’s) in a targeted fashion. While this method
generated fewer features overall, the trends were consistent
throughout the experiments (see Figure 2 and Figure S4).
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Figure 3. The formaldehyde sink, Hexamethylenetetramine (HMT): Extracted lon Chromatograms for HMT (m/z: 141.11, Adduct: [M+H]) for (a) the
control reaction and (b) in the presence of a mineral surface (Chalcopyrite). RNA building blocks, Ribose and Uracil: Extracted lon Chromatograms for
Ribose (m/z: 172.96, Adduct: [M+Na]) (e) in the control reaction and (f) in the presence of a mineral surface (Chalcopyrite). As well as, for Uracil (m/z:
113.03, Adduct: [M+H]) (c) in the control reaction and (d) in the presence of a mineral surface.

During the acquisition of the mass-spectral data, the most intense
peaks were fragmented further to MS2. This allowed us to identify
some of the products using database matching and validation
against pure standards to confirm chemical identities. By using
the MS? data, we were able to identify some of the features as
Ribose and Uracil, the building blocks of RNA. Extracted ion
chromatograms (EICs) for Ribose and Uracil, for the reaction with
and without the mineral chalcopyrite, are shown in Figure 3 c-f.
We found that conventionally analytically targeted products, such
as nucleobases, where not only present in our product mixtures
but also produced preferentially on mineral surfaces, as observed
in the difference between intensity scales in Figure 3 ¢, d. As well
as, traces of nucleoside formation (Thymidine and Adenosine) for
most samples in Cycle 3, including the non-mineral control
reaction (see Figure S11 — S13).

In addition, we detected Hexamethylenetetramine (HMT) across
all reactions. HMT was discovered by Aleksandr Butlerov in 1859
and is prepared industrially by combining formaldehyde and
ammonia.?? The significance of HMT in prebiotic chemistry has
been discussed previously,?® particularly in its role of
incorporating formaldehyde (from its reaction with ammonia,
which is generated in-situ by the decomposition of formamide)
into a more stable compound, possibly allowing for it to be
concentrated in a prebiotic, evaporative environment. The
concentration of HMT changed across recursive cycles (Figure 3),
with a significant drop being observed after the second cycle for

all samples (including the control). We postulate that the HMT is
depleted by reaction with the products of Cycle 2, but we currently
have no definitive evidence for this, or a mechanism responsible.

In conclusion, we carried out the formose reaction and formamide
condensation in a one-pot fashion, under milder conditions than
previously reported,?? while a recursive environment was applied
to the resulting mixture in a series of cycles. We found that
recursive cycles not only truncated the combinatorial explosion by
reducing the number of individual products, but also successfully
generated sugars and nucleobases from potentially prebiotic
routes, in an integrated fashion. Traces of nucleoside formation
were also detected after two recursive cycles, for the first time in
this simple-precursor systems (e.g. Formose reaction/
Formamide condensation). Furthermore, we found a molecule
with a strong connection to prebiotically-relevant compounds,
hexamethylenetetramine (HMT), which might have a non-trivial
relationship with the formation of these building blocks. We
believe that recursive experiments bring us one step closer to a
plausible ‘real-life’ scenario, and therefore provide an improved
experimental regime for looking at the evolution of complex
mixtures from simple precursors under non-equilibrium conditions.



Experimental

Experimental Methods: A formose reaction (formaldehyde,
glycolaldehyde, calcium hydroxide) was carried out in in
formamide-water (50:50 v/v) on seven different mineral surfaces
(see SI, Page 2), as well as, in the absence of any mineral surface
(e.g. control). The reactions were stirred at 1200rpm and heated
at 50°C, for 48 hours. Then, about 70% (~3.5 mL) of the reaction
volume (supernatant) was removed for analysis.

Recursive cycles: The remaining fraction (~1.5 mL) was used to
seed the next reaction. Topping up with the same concentration
of starting materials (3.5 mL), but conserving the total reaction
volume (5 mL); we repeated the process.

Sample preparation: The removed fraction was allowed to cool to
room temperature. Then, a 100uL aliquot was taken for each
analysis; to which an ion-exchange resin was employed to
remove excess cations in solutions (e.g. Ca?*) and the
supernatant transferred to glass vial, followed by a 1 in a 100
dilution with MS grade water. Finally, the solution was filtrated with
a syringe filter (0.22pm cut-off)].

Ultra-performance Liquid Chromatography and tandem Mass
Spectrometry: Chromatographic separation was achieved using a
Thermo Vanquish UPLC with a ZIC-HILIC column, eluted in a
linear gradient mixture of solvents A (water w/20 mM Ammonium
Acetate, pH = 5) and B (100% acetonitrile w/0.1% v/v formic acid)
over 25min, coupled to a Thermo Fusion Orbitrap for mass-
spectral analysis. Spectra were collected for 30 minutes in
positive mode over a scan range of 50-500 m/z. lon transfer tube
was set to 275 °C, RF lens 60%, and acquisition was performed
in a Data-dependent (DDA) manner. The Fragmentation data was
collected at top speed (3 second window) with an intensity
threshold of 5.0E4 and dynamic exclusion, after one time for 15
seconds, using the ion trap isolation at HCD collision energy of 35
eV and resolution 15000.

Interpretation of Raw Data: All raw files were converted to mzML
and centroided using Proteowizard’s 28 convert function (with a
vendor-specific algorithm). The converted files (mzML) were
processed in Python using Pymzml. In each file, (m/z, intensity,
rt) features were extracted using pymzml feature detection
algorithm, with default parameter values used for both the
centroiding and mass trace detection. Performance of the feature
detection and extraction algorithm was evaluated by comparing
them with those generated in an analogous processing software,
CompoundDiscoverer™, which was developed particularly for
data acquired in Thermo-Orbitrap instruments and used to
automatically detect features across samples; which were
comparable with those obtained with Pymzml.

Data Analysis: After aligning the peaks detected across all
samples and removing those present in the blanks, duplicate
features were removed by eliminating values that had the same
exact mass (to the third decimal value) and were within an
acceptable retention time window (+/- 30 s) of each other. Filtering
of the features was achieved by a 2-step procedure, with in-house
scripts developed in python: (1) All detected features were filtered
for those that had MS/MS spectra appended and (2) which were
not present in any sample blanks. The DDA fashion in which the
data was acquired, allows for this filtering to be possible without
losing any of the most abundant compounds and allows for
plausible chemical identification of the features.
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Experimental Methods

Reagents

Formaldehyde (ASG reagent, 37% wt. in H20), Glycoaldehyde (97%), Formamide (Reagent
Plus®, >99.0 (GC)), Calcium Carbonate (purity >96%) Formic Acid (reagent grade, >95%)
and were purchased from Sigma Aldrich and Calcium Hydroxide (purity > 96.0%) were
purchased from Fluka Analytical. Analytical solvents (Water and Acetonitrile, HPLC-MS grade)
and Ammonium Acetate (Ambion® Molecular Biological Grade (5M), >98%) were purchased
from ThermoFisher Scientific UK. Analytical standards of Hexamethylenetetramine (HMT),
Ribose, Adenine, Guanine, Thymine, Cytosine, Uracil (Molecular Biological Grade, >98%),
Adenosine and Thymidine were purchased from Tokyo Chemical Industry UK.

Minerals

Goethite, a-FeO(OH), Montmorillonite, (Na, Ca)oas(Al, Mg)2(SisO10) and Hydroxyapatite,
Cas(OH)(PO4)s were purchased from Sigma-Aldrich. Chalcopyrite, CuFeS, was purchased
from Alpha-Aesar by Thermo Fisher Scientific. Ulexite, NaCaBsOs(OH)s'5H20, Zoesite,
Ca,Al3(SiO2)3(OH) and Quartz, SiO, were purchased from Richard Taylor Minerals, a private
collection from the United Kingdom.

Experimental procedure

Formaldehyde (0.5 mL), Glycolaldehyde (0.0126 g), Water (2.25 mL), Formamide (2.25mL)
and Calcium Hydroxide (0.0705g) was carried out on seven (7) different mineral surfaces (plus
control) in 22mL borosilicate glass vials. It was stirred at 1200rpm with a magnetic stirrer and
heated at 50°C, for 48 hours. Then, about 70% of the reaction volume (supernatant) was
removed for analysis.

The remaining fraction was used to seed the next reaction. Topping up with the same
concentration of starting materials, but conserving the total reaction volume; we repeated the
process three times.

Q
.. Mineral
surface

Figure S1. Recursive cycles: After each reaction, the supernatant is removed for analysis and
a small fraction is left in the reaction vessel and used to seed a next reaction.

Analytical methods
Sample preparation

The removed fraction was allowed to cool to room temperature, then a 100uL aliquot was
taken for each analysis. Followed by removal of excess cations in solution (e.g. Ca*) with
Amberlite™ lon-exchange resin, before the supernatant was diluted 1 in a 100 with MS
grade water. Finally, the solution was filtrated with a syringe filter (0.22um cut-off)] and
placed in an HPLC sample vial, before analysis.
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UPLC-MS/MS analysis

Ultra-Performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS)
analysis was performed with a Thermo Vanquish Ultra-performance liquid chromatography
system coupled to a Thermo Orbitrap Fusion Mass-Spectrometer. Samples were injected
directly (no splitting) in 10 pl aliquots and chromatographic separation was achieved with a
ZIC-HILIC C18 (4.6 x 150 mm, 2.7 ym) column, eluted in a linear gradient mixture of solvents
A (water w/20 mM Ammonium Acetate, pH = 5) and B (100% acetonitrile w/0.1% v/v formic
acid) over 25 min as follows: 0 min, 100% A; 4min, 100% A; 19 min, 100% B; 23 min, 100% A;
25min, 100% A; in a method adjusted from H. Idborg, et.al."' The column was maintained at
30 °C and the MS spectra was collected for 30 minutes in positive mode over a scan range of
50-500 m/z. lon transfer tube was set to 275 °C, RF lens 60%, and acquisition was performed
in a Data-dependent (DDA) manner.

The Data-Dependent Acquisition (DDA) was performed by prioritizing the top most intense
fragments in a 3 second window with an intensity threshold of 5.0E4 and dynamic exclusion,
after one time for 15 seconds (in order to avoid the selection of the same fragments), using
the ion trap isolation with a HCD collision energy of 35 eV and a resolution 15000.

Feature Generation

The raw data was extracted from its vendor format (.raw) with MSConvert from ProteoWizard
@ into an .mzML format before introducing it to Python. The package PymzML B was used to
extract MS' values, Retention Time (RT), Intensity (in counts) and MS? values (with their
corresponding RT and Intensity). Detected MS' values where then filtered by selecting those
which were taken for MS? fragmentation by the DDA method, which we found were
representative of the most important features within the complex mixture.

The features generated are based on unique Retention Time (RT), Exact Mass (m/z) and MS?
fragments; which (as previously mentioned) we achieved by filtering for all fragments which
were selected in a DDA fashion for MS? (Top most intense). Each one of the points (Figure
S$2) represents a compound within the product mixture; which gives a representation of the
reaction products, even if we cannot identify each one of the compounds.

500

No mineral b) Chalcopyrite

20

RT

Figure S2. The feature generation based on unique retention time (RT) and m/z combinations
for Cycle 1 and Cycle 3, in the reaction control (a) and in the presence of the mineral
Chalcopyrite (b). Each point represents a compound within the product distribution ensemble.



Duplicate (MS') values where filtered further (Figure S3), by eliminating values that had same
exact mass to the third decimal value, besides being within an acceptable retention time
window (+/- 30 s) of each other. Furthermore, the number of MS? fragments obtained for each
feature (MS') was calculated, as a generic way to access the overall complexity of the
molecules within the complex mixture.
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Figure S3. Filtered features for Cycle 1, Cycle 2 and Cycle 3 in the (a) control reaction and
with (b) Chalcopyrite and (c) Goethite as a mineral surface. Differences across the profile of
the products and number of MS? fragments of each feature can be observed.

Also, as seen in Figure S$4, the changes in the product distribution are consistent with the
features generated in CompoundDiscoverer™ (Thermo Scientific) !, a conventionally used
software to process untargeted mass-spectral data, which also enabled the extraction of ion
chromatograms (EIC’s) in a targeted fashion. The number of features generated by the
software’s processing method where far less than the ones generated by our in-house feature
extraction method, but preserved the same trend (as Figure S3). This comparison provided a

good validation of the bespoke feature generator and our ‘omics’ based approach to complex
mixture analysis.



Cycle 3

Figure S3. Multi-colour plots: Differences in the feature distribution are displayed across
mineral surfaces (1-6) and the reaction with no mineral (0) and the number of detected
features reduces over the recursive cycles, in features extracted by the
CompoundDiscoverer™ software suite.

Molecular weight distribution of features

The filtered features were manually grouped into 50m/z bins, in the range of 50 to 400 m/z, as
seen in Figure 2. The number of features detected for each bin are displayed in a heatmap,
generated in matplotlib through Python. The heatmap produces a unique pattern for each
reaction, in which the number of features decreases over recursive cycles consistently, in the
absence and presence of a mineral surface.

Compound identification and validation

Identification of the compounds in the reaction mixture was performed by Compound
Discoverer 2.0 (3) by matching the exact mass and the resulting MS? spectra with the all the
available databases, through MZcloud® search (Figure S5). This was further validated with
pure standards, where a match in retention time, exact mass and a robust correlation with the
MS/MS mass-spectral pattern was used to confirm the identity of the compounds. The
validation preformed done manually through ThermoScientific™ Mass Frontier™ spectral
interpretation software (Figure S6, S7 and S8) and CompoundDiscoverer™ (Figure S9 and
$10).
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Figure S5. General overview of the analytical workflow in CompoundDiscoverer 2.0™ (a)
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Chromatograms (EIC’s) are generated for all features in each sample. (b) Integrated
processing workflow does adduct calculations, predicts compositions and conducts a search
through the MZcloud® database.
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Figure S6. UPLC-MS/MS spectrum for Ribose (m/z: 172.96, Adduct: [M+Nal) in (a) a pure
standard and (b) real sample (Chalcopyrite, Cycle 3).
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Figure S7 UPLC-MS/MS spectrum for Uracil (m/z: 113.03, Adduct: [M+H]) in (a) a pure
standard and (b) a real sample, (Chalcopyrite, Cycle 3).
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Figure S8 UPLC-MS/MS spectrum for Thymine (m/z: 127.05, Adduct: [M+H]) in (a) a pure
standard and (b) a real sample, (Chalcopyrite, Cycle 3).
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Figure S9 UPLC-MS/MS spectrum for Cytosine (m/z: 112.05, Adduct: [M+H]) in (a) a pure
standard and (b) a real sample, (Control, Cycle 3); and Adenine (m/z: 136.06, Adduct: [M+H])
in (¢) a pure standard and (b) a real sample, (Chalcopyrite, Cycle 3)
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Figure S10 UPLC-MS/MS spectrum for Hexamethylenetetramine, HMT (m/z: 141.11, Adduct:
[M+H]) in (a) a pure standard and (b) a real sample, (Chalcopyrite, Cycle 3)

Detection of nucleosides (traces): Validation by external standards and MS/MS

Traces of Adenosine and Thymidine nucleosides where found in the last cycle (3) of most
samples (including the control reaction). The presence of Ribose and several nucleobases in
Cycle 1 and 2, lead us to believe there was a possibility for nucleoside formation in Cycle 3.
To address this, we looked for the corresponding nucleosides of Adenine and Thymine, in
Cycle 3. Figure S11 illustrates the cross validation with an external standard of Adenosine,
by (1, 2) having a chromatographic match in retention time (+/-40s), (1a, 2a) the same exact
mass and (1b, 2b) a matching MS/MS (MS?) fragmental pattern. Furthermore, by running the
pure standards through the same chromatographic method, we found that preferred adducts
for Thymidine were not necessarily the [M+H]*, but rather the charged (z = 2, for m/z) and
sodium adducts predominated (as seen in Figure $12 and Figure S13). The exact isomer of
the nucleosides was not assessed, since the pure standards used for validation were not
differentiated by their isomeric position. However, we believe this to be satisfactory evidence
towards the presence of nucleosides in the product distribution ensemble; particularly, within
a mixture of this complexity.
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Figure S11. UPLC-MS/MS analysis and comparison of (1-1b) a pure standard of Adenosine
(m/z: 268.1), Adduct: [M+H]) with (2-2b) a real sample (Chalcopyrite, Cycle 3).
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Figure S12. UPLC-MS/MS analysis and comparison of (1-1b) a pure standard of Thymidine

(m/z: 122.07), Adduct: [M+H] z

2, with (2-2b) a real sample (Chalcopyrite, Cycle 3).
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Figure S13. UPLC-MS/MS analysis and comparison of (1-1b) a pure standard of Thymidine
(m/z: 122.07), Adduct: [M+H] z = 2, with (2-2b) a real sample (Chalcopyrite, Cycle 3).
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Extracted lon Chromatograms (EIC’s) for selected compounds on different mineral

surfaces, across recursive cycles.
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Figure S14. Extracted lon Chromatogram for (a) Thymine (Molecular Weight: 127.05, Adduct:
[M+H]), in Cycle 3 with Chalcopyrite; and Uracil (m/z: 113.03, Adduct: [M+H]), in Cycle 3 with

Goethite.
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Figure S15. Extracted lon Chromatogram for Hexamethylenetetramine, HMT (m/z: 141.11,
Adduct: [M+H]) in (a) a pure standard and (b) a real sample, (Goethite, Cycle 3)
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