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Abstract

To shed light on the impact of doping on the conductivity of garnet-type electrolytes, we use

molecular dynamics with an ab-initio designed force-field to investigate the complex interplay

between the carrier concentration and the kinetic and thermodynamic changes induced by the

addition of hypervalent dopants. We particularly focus on the effect of the distribution of the

doping agents and find that there is a need to perform a proper average over the frozen disorder

introduced by the doping. We observe the competing effect between the decrease in concentration

of the conducting ions (Li+) and the perturbation of the energy landscape induced by the insertion

of hypervalent dopants. These two phenomena give rise to an intricate balance between thermody-

namic and kinetic properties, which make the interpretation of the experiments very challenging.

In particular, while the increase in the dopant concentration stabilizes the conductive cubic phase

of these garnet-types materials, the kinetic effects have two distinct components acting in opposite

directions. The nature of these processes is explained by means of atomistic simulations.
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I. INTRODUCTION

The next generations of lithium batteries still face many challenges in terms of safety

and stability. The key to solving many of these issues might lie in the selection of more

efficient electrolytes. Until now, liquid electrolytes based on organic solvents such as ethylene

carbonate or propylene carbonate have been commonly used. The general flammability

of organic solvents, the risk of environmental contamination upon improper disposal of

liquids [1] and the difficulties of using a liquid phase in production are some of the issues faced

by these electrolytes. They have also hindered the development of future battery technologies

such as Li/O2 and Li/S . The lack of electrochemical stability of organic electrolytes in Li/O2

batteries has been shown both experimentally [2–5] and theoretically [6, 7] to result in a

loss of efficiency. Similarly, the solubility of some LiSn compounds in the organic solvents

used leads to a similar loss of efficiency over time in Li/S batteries [8]. All these issues

have stimulated research efforts to find suitable electrolyte replacements. Early advances

in research on solid-state electrolytes (SSE) [9, 10] have led to a high interest in these

compounds. Although many candidates have been found that combine thermodynamical,

chemical and electrochemical stability with reasonably high Li-ion conductivity in several

chemical families, the optimal solid-state electrolyte is yet to be discovered.

Several inorganic compounds have been investigated as potential solid-state electrolytes [9,

11–13]. Candidates range from oxides to non-oxides, and crystalline to amorphous. In 2003,

Thangadurai et al. [14] identified a new class of Li-ion conductors, the garnet-like lithium

oxides. Although the first of those identified structures had relatively low conductivity

(≈ 10−6 S cm−1), the high versatility of the structure allowed great improvement through

composition change and doping. Among the most promising candidates, lanthanum and

zirconium containing lithium oxides (LLZO) have proven to be the most promising ones,

with conductivity going up to 10−3 S cm−1 [15–17].

LLZO can be found in two phases, a tetragonal, low- conducting one, and a cubic, highly

conductive one. The difference of conductivity between the two phases reaches up to 3

orders of magnitude and is mostly due to the difference in the Li network of each phases.

The tetragonal structure is composed of a saturated network of 56 Li sites (8 tetrahedral, 8a,

and 48 distorted octahedral, 16f and 32g). This arrangement forces the diffusion process to

follow an energetically improbable, concerted mechanism. On the other hand, in the cubic
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Figure 1. Left Structure of the cubic phase of the lithium containing garnet (LLZO). The Zr and

La polyhedra are represented in green and blue respectively. Right Ring structure formed by the

tetrahedral 24d and the two octahedral 96h Li-sites in the crystal.

phase, the distorted octahedral sites split into two energy equivalent sites (96h), leaving

space for a hopping-type mechanism. Though the tetragonal structure is more stable at

room temperature, the cubic, better conducting, phase can easily be stabilized using doping.

The understanding of the mechanism of phase stabilization as a function of the conditions

(doping concentration and temperature) is therefore central to guide the design of better

performing solid-state electrolytes.

Computational investigations targeted at solid-states electrolytes aim at creating a deeper

understanding of the various phenomena that control and influence the conductivity of a

given ionic species. Although this type of investigation is often presented as the promise of

the identification of better materials, most new electrolytes are still discovered by intuition

or serendipity. This is because, presently, the theoretical methods available for the accurate

characterization of the medium-to-long timescale needed to describe the transport process

are not suited to use on large datasets. However, molecular dynamics simulations can still

offer very valuable information. In particular, it can help compare the physical and chemical

properties of systems differing by a set of well-controlled parameters, ranging from the atomic

composition to the thermodynamic properties like temperature and pressure.

In this work we focus on a comparative study of the conductivity of doped garnets of the

LLZO family. Several studies, both experimental and theoretical, have already investigated

some of the effects of doping on LLZO. Three types of doping can be identified: (i) the

substitution of Li ions by hypervalent cations such as Al [18, 19] or Ga [20], (ii) the substi-

tution of the metal centers by cations such as Ce [21], Ta [22, 23], W [24, 25] and Nb [15],

and (iii) a co-doping by more than one of the two first options [26–29].
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Adams et al. [30], and Jalem et al. [20] first introduced the use of force-fields for the

modelling of, respectively, Ga and Ta or Nb doped garnets. Although these force-fields

could predict a cubic phase for the low temperature structure of the doped systems, nei-

ther force-field could successfully describe the cubic to tetragonal transition of the undoped

structure. Klenk et al. [31] later showed that the stability of the undoped garnet system can

be accurately described using a polarizable force-field, based on an ad-hoc determination

of the polarizable force-field parameters. Despite the interesting results, the authors did

not address the effects of doping on the structure of LLZO or its conductivity. More re-

cently, Chen et al. [23], using a non polarizable force-fields, successfully described the phase

transition of the undoped structure and the stabilization of the cubic phase via Ta doping.

Their work focused on the understanding of the phase stabilization through changes in the

occupancy of the lithium sites. However, their study did not extend to the investigation of

the lithium ions dynamics.

The motivations for this work are twofold. Our long-term goal is to provide a general

framework for the unsupervised parametrization of core-shell models to be used for the

simulation and screening of solid-state electrolytes properties. With this work, we aim to

understand the issues related to the use of this type of modelling in the description of

the LLZO systems, and in particular of doped ones. We investigate in details the physics

of W-doped systems, with formula Li7–2xLa3Zr2–xWxO12, from both a kinetic (barriers

and conductivity) and thermodynamic (phase stability) standpoints. Our system choice

was motivated by the experimental results provided by Li et al. [25], where several dopant

concentrations and temperatures were explored using a consistent synthesic approach. Our

work mainly differs from previous analysis by its focus. Our target is to resolve the effects

on the dynamics resulting from the change in charge carrier concentration and from the

introduction of the doping agents. To this end, we compare two doping models (i) an implicit

model using a uniform background charge and (ii) an explicit model using substitution

of hypervalent ions. In the second model, we introduced an additional average over the

positions of the W ions to account for the frozen noise of the dopant distribution and analyze

the results within the framework of spin glass theory. We show that while doping can affect

the conductivity both through a depletion of the charge carriers and a potential increase

of the hopping barriers by the hypervalent dopants, it also influences the thermodynamic

stability of the conductive cubic phase. The delicate interplay between these two effects is
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what makes the physics of doped SSE very challenging for both experimental and theoretical

studies.

II. COMPUTATIONAL METHODS

In this section, we report a short description of the force-field used in this work for the

characterization of the structural stability and for the analysis of the transport properties

of undoped and W-doped LLZO derivatives. Classical molecular dynamics was performed

using long range Coulomb interactions, short range Buckingham potentials of the form

U (Rij) = Ae−
Rij
ρ − C

R6
ij

(1)

for all oxygen- and metal-oxygen pairs (i, j) within a cutoff distance Rij = 10Å, and a

Dick–Overhauser core–shell model [32] to describe the polarization of the O atoms, as im-

plemented in the LAMMPS [33] code for molecular dynamics simulations. The parameters

for the polarization of the oxygen, i.e. the core-shell charge splitting, Y , and spring con-

stant, k are fitted to the atomic polarization computed in the crystal environment at density

functional theory (DFT) level of theory. The Buckingham parameters for the metal-oxygen

pairs, Li –O, La–O and Zr–O, refined from the one used by Klenk et al. [31], and the value

of the unit charge q were optimized using a fitting procedure based on first-principle data

evaluated using DFT. All DFT calculations were carried out using the plane wave CPMD

software package [34, 35]. The PBE functional and norm-conserving Goedecker pseudopo-

tentials [36] were used in conjunction with a cutoff of 150 Ry. Only the repulsive part of

the metal-oxygen pairs is considered with all other C parameters being set to 0. The op-

timization was carried by minimizing the sum of the mean-square errors on the forces and

total energy, as well as the sum of the angular deviation of the forces, by means of the cost
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function

C ({bLiO} , {bLaO} , {bZrO}) =

1

Ns

∑
s

(
αs (EDFT,s,i − EpFF,s,i)

2

+ βs
∑
i

∣∣∣~FDFT,s,i − ~FpFF,s,i

∣∣∣2
+ γs

∑
i

~FDFT,s,i · ~FpFF,s,i∣∣∣~FDFT,s,i

∣∣∣ · ∣∣∣~FDFT,s,i

∣∣∣
)

(2)

where {bXO} = {AXO, ρXO} is the parameter set that defines the Buckingham potential of

the pair X–O with X={Li, La, Zr} s runs over the used structures and i over the atoms

of the structure s. α, β and γ are weights used to balance the fitting procedure. The

parameters for the W–O pair were obtained using the same methodology. The parameters

used for this work are listed in Table I.

Pair A ( eV) ρ (Å) C ( eVÅ6) Charge and shell

Li–O 461.30 0.3074 - q (e) = 0.962

La–O 4420.23 0.2980 -

Zr–O 1269.33 0.3499 -

W–O 1397.76 0.3549 - Y (e) = −2.75

O–O 22764.30 0.1490 27.63 k
(

eVÅ
−2
)

= 30.2

Table I. Force-field parameters used in this work.

All MD simulations were carried out in the isothermal- isobaric (NPT) and canonical

(NVT) ensembles, with an integration timestep of 0.25 fs, using a 2×2×2 supercell. A col-

ored noise or generalized Langevin equation (GLE) thermostat for core-shell models [37, 38]

was used to control the temperature of the system. The choice of the thermostat was moti-

vated by non-negligible drifts observed in the energy when using the Nosé-Hoover thermostat

with hypervalent ions present in the structure. The colored noise thermostat maximizes the

adiabatic separation of the dynamics of the lightweight shells from the one of the ions while

minimizing the impact on the shell dynamics. To account for a small energy transfer to

the shells and maintain a stable dynamics over long simulation times, a zero temperature

memory-less friction thermostat is coupled to the shells [37]. We show in Appendix B that

the present use of the colored-noise thermostat has a minimal impact on the dynamical quan-
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tities of interest. In the case of the NPT simulations, a Berendsen barostat was used for

the pressure control with a damping parameter of 25 ps. The phase diagrams (Fig. 4) were

computed using temperature increments of 120 K from 200 to 1400 K, in both directions.

In the temperature range where a phase transition took place, a finer sampling performed

using temperature increments of 25 K. At each temperature step, the system was equili-

brated for 250 ps and statistics were collected over the subsequent 750 ps of dynamics. For

the computation of the conductivity, the temperature was increased to the target temper-

ature over 250 ps. After 250 more ps of equilibration, the positions were recorded every

0.1 ps for a duration of 4 ns. Block-averaging analysis was used to estimate the error for

all the quantities computed along the trajectories. This technique relies on the division

of the trajectory into long enough blocks. Each block provides an independent estimate of

the quantity of interest (e.g. lattice parameter, diffusion coefficient), and the final error is

derived from the standard error of the mean, reflecting the spread of the quantity measured

through the different blocks [39] .

Doping is used to vary the concentration of charge carriers in the structure. Each sub-

stitution introduces extra electrons/holes whose charges have to be compensated by the

addition/removal of the corresponding number of Li-ions. We investigate here the substi-

tution of Zr4+ ions by W6+ ones. To shed light on the origin of the observed changed in

material properties and identify if they are triggered by the presence of hypervalent cations

or by the change in carrier concentration, we compare two models: an implicit and an explicit

doping protocol. In the implicit model the concentration of the charge carrier is changed

without substituting hypervalent cations. The extra charge is compensated by a positive

background charge which does not influence the forces during the dynamics. The explicit

model incorporates the substitutions explicitely. Note that only the latter model is able

to capture, in an approximate way, the local changes of the electronic structure due to the

presence of the dopant. Comparison between the results of the two models can shed light on

the different static and dynamical aspects at play in the doping of the garnet electrolytes.

The addition of a small fraction of dopants rises the issue of their distribution in the unit

cell considered. This is particularly important since the position of the dopants remains

frozen over the time of our simulations. This situation is reminiscent of the fixed disorder

distribution in spin-glasses [40]. To account for the disorder of the dopant distribution, we

introduce, in addition to the time average, an additional average of all measured properties
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Figure 2. Radial distributions of the Zr-Zr (red) and W-W (blue) pairs respectively in the

undoped and Boltzmann-distributed doped structures with doping fraction x = 0.15 (top) and

0.25 (bottom). The shortest distance pairs are absent at low doping concentration structure due

to the increased Coulomb repulsion between the hypervalent cations. Increasing the concentration

saturates the structure enough that the shortest distances are forced to be occupied but longer

distances remain favoured compared to the original bcc Zr structure. The green curve represents

the integral of the W-W radial distribution function.

over a set of structures with different dopant distributions. The expectation value of an

observable J therefore becomes

[〈J〉]av =
∑
ΓD

(∑
R

e−βEΓD
(R)

ZΓD

JΓD (R)

)
· PΓD

, (3)

where R is the collective array of the nuclear coordinates, and ZΓD is the partition function

for a given realization of the disorder ΓD, distributed with the propability PΓD
. In the ergodic

limit and using the fact that the ΓD degrees of freedom are frozen

[〈J〉]av =
∑
ΓD

(
lim
t→∞

1

t

∫ t

0
JΓD

(
R(t′)

)
dt′
)
· PΓD

. (4)

The Boltzmann probability PΓD
is evaluated using a Monte-Carlo simulation in the ionic

space composition [41], according to which Zr and W atoms are swapped at an effective

temperature of 1200 K to mimic the dopant distribution at the usual sintering tempera-

tures. Fig 2 shows the W–W radial distributions obtained for the Boltzmann distributed

ionic configuration evaluated at two different doping concentrations, x = 0.15 and 0.25. It

is important to note that the W–W pair distribution obtained from a random replacement
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of the Zr ions with the W atoms would overlap with the original Zr–Zr undoped pair dis-

tribution. However, one can observe a depletion of the shortest distance pairs as a result

of the increased Coulomb repulsion between the hypervalent W6+ ions. When consider-

ing explicit doping, all reported calculations are obtained averaging over an ensemble of

Boltzmann-weighted structures unless otherwise stated.

III. RESULTS

Structure analysis

Figure 3. XRD pattern of the Li6.7La3Zr1.85 W0.15O12 computed from the 300 K trajectories

averaged over the dopant distribution. The pattern replicates the use of CuKα radiation with

2θ in the range of 10 − 80◦. For comparison we display the position and amplitude of the peaks

reported by Li et al. [25] for the same structure.

In order to assess the quality of our polarizable force-field Hamiltonian and the effects

introduced by the use of the GLE thermostat, we first compare our results to experimental

measurements, namely X-Ray diffraction (XRD) and lattice parameters measurements. In

Fig. 3, we present the XRD pattern computed for doped structures (x = 0.15) from NVT

trajectories and we compared it to the corresponding experimental values reported by Li et

al. [25]. We observe that the position and amplitude of the peaks are well reproduced, even

though a systematic shift is present. This is likely due to differences in the lattice parameters

and effective charges on the atoms. Despite these discrepancies, these first results confirm

the quality of our model and ensure a good level of trust in the interpretation of the following

simulations.
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Figure 4. Lattice parameters as a function of the temperature for an undoped structure (green

and purple) and doped (blue implicit and red explicit) with a doping fraction x = 0.15. The

brown circles are experimental values reported by Larraz et al. [42]. The brown squares are

the same experimental values shifted as to align the cubic lattice parameters. The phase transition

can be observed between 800 and 900 K for the undoped structure with a small hysteresis. Both

doped models succesfully stabilize the cubic structure at low temperature.

Fig. 4 shows the lattice parameters obtained from our NPT simulations. In the case

of the undoped system we present two different curves, the first obtained from a heating

process from 200 K upwards and the second from a cooling one from 1400 K downwards. The

transition from the cubic to the tetragonal phase can clearly be observed between 800 and

900 K and is characterized by a small hysteresis. The difference between the two transition

temperatures is however smaller than the temperature step used. Most importantly, in the

case of the doped structures, both our implicit and explicit doping models at x = 0.15 are

able to describe the stabilization of the cubic structure at low temperature. This suggests

that the stabilization of the cubic phase induced by doping is a result of the change in

the lithium concentration rather than of electrostatic effects induced by the presence of

the dopant itself. This is in agreement with previous studies on the subject [23]. Our

model predicts quantitatively the experimental split between the lattice parameters despite

a systematic shift towards smaller values. The discrepancy between our simulation and

experimental measurement (as well as previously reported simulations [31, 43]) may be

associated with the different force-field parametrization and with the use of the colored

noise thermostat in our simulations. The difference in the equation of state of the cubic

phase presented in App. A can in particular help explain the underestimation of the lattice

parameter by our simulations.
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Figure 5. a) Radial distribution function of the Li-M pairs, M = W (solid) and Zr (dotted) for

x = 0.150 at temperatures between 300 and 500 K. The vertical lines indicate the distances to the

neighboring octahedreal, 96h, (dash-dotted) and tetrahedral, 24d, (solid) crystallographic sites.

b Integral of the radial distribution functions presented in a.

Fig. 5 shows the radial distribution functions for the Zr-Li and W-Li pairs at various

temperatures and their integrals for a doping of x = 0.15. The first coordination shell is

well defined and located at the distance corresponding to the nearest two octahedral sites,

respectively 2.94 and 3.13Å. Around the Zr centers, no further coordination shell is well

resolved indicating a liquid like behaviour or the ions. On the contrary, in the neighborhood

of the W centers, the lithium density located beyond the first shell is pushed back by the

higher coulombic repulsion and forms a second shell near the next-nearest octahedral sites

at a distance of 4.7Å. Fig. 6 shows the lithium ions distribution around a Zr and W center

sampled during 8 ns of simulation. The changes described in Fig. 5 are reflected here in the

depletion of the lithium density at the tetrahedral sites, cutting the lithium density into six

blobs centered around the octahedral sites.

Dynamics and diffusion analysis

Dynamical properties can be directly assessed by means of molecular dynamics simula-

tions. Velocity autocorrelation functions are valuable sources of insight for characterization

of the dynamics of a system. We consider the single-particle velocity autocorrelation of the

lithium ions, defined as CLi
v (t) =

[
〈vi (t0 + t)vi (t0)〉i,t0

]
av

, where vi(t) is the velocity of

a tagged lithium i at time t. Brackets 〈·〉X are used to represent the averaging over the
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Figure 6. Representation of the lithium distribution sampled during 8 ns of simulations around

a central Zr (left) and W (right) ion. The lithiums are displayed in red when within a 3.75 Å

distance from the central atom and blue otherwise. The sites of the crystallographic structures are

overlaid in orange. The figure illustrates the depletion in lithium density around the tetrahedral

sites in agreement with what is observed in Fig. 5 (r = 3.6Å).

variable X. Note that by ergodicity the average over the initial time, t0, is equivalent to an

ensemble average over initial configurations. Although the autocorrelation function displays

a very fast decay, order of a few picoseconds, typical of liquid systems [44] and other fast

ionic conductors [45], the diffusive process is reflected in the long time tails (see App. C).

We find that the velocity autocorrelation functions in the garnet material follow a power

law decay of the form τ−a. For our simulations, we obtain a value of a = 2 in the case of

the undoped cubic structure and explicitely doped material, and a = 3 for the implicitely

doped structure. This difference in the kinetics between the explicit and implicit model

can be explained by the introduction of the hypervalent W6+ cations in the explicit models

introducing new obstacles constraining the motion of the charge carriers, since the decrease

of the carrier concentration is identical. These observation are in line with the effect of the

W centers on the lithium distribution in Fig. 5 and 6. The Fourier transform of CLi
v (t), i.e.

the Li power spectrum, CLi(ω), shows two very broad peaks at frequencies of 130 and 270

cm−1 for the explicitly doped system. The peaks can be connected to the presence of the

two nonequivalent lithium sites in the structure (see Fig. 1).

Central to the analysis of the dynamical effects of doping is the calculation and comparison

of the diffusion coefficients. To this end we compare the behaviors of the charge, Dσ, and

tracer, DTr, diffusion coefficients. Both quantities can be estimated by the derivative of the

long time limit of the mean-squared displacements of, respectively, the center of mass of the
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particles and the particles,

Dσ =

[
lim
t→∞

NLi

6

∂

∂t

〈
|〈xi (t0 + t)〉i − 〈xi (t0)〉i|

2
〉
t0

]
av

(5)

DTr =

[
lim
t→∞

1

6

∂

∂t

〈
|xi (t0 + t)− xi (t0)|2

〉
i,t0

]
av

(6)

with NLi the number of Li ions in the simulation cell and xi (t) the position of the Li ion

i at time t. In particular, Dσ is directly proportional to the ionic conductivity [45]. The

polynomial decay of the velocity autocorrelation function leads to a slow-down of the conver-

gence of both the charge and particles mean square displacements used in the evaluation of

the transport coefficients. The derivative of the mean square displacement can successfully

be fitted to a D∞ + ct−(a−1) function that we use to evaluate the asymptotic values of the

diffusion coefficients (see details in appendix C) .

Figure 7. Relative error of Dσ,n, the estimator of the charge diffusion coefficient using a subset

of n structures of formula Li6.5La3Zr1.75 W0.25O12, with respect to Dσ,50, used as an estimate of

Dσ,∞ at 300, 400 and 500 K.

When performing explicit doping, we observe large variations of the measured diffusion

coefficients as a function of the dopant distribution. This effect is particularly strong at

low temperatures. The convergence of the diffusion coefficient as a function of the dopant

distribution is evaluated in the following way. Starting from an ensemble of 50 Boltzmann

distributed dopant configurations, we computed 50 independent trajectories and correspond-

ing charge diffusion coefficients, Dσ,i with i = 1, . . . 50 (using Eq. 5). The average over these

values is taken as the reference diffusion coefficient Dσ,∞ = 〈Dσ,i〉i. To estimate the con-

vergence as a function of the number of dopant configurations k, we computed averages of
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the diffusion coefficients within Nk subsets of trajectories: D
(2)
σ,I to D

(49)
σ,I , where D

(k)
σ,I (with

I = 1, . . . Nk), is an average diffusion coefficient computed using k trajectories sampled

from the initial pool of 50 trajectories. Since the number of possible combinations grows as(
50
k

)
= 50!

k!(50−k)!
, we apply a cutoff to Nk (Nk ≤ 10000). The relative error for the estimated

diffusion coefficients (as compared to Dσ,∞) is then defined as Z
(k)
I = |D(k)

σ,I − Dσ,∞|/Dσ,∞.

The corresponding mean values, Z(k) = 〈Z(k)
I 〉I , and standard deviations of Z

(k)
I as a func-

tion of k are reported in Fig. 7. An analysis of the dependence on the total simulation time

is given in Appendix D. These results clearly show that, from a computational perspective,

the average over different dopant configurations is indeed required in order to obtain fully

converged results (see Eq. 4) that can be compared with experiments. In fact, experiments

deal with measurements over a large distribution of possible dopant arrangements while

simulations are limited to a single periodically replicated distribution at a time and must

therefore be averaged over all relevant (Boltzmann distributed) dopant distributions.

Diffusion coefficients

The diffusion coefficients obtained after averaging over the dopant distributions at 300,

350, 400, 450 and 500 K are summarized in Fig. 8. At all temperatures our results are

compatible with a linear Arrhenius behavior. For comparison, we also show the values

obtained for the undoped material constrained in the cubic geometry as a reference (green

lines). We first focus on the tracer diffusion coefficients, DTr, (solid lines in Fig. 8), for

which we extracted an activation energy of about 0.16 eV. However, since this structure

is unstable at room temperature, we can only compare our numerical results with values

extrapolated from higher temperature (900 − 1400 K) measurements. Our simulations are

in good agreement with the corresponding experimental activation energy estimated to be

about 0.18 eV [46]. In the implicit scheme the values of the activation energies decrease

compared to the undoped case to 0.13 (x = 0.15) and 0.08 eV (x = 0.25). The decrease

in the number of charge carriers also correlates to an increase in the overall conductivity.

This is most likely due to the increased number of empty sites allowing greater mobility

of the ions. When considering the explicit model, the activation energies increase to 0.20

and 0.25 eV respectively, with an overall decrease in conductivity. This is coherent with

the picture emerging from Fig. 5 and 6 where the hypervalent W ions displace some of the
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Li density around them creating obstacles to the diffusion. Compared to the experimental

values of 0.44 and 0.42 eV reported by Li et al. [25], although we underestimate the activation

energy, the model correctly yields a qualitative increase in the activation energy to values

similar to those expected for Ta doping [47]. Similar observations can be made for the charge

diffusion coefficients (dashed line in Fig. 8).

Figure 8. Tracer (solid) and charge (dashed) diffusion coefficients for doping concentrations

x = 0.15 (left) and x = 0.25 (right). Simulations considering explicit and implicit doping are

reported and compared with the ones obtained for a cubic undoped structure. Activation energies

are reported in the text.

The ratio between the tracer and charge diffusion coefficients is named Haven ratio and

provides information about the motion of carriers in the system [45, 48–50] . A Haven

ratio, H, of 1 corresponds to uncorrelated Brownian motion, whereas lower values are an

indication of coherent collective movements. Furthermore, a constant temperature Haven

ratio implies an equality between the activation energies related to tracer diffusion and ionic

conductivity. In LLZWO, we observe a similar behavior to that of the thio-lisicon electrolyte

Li10GeP2S12 [45], displaying comparable activation energies. In the case of undoped systems,

we obtain H ∼ 0.3, a value compatible with other recent simulation results [43, 50]. The

same value is obtained for the Haven ratio of the implicitly and explicitly doped system.

As discussed in Ref. [50] using nudged elastic bands (NEB) calculations, there is an under-

standing that diffusion events involving the simultaneous movement of different particles are

much more favorable than single ion jumps. A similar conclusion can be reached considering

the low value of the Haven ratio, which proves that the most probable, and therefore en-

ergetically favored, diffusion events involve a coherent particle motion. Our result suggests
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that the same mechanism applies in the case of doped systems and therefore we can con-

clude that the local defects introduced by the dopant are not strong enough to decorrelate

particle motion. Only in the unphysical case of the implicit doping model can we find a

slight decrease of H and a small temperature dependence of the Haven ratio, which do not

change the overall interpretative picture.

Site occupancy auto-correlation function

Finally, in order to shed further light on the mechanism and dynamics of the Li diffusion

in doped and undoped LLZO structures, we also investigate the correlation of the occupancy

of the Li sites described in Fig. 1. To this end, we map the set of binary variables σI (τ)

associated with the occupation of a given site I at time τ (−1 when unoccupied and 1

when occupied) to the spin variables of an Ising model (down and up). The autocorrelation

function is then averaged over the different realizations of the dopant distribution, as done

in spin glass theory. For a single realization, we define the autocorrelation function as

Cσ (t) =
〈
〈σI (t0)σI (t0 + t)〉t0 − 〈σI (t0)〉2t0

〉
I

(7)

where σI (τ) is, as previously defined, the instantaneous occupancy of the site I with value in

{−1, 1} and 〈σI (t0)〉t0 corresponds to the time averaged occupancy of the site I and defines

the initial departure from 1 at t = 0.

The calculation of the site occupancies was done using the following algorithm. We first

define the tetrahedral sites as the center of mass of the four oxygen atoms coordinating the

sites. Each Li-ion is then assigned to either a single or a pair of tetrahedral sites using a

distance cutoff of 3.1 Å. The ions assigned to pairs correspond to the ones occupying an

octahedral site located between the two considered tetrahedral sites [51].

At t = 0, the auto-correlation function is equal to

Cσ (0) =
〈
1− 〈σI (t0)〉2t0

〉
I

(8)

It is to be noted that this site occupancy does not correspond to the one reported in crys-

tallographic measurements since (i) the occupancy of an empty site is set to −1 rather than

to 0 and (ii) the number of crystallographic sites does not match the one resulting from
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our assignment methods where octahedral sites are degenerate. In Fig. 9 we report the

disorder-averaged autocorrelation curves [Cσ (t)]av computed for the undoped model, the

implicit doping model with x = 0.15 and the explicit doping model with different doping

fractions (x = 0.15 and 0.25) at three temperatures: 300, 400 and 500 K. The curves are

presented averaged over all sites (global) and resolved into partial-averages over tetrahedral

and octahedral sites.

Figure 9. Global and site-type resolved autocorrelation functions of the site occupancy σi at

300 K, 400 K and 500 K for the undoped (blue), x = 0.15 (orange) and x = 0.25 (green) explicit

doping, and x = 0.15 (red) implicit doping.

The autocorrelation functions show two distinct decay processes. The first one is ex-

tremely fast with a characteristic time of a few picoseconds and can be successfully fitted

with a power law decay that takes the autocorrelation function to a plateau c(t) = qd. The

second process is much slower and fixes the time scale of the long time decay. This pro-

cess shows a stronger temperature dependence and is best fitted with an exponential decay,

typical of an ergodic diffusive behaviour [52]. The two regimes can be summarized as follows:

c (t) ≈ qd + ca t
−a for c (t) > qd ,

c (t) ≈ cβ e
−βt for c (t) < qd . (9)

The parameters of the fits for the first and second decays, a and β respectively, are given in

Table II and show interesting trends as a function of the dopant concentration. The decay
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Doping

fraction

a β / ps−1

300 K 400 K 500 K 300 K 400 K 500 K

x = 0 1.015 0.673 0.514 0.011 0.058 0.139

x = 0.15 1.403 1.139 0.960 0.006 0.031 0.102

x = 0.25 1.882 1.469 1.157 0.002 0.004 0.017

x = 0.15 0.861 0.744 0.647 0.020 0.047 0.116

Table II. Fitting of the autocorrelation function of the site occupancies (Fig. 9) according to the

model in Eq. 9. The first three lines report results for the explicit doping scheme, while the last

one refers to the implicit doping model.

associated with the first process occurs on too fast a time-scale for it to be associated with

the diffusive motion of the Li ions. We rather interpret it as the result of a fast non-diffusive

scattering of the lithium ions around the different sites. In the explicit doping model, the

increment of the dopant concentration correlates with an increase of the decay rate of the first

process. This accelerated decay of the site occupacy correlation is consistent with increased

scattering of the trapped lithium ions around the octahedral sites described in Fig. 5 and 6.

This interpretation is further supported by the fact that the change in carrier concentration

alone cannot account for the increased decay rate as the implicit model displays an opposite

trend. The second, exponential decay of the autocorrelation function is instead related to

the long scale diffusive process. Its dependence on doping concentration and doping scheme

is coherent with the behavior observed for the diffusion coefficient and ionic conductivity

as presented in Fig. 8. The implicit doping facilitates the long time diffusion by decreasing

the cluttering through lowering of the concentration of charge carriers, leading to the faster

decay of the autocorrelation function. Similarly to the first process, the trend is reversed

in the explicit model where the correlation time is increased by the presence of the dopant

hindering the diffusive process. These observations are coherent with the change similarly

observed in the velocity autocorrelation function.

IV. CONCLUSION

In this work we investigated the thermodynamic and kinetic properties of doped LLZO

by means of molecular dynamics simulations based on an ab-initio parametrized polarizable

force-field.

Our results show that the overall quality of the force-field description is particularly good
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at describing both the thermodynamic and kinetic aspects of the diffusion process in LLZO.

We achieve this despite some discrepancies observed during the direct comparison of the

activation energies of the doped systems with experimental data [24, 25]. While experi-

ments point towards values around 0.45 eV, close to the activation energy of the undoped

tetragonal phase, we observe values between 0.20 and 0.25 eV, closer to the high temperature

experimental activation energy of the cubic phase. However, a word of caution is always

needed when directly comparing simulations to experiments. In fact, while real materials

are composed by nanostructures arranged in a disordered array, the simulations deal with

perfectly periodic systems with no grain boundaries. In addition, the extraction of activa-

tion energies from experimental data also requires the use of models and therefore it cannot

be unequivocally compared to the outcome of our simulations. What we aim at with this

study is a qualitative understanding of the different trends associated with the increase of

the dopants concentration, W ions, isolating the different contributions by means of specific

analysis tools and theoretical ‘experiments’, e.g. the use of explicit versus implicit doping

models. Despite the above mentioned discrepancies, the overall experimental trends are

confirmed by our simulations.

We first observed that the distribution of the W dopant atoms affects the efficiency

of the charge transport process. For this reason, in addition to the canonical ensemble

average, we consider critical the use of an average over different realizations of the dopants

distribution using an approach derived from spin glass theory. Overall, our results lead to

the identification of two main effects induced by the introduction of the dopant, significantly

affecting the conductivity of LLZO. The first is of a thermodynamic nature and relates to

the stabilization of the conducting cubic phase at lower temperatures, which can clearly be

identified as an effect of the lowering of the concentration of the charge carriers exclusively.

The second, kinetic, is affected by both the change in the concentration of the carrier and the

local modification of the potential energy landscape felt by the Li ions. The first contribution

is isolated through the use of the implicit model, smearing the additional positive charge of

the dopant uniformly over the entire simulation box. The analysis of the conductivity reveals

a substantial decrease of the activation energy compared to the reference one, namely the

undoped structure. This shows that the decrease of the Li concentration induced by doping

results in the decongestion of the network of channels allowing a higher mobility of the Li.

In addition, when considering the nature of the defects induced by the hypervalent dopants
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(W centers in the explicit model), the additional coulombic repulsion promotes further

scattering of the Li ions, causing an overall decrease of the conductivity and an increase of

the activation energy, similar to the proton trapping effect in hydrogen conductors [53, 54].

This is also evident from the analysis of the Li ions distribution around the dopants, which

shows a depletion after the first coordination shell associated with the breaking of the Li

”wire” (Fig. 5 and 6). Interestingly, the analysis of the autocorrelation functions of the site

occupancies (Fig. 9) confirms that the long term diffusive process slows down considerably as

a result of the scattering W centers whereas the short time oscillation between neighboring

sites is in general accelerated by the presence of the dopant.

In conclusion, our atomistic simulations reveal a very complex behavior of the LLZO

conductivity as a function of the dopant concentration. While a quantitative description of

the diffusion process is probably still beyond the capabilities of our simulations, our approach

is able to capture the different trends due to both temperature and dopant concentration.

This offers valuable insights into the interplay between thermodynamic phase stabilization

and kinetic slow down mechanisms happening in the doped systems.
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P. G. Bruce, J. Am. Chem. Soc. 133, 8040 (2011).

20

http://dx.doi.org/10.1021/es400614y
http://dx.doi.org/ 10.1149/2.086202jes
http://dx.doi.org/ 10.5796/electrochemistry.78.403
http://dx.doi.org/ 10.5796/electrochemistry.78.403
http://dx.doi.org/10.1016/j.jpowsour.2010.12.065
http://dx.doi.org/ 10.1021/ja2021747


[6] T. Laino and A. Curioni, Chemistry 18, 3510 (2012).

[7] T. Laino and A. Curioni, New J. Phys. 15, 095009 (2013).

[8] S. Jeong, Y. Lim, Y. Choi, G. Cho, K. Kim, H. Ahn, and K. Cho, J. Power Sources 174, 745

(2007).

[9] S. Stramare, V. Thangadurai, and W. Weppner, Chem. Mater. 15, 3974 (2003).

[10] P. Knauth, Solid State Ionics 180, 911 (2009).

[11] A. Robertson, A. West, and A. Ritchie, Solid State Ionics 104, 1 (1997).

[12] G.-y. Adachi, N. Imanaka, and H. Aono, Adv. Mater. 8, 127 (1996).

[13] V. Thangadurai and W. Weppner, Ionics (Kiel). 12, 81 (2006).

[14] V. Thangadurai, H. Kaack, and W. J. F. Weppner, J. Am. Ceram. Soc. 86, 437 (2003).

[15] S. Ohta, T. Kobayashi, and T. Asaoka, J. Power Sources 196, 3342 (2011).

[16] C. Deviannapoorani, L. Dhivya, S. Ramakumar, and R. Murugan, J. Power Sources 240, 18

(2013).

[17] S. Ramakumar, C. Deviannapoorani, L. Dhivya, L. S. Shankar, and R. Murugan, Prog. Mater.

Sci. 88, 325 (2017).

[18] D. Rettenwander, P. Blaha, R. Laskowski, K. Schwarz, P. Bottke, M. Wilkening, C. A. Geiger,

and G. Amthauer, Chem. Mater. 26, 2617 (2014).

[19] Y. Chen, E. Rangasamy, C. Liang, and K. An, Chem. Mater. 27, 5491 (2015).

[20] R. Jalem, M. J. D. Rushton, W. Manalastas, M. Nakayama, T. Kasuga, J. A. Kilner, and

R. W. Grimes, Chem. Mater. 27, 2821 (2015).

[21] E. Rangasamy, J. Wolfenstine, J. Allen, and J. Sakamoto, J. Power Sources 230, 261 (2013).

[22] S. Mukhopadhyay, T. Thompson, J. Sakamoto, A. Huq, J. Wolfenstine, J. L. Allen, N. Bern-

stein, D. A. Stewart, and M. D. Johannes, Chem. Mater. 27, 3658 (2015).

[23] F. Chen, J. Li, Z. Huang, Y. Yang, Q. Shen, and L. Zhang, J. Phys. Chem. C 122, 1963

(2018).

[24] L. Dhivya, N. Janani, B. Palanivel, and R. Murugan, AIP Adv. 3 (2013), 10.1063/1.4818971.

[25] Y. Li, Z. Wang, Y. Cao, F. Du, C. Chen, Z. Cui, and X. Guo, Electrochim. Acta 180 (2015),

10.1016/j.electacta.2015.08.046.

[26] L. J. Miara, S. P. Ong, Y. Mo, W. D. Richards, Y. Park, J.-M. Lee, H. S. Lee, and G. Ceder,

Chem. Mater. 25, 3048 (2013).

[27] Z. Cao, X. Cao, X. Liu, W. He, Y. Gao, J. Liu, and J. Zeng, Ceram. Int. 41, 6232 (2015).

21

http://dx.doi.org/10.1002/chem.201103057
http://dx.doi.org/10.1088/1367-2630/15/9/095009
http://dx.doi.org/10.1016/j.jpowsour.2007.06.108
http://dx.doi.org/10.1016/j.jpowsour.2007.06.108
http://dx.doi.org/10.1021/cm0300516
http://dx.doi.org/10.1016/j.ssi.2009.03.022
http://dx.doi.org/10.1016/S0167-2738(97)00429-3
http://dx.doi.org/10.1002/adma.19960080205
http://dx.doi.org/10.1007/s11581-006-0013-7
http://dx.doi.org/10.1111/j.1151-2916.2003.tb03318.x
http://dx.doi.org/10.1016/j.jpowsour.2010.11.089
http://dx.doi.org/10.1016/j.jpowsour.2013.03.166
http://dx.doi.org/10.1016/j.jpowsour.2013.03.166
http://dx.doi.org/10.1016/J.PMATSCI.2017.04.007
http://dx.doi.org/10.1016/J.PMATSCI.2017.04.007
http://dx.doi.org/10.1021/cm5000999
http://dx.doi.org/ 10.1021/acs.chemmater.5b02521
http://dx.doi.org/ 10.1021/cm5045122
http://dx.doi.org/10.1016/j.jpowsour.2012.12.076
http://dx.doi.org/ 10.1021/acs.chemmater.5b00362
http://dx.doi.org/10.1021/acs.jpcc.7b10911
http://dx.doi.org/10.1021/acs.jpcc.7b10911
http://dx.doi.org/10.1063/1.4818971
http://dx.doi.org/10.1016/j.electacta.2015.08.046
http://dx.doi.org/10.1016/j.electacta.2015.08.046
http://dx.doi.org/10.1021/cm401232r
http://dx.doi.org/10.1016/j.ceramint.2015.01.030


[28] D. Rettenwander, G. Redhammer, F. Preishuber-Pflügl, L. Cheng, L. Miara, R. Wagner,
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Appendix A: Force-fitting

The fitting of the force-field was achieved using forces and energies calculated at DFT

level using the plane-wave CPMD software package [34, 35]. The PBE functional and norm-

conserving Goedecker pseudopotentials [36] were used in conjunction with a cutoff of 150 Ry.

Fig. 10 and 11 shows comparison between the reference DFT equation of states and forces

and the ones of the force-field respectively.

Figure 10. Reference DFT and force-field energies as a function off applied strain.

Figure 11. DFT and force-field forces on Li, La, Zr and O evaluated for the initial training used

for the parametrization of the force-field.
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Appendix B: GLE versus NVE simulations

NVE simulations have been a preferred method for the determination of the ionic con-

ductivity in previous works [20, 31]. Although this method may be optimal for classical

force-fields, the use of a core-shell model changes the situation. The temperature of the

shells should be kept as low as possible to keep a shell distribution as sharp as possible

around their equilibrium positions. The control of the temperature of the shell is therefore

an important aspect of simulations implementing a core-shell model. Despite the possibility

to apply thermostats to the center of mass of the core-shells pairs during the equilibration

process, yielding lower shell temperatures, they usually remain comparable to the ionic one.

Furthermore, bleeding of energy can be observed from the cores to the shells as illustrated in

Fig. 12. Although the constant use of a thermostat can have an impact on the dynamic and

Figure 12. Plot of the system (Top) and shell (Bottom) temperatures during NVE and NVT

simulations at target temperatures 300 K, 400 K and 500 K. Energy bleeding from the cores to the

shells can be observed in the case of the NVE simulations.

the correlation times in the system, Fig. 13 shows that it has little impact on the activation

energy of the system with variation in the activation energy inferior to 10%.

Appendix C: Diffusion coefficients and long tails

In this appendix we summarize the formal identities needed to link the long time decay of

the derivative of the mean squared displacement and the velocity autocorrelation function.
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Figure 13. Left Comparison between the NVE and NVT convergence of the charge and tracer

diffusion coefficient of the Li ion with the time lag (see eq. (C9)) for the x = 0.15 doped system.

Right The Arrhenius plots correspond to the t−1 fit of the diffusion coefficient.

The tracer and charge diffusion coefficients [55–57]can be written in terms of the respective

autocorrelation functions :

DTr =
1

3

∫ +∞

0

Cv(t
′)dt′ , (C1)

Dσ =
NLi

3

∫ +∞

0

CV (t′)dt′ , (C2)

where:

Cv(t) = 〈vi (t0 + t)vi (t0)〉i,t0 , (C3)

CV (t) = 〈〈vi (t0 + t)〉i〈vi (t0)〉i〉t0 . (C4)

vi(t) is the velocity of lithium i at time (t), NLi the number of lithium atoms, Cv (t) the

single particle velocity autocorrelation and CV (t) the velocity autocorrelation function of

the lithium centre of mass. As explained in Ref. [45], all quantities must be computed in

the frame of reference of the rigid matrix in order to correct for nonphysical drifts.

We focus on tracer diffusion, even if all arguments apply to charge diffusion as well.

Equation C1 is called the Einstein identity and derived as the long time limit of the following

relation between the mean squared displacement and the velocity autocorrelation function
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[56] :

〈
|xi(t0 + t)− xi(t0)|2

〉
i,t0

= 2t

∫ t

0
Cv
(
t′
)(

1− t′

t

)
dt′ (C5)

Instead of directly performing the infinite limit, one can differentiate twice this identity

with respect to t:

∂
〈
|xi(t0 + t)− xi(t0)|2

〉
i,t0

∂t
= 2

∫ t

0

Cv(t
′)dt′ (C6)

∂2
〈
|xi(t0 + t)− xi(t0)|2

〉
i,t0

∂t2
= 2Cv(t) (C7)

Note that these identities are valid for any t. Equation (C6) and (C2) provide a formal proof

of the intuitive relation:

DTr = lim
t→∞

DTr(t) (C8)

DTr(t) =
1

6

∂
〈
|xi(t0 + t)− xi(t0)|2

〉
i,t0

∂t
, (C9)

also exploited in this work in Equation (6) , where a time dependent diffusion coefficient

DTr (t) has been defined as the derivative of mean squared displacement at a time lag

t . Equation (C7) instead shows that the second order derivative of the mean squared

displacement is exactly equal to the velocity autocorrelation function. We therefore deduce

that the polynomial decay of the velocity autocorrelation measured in our simulations of

Garnet materials as Cv (t) ∼ A2t
−a, a > 1, leads to a slow convergence to the transport

coefficient in equation (C9), since it forces the long time dependence
∂〈|xi(t0+t)−xi(t0)|2〉

∂t
∼

DTr + A1t
−(a−1). This last relation has therefore been used for long time extrapolations.

Finally, in Fig. 14, as an example, we report a log-log plot of the tail of the single-particle

velocity autocorrelation function, in an explicitly doped system and at a temperature of

300K , showing the t−2 asymptotic behavior cited in the text. An alternative confirmation

of this result follows by plotting the functions Cv(t)t
k and checking for which values of k a

convergence to a finite limit, different from zero, is observed before the signal-to-noise ratio

becomes to large.This approach is exemplified in Fig. 15.
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Figure 14. Log-log plot of the tail of the single-particle velocity autocorrelation function for the

explicitly doped system at 300K, after filtering with a window of 2.4 ps in order to remove high

frequency noise.

Figure 15. Alternative check of the t−2 decay of the velocity autocorrelation function for the

explicitly doped system. In this case Cv(t)t
k tends to zero for k = 0, 1, to a finite limit for k = 2,

and diverges linearly for k = 3. The same filtering was applied as in Fig. 14

Appendix D: Sampling uncertainty versus configurational noise

When considering explicitly doped systems, two kinds of uncertainty affect the estima-

tion of D(tlag), defined in appendix C, eq. (C9), as the derivative of the mean squared

displacement at time lag tlag. The first contribution arises from the dependence of the
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diffusion coefficient from the dopant configuration and can be denoted as configurational

noise. This contribution goes to zero in the limit of infinitely large simulation cells. The

second contribution originates from the finite simulation time length T at a fixed dopant

configuration and we call it sampling noise. In the following we derive metrics to evaluate

the two types of noise in the simulation of doped materials at a fixed simulation cell size.

First we discuss sampling noise and we denote the standard deviation due to the finite

sampling as σSAMP
tlag ,ΓD

(T ), dependent both on the explicit dopant configuration ΓD and on the

finite simulation time T . From now on in the expressions for the standard deviations we

insert tlag as a suffix and consider it as a parameter. Sampling noise can be numerically

estimated for a fixed configuration via block-analysis techniques, i.e. by dividing the trajec-

tory into blocks and calculating the standard error of the mean [39]. This error is expected

to decay as 1√
T

, where T is the simulation time. In particular, it tends to zero for large T ,

when the simulation is long enough to determine exactly the value of the diffusion coefficient

at a fixed configuration ΓD. Sampling noise is the only one which must be considered in

simulations of undoped materials [39, 58, 59], or in an implicit doping setting. In the case

of an explicitly doped material under analysis, an additional mean over configurations, as

explained in the main text, can be performed:

σSAMP
tlag

(T ) ≡
[
σSAMP
tlag ,ΓD

(T )
]
av
. (D1)

This function can be then be plotted as a function of T , for a fixed time lag tlag. σSAMP
tlag

(T )

quantifies the mean effect of sampling noise alone. It does not reflect configurational noise

since each term σSAMP
tlag ,ΓD

(T ) considers only fluctuations over the configuration depedent equi-

librium value.

We now move to configurational noise and indicate explicitly with DΓD
(tlag) the exact

value of the diffusion coefficient at a fixed dopant configuration. Looking at the spread

among configurations we define:

σDOP
tlag
≡
[
(DΓD

(tlag)− [DΓD
(tlag)]av)

2
]1/2
av

(D2)
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Of course one does not know the exact value of DΓD
(tlag), but by replacing DΓD

(tlag) with

its standard estimator at a simulation time T we get a stochastic variable σ̂DOP
tlag

(T )→ σDOP
tlag

for T → ∞ which can be used as an estimator for long times T (we use here the stan-

dard notation of indicating stochastic variables with a hat [60]). Practically, when plotting

σ̂DOP
tlag

(T ) as a function of T , a plateau has to be reached. This plateau, σDOP
tlag

, is dependent

on configurational noise alone and can be considered as a measure of the configurational

degrees of freedom due to the finite volume of the simulation cells used.

One can get a feeling of the magnitude of the two contributions comparing on the same

plot, as done in Fig. 16 for the Tungsten-doped LLZO, σ̂DOP
tlag

(T ) and σSAMP
tlag

(T ) as a function

of T . We stress nevertheless again that only the asymptotic value for large T of σ̂DOP
tlag

(T )

has a well defined deterministic meaning, whereas σSAMP
tlag

(T ), the variance at a finite time

T , is a well defined deterministic quantity for every T . In order to estimate means over

dopant configurations, as in Fig. 7 of the main text, technically the diffusion coefficients are

needed to be known with infinite precision for every dopant distribution. Nevertheless, the

previous analysis and Fig. 16 show that the simulation time T reaches the regime where

σSAMP
tlag

(T ) � σDOP
tlag

. Under this condition one is able to estimate configurational spreads

and clearly distinguish between configurational and sampling noise, making it possible to

characterize separately the contribution of configurational noise, as in Fig. 7 of the main

text.
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Figure 16. We show, as a function of simulation time T , the log-log plot of σSAMP
tlag

(T ) and

the estimator σ̂DOP
tlag

(T ) → σDOP
tlag

for tlag = 22.5 ps and the charge diffusion coefficient. 4 initial

lithium distributions for every dopant configuration are considered in order to increase the length

of the trajectory. We see a linear decay of the sampling noise, compatible with the T−1/2 behavior

expected theoretically, whereas the estimator of configurational noise remains stable to a much

higher value, showing that simulations time T are large enough so that the limit σSAMP
tlag

(T ) �
σDOP
tlag

is satisfied.
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