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App Description 

The Shiny0F

1 application was developed to estimate PMI for any synthetic process and is comprised of three 

main segments – Process Definition, Step PMI Information, and Results. Descriptions of each segment, 

presented on the app as separate tabs, are outlined below.  

Process Definition 

Process Definition (Figure S2, [1]) is based on defining the synthetic route to the final product (API). To 

facilitate visualization and calculation of cumulative PMI, the synthetic sequence is treated as a graph of 

nodes representing the chemical intermediates connected by arrows representing the direction of the 

synthetic steps.  For highly convergent syntheses, the graph will be a tree where each starting material leaf 

feeds into a single product at the root of the synthesis tree.  This is facilitated by assigning each intermediate 

a unique label, with arbitrary letters currently used as labels in the app.   

 

 

Figure S1. Demonstration of different topological synthetic pathways. 

Next, the input for each chemical transformation is listed with its corresponding output, equivalent to 

describing the beginning and end of each arrow in the graph. For each transformation, a range of 

stoichiometry values may be entered to indicate a range of the possible molar ratios of each input to the 

step output. Ultimately, it is the user’s choice to define what is considered to be a “starting material”, 

however, the ACS GCIPR recommends to show synthesis of all components that are more expensive than 

$100/mol or that are not commercially available.  

Given the list of inputs and outputs, the number and sequence of reaction steps is inferred and the synthetic 

route can be generated as a graph. Because the app was developed to support synthetic route planning for 

a single pharmaceutical drug substance, the synthesis tree must be convergent or linear, with a single 

product.  Divergent routes (with two or more final products), or circular route definitions are not supported 
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in the app. Once the list of the intermediates and their stoichiometry is defined, the next tab generates the 

synthesis tree and allows for entry of the step information. 

Step PMI Information 

The next step in defining the proposed process is to specify molecular weights for each of the starting 

materials, intermediates, and final product (Figure S2, [2]).  From the graph, each of the synthesized 

intermediate products are assumed to be produced in a single step, with a range of possible step PMI and 

molar yields.  Custom ranges for PMI and yield may be used for existing routes, or preset ranges based on 

the published performance of chemistry classes are available to evaluate hypothetical routes.  With this 

information, a system of equations to describe the masses of intermediates required at each step is defined.  

This system of equations is solved within each Monte Carlo iteration to estimate the cumulative PMI for 

the route on the final tab of the app. 

App Results 

In the final step of the app, a Monte Carlo simulation is used to incorporate the historical ranges of chemistry 

yield and PMI to calculate a distribution of cumulative PMI for the route.  The min and max ranges are 

interpreted as intervals of a bivariate normal distribution of step PMI and step yield (99% as the default), a 

random sample is pulled from this distribution for each Monte Carlo iteration.  Empirically, we have 

observed a negative correlation between step yield and step PMI, a correlation of -0.53 is used by default 

for the bivariate normal sampling.  With values for each step in the synthetic sequence, each Monte Carlo 

iteration will have a calculated value of the cumulative PMI.  The simulation results are plotted as 

histograms to show the distribution of predicted cumulative PMI with summary statistics (median and 95% 

interval) to provide process development teams with a range of process performance ((Figure S2, [3], [4]).  

The range of cumulative PMIs calculated provides realistic estimates for worst-case and best-case greenness 

and can be used to rank different proposed routes as well as to benchmark selected routes during 

development. 
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Figure S2. Screenshots of the web app. [1] Define the synthesis tree and stoichiometry. [2] Define reaction 

PMI and yield ranges based on reaction subtypes. [3] Obtain predicted cPMI histogram. [4] Obtain step 

metrics for all steps. 

 

Scenario I example. Using BMS Brivanib example (Entry I in Discussion Table 1.) below we illustrate the 

application of the app to obtain the cPMI, and compare to the traditional cPMI calculator.  Here the synthetic 

sequence to intermediate D was used.  The corresponding step PMI and yield for each of the step shown in 

the following table: 

 Rxn Step PMI Yield  

AB 22 73.4% 

BC 47.7 67.5% 

JK 76 83.3% 

C+KD 97.8 81.5% 

 

Set up the tool as follows: 
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The overall cPMI for this sequence from the traditional calculator was 274 and this tool gave 273. 
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Scenario II example. The PMI Prediction Calculator app allows the user to incorporate parts of the 

synthetic sequence with limited or no detailed process info, to holistically assess the sustainability of the 

entire synthetic network, starting from raw materials with the threshold cost of $100 per mole defined. In 

this example we estimate cPMI for the Brettphos ligand synthesis based on the literature.1F

2  The synthesis 

included the telescoped process from 1,4-dimethoxy-2-fluorobenzene (B) and 2,4,6-

triisopropylbromobenzene (E), followed by reacting with chlorodicyclohexylphosphine (G). The two step 

processes showed 63% yield with step PMI 158 and last step 80% yield and step PMI 92, respectively. 

Since the reported starting materials are priced above $100/mol, we introduced additional four steps 

(Scheme S1, highlighted in blue) in the synthesis to satisfy the selection criteria set by Roschangar et. al2F

3.  

Thus, 1,4-dimethoxy-2-fluorobenzene (B) was prepared by oxidation, followed by methylation using ortho-

fluorophenol (A).3F

4  The yield for the telescoped process was reported around 45%.  Based on this 

information, along with literature available synthesis of G, we used our PMI Prediction Calculator app to 

estimate the cPMI for this Brettphos ligand.  
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Scheme S1. Synthesis of Brettphos 



S7 
 

 

 



S8 
 

Following the steps outlined above (Figure S2), we defined reaction topology along with stoichiometry.  In 

the available procedure two equivalent of 2,4,6-triisopropylbromobenzene (E) is used.  We then defined 

reaction PMI and yield ranges based on reaction subtypes.  In cases where some step PMI and yield info is 

available, actual values can be selected.  Thus, for the first step, we selected observed 40~45% yield range 

based on the literature precedents, but used the generic step PMI range from the telescope type due to the 

absence of PMI info for these reactions.  For the next telescoped step to make C, we chose the existing 

process info (step PMI 158; yield 63%). 

   

The calculated cPMI is 357 and 95% CI [326,388], which is 45% larger than the originally reported 2-step 

synthesis (cPMI 247), and we believe is a more accurate estimation of the actual synthetic efficiency for 

this ligand. 
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Scenario III Example. While other Excel-based step PMI and cPMI calculators have previously been 

developed, our web application based on the dynamic reacting program Shiny app4F

5 can be used to easily 

establish reaction networks with any intricate topological structures reflecting different convergent 

synthesis plans. It also allows the use of the well-established scale-up PMI and yield stats info from each 

reaction subtypes collected from this ACS GCI-led industrial collaborative efforts to quickly construct the 

network to probe the synthetic efficiency.  As one can see from the previous example, this app allows to 

use either range or single numbers as inputs.  Based on the chemists’ experiences or knowledge, more 

adequate ranges can be chosen to override existing ranges.  The flexibility of the app allows synthetic 

chemists to plug and play with the reaction types and their parameters to help envision the synthetic 

efficiency by assessing mass-based environmental impact and throughput of proposed synthetic routes.  

 

Data Mining 

The data was collected by individual companies through manual extraction and filtration of the raw data 

from industrial operational reports from their own processes. This extensive data set contains valuable 

information about general trends in chemical manufacturing in pharmaceutical industry and point to areas 

of improvement for the PMI Prediction Calculator. Overall we observed somewhat uneven distribution of 

data entries based on reaction categories (Figure S3). Nearly ¼ of reactions falls under category “other” of 

which 57% of the entries fall under “telescope” sub-category (a telescope is a sequence of chemical 

reactions performed without isolation of intermediates). The rest of the “other” includes 18% 

recrystallization, 8% salt formation, 4% classical resolution, 3% salt break, 2% chromatograph, 2% form 

conversion and etc. On the other hand, a few reaction categories ended up being underpopulated, such as 



S10 
 

“C-M bond forming”, “Hydration/Dehydration”, and “Rearrangement”, presumably pointing to either low 

popularity of these reactions in pharmaceutical manufacturing, or being part of telescoped processes. It is 

our goal to continuously keep improving the prediction calculator and perform additional data collection 

draws to populate the underrepresented reaction categories. 

  

Figure S3. Distribution of number of scale-up reactions across sixteen major reaction categories. 

Pharmaceutical synthesis is significantly more wasteful mainly due to the compounded effects of stringent 

regulatory compliance, increasing complexity of the active pharmaceutical ingredient (API) molecules, and 

speed-to-patient pressure under highly competitive health care market. Thus, median step PMI across this 

cross-company data set is 38, which translates to thirty eight kilograms of input materials combined for 

producing one kilogram of product in a single chemical processing step – an expected value based on 

historical approximation (Figure S4). Interestingly, when we subset the data by project development phases, 

we observe that typical step PMI for preclinical stage projects is ~27, while it nearly doubles to median ~51 

in the ensuing phase I clinical stage projects. Low preclinical PMI can be rationalized through the 

understanding that preclinical deliveries do not require stringent quality control. It is generally known that 

additional purification procedures can dramatically increase PMI. Since Phase-I campaign is typically 

scheduled shortly after preclinical delivery, and results in fit-for-purpose strategies applied to the existing 

synthesis to ensure impurity control, which inevitably increases waste volume and PMI. Effect of additional 
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quality controls can also be observed in API step that includes protocols for controlling material purity, 

morphology, and particle size. Such additional manipulations result in increase in waste – median API step 

PMI is 50, which is 35% higher than non-API steps (37).  Median step PMIs in Phase II up to commercial 

stage are similar (32-34), with significant improvement potentially resulted from either route innovation or 

process optimization to deliver more efficient and sustainable processes.  

 

    

 

Figure S4. Step PMI distribution and statistics for different development phases and whether it is API step 

(outliers are partially displayed) 

Analysis of the data acquired through literature search provided us with additional insights on breakdown 

of the chemical step processes. We attributed 65% of median step PMI to reaction workup - product 

purification and isolation. Further data analysis on step PMI subset by reaction subcategories based on 

number of counts in the dataset showed that telescoped reaction, amidation, and deprotection are the top 

three most populated subcategories.  Figure S5 shows top 10 most popular reaction subtypes ranked by 

median PMI.  Excluding telescoped reaction, top 6 reaction subtypes ranked in the following descending 

order by median PMI (transition metal-catalyzed C-N coupling > nitro reduction > heterocycle formation 

(cyclocondensation) > deprotection > amidation > Suzuki coupling). This list of top reaction subtypes is 

very much in line with the recent analysis of chemical reactions used by the medicinal chemistry based on 

the occurrences in the publication and US patents.5F

6   Transition metal catalyzed coupling reactions such as 
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C-N and Suzuki couplings have been used prominently in large scale pharmaceutical manufacturing.6F

7  It is 

interesting to see C-N coupling has the larger median PMI at 61 than Suzuki coupling at 37.   Presumably, 

metal removal from nitrogen-rich heterocycles formed from C-N coupling tends to be more volume 

inefficient due to either poor solubility or strong metal chelation to the substrate compared to Suzuki 

product.     Surprisingly, the nitro reduction gave median PMI at 50, without detailed info from the dataset 

we suspect that more cases involving reduction with stoichiometric amount of reductants rather than 

catalytic hydrogenation might influence the data.  Overall high PMIs are typically observed for reactions 

that are either concentration dependent (i.e., Ring closing metathesis, RCM7F

8), producing significant amount 

of side products (e.g. Mitsunobu), or impurities that are difficult to remove (Pd-catalyzed cross-coupling 

reactions). In Figure S4, we show top 10 largest PMI reaction subtypes by median regardless of the counts 

in the dataset.  Here it is confirmed that ring closing metathesis (RCM) gave the largest median PMI at 598, 

followed by hydration/dehydration at 132, Sandmeyer reaction at 121, Mitsunobu 113, and direct arylation 

88 in the top 5 group.  More scale-up data are needed especially in under-represented reaction subtypes to 

improve our understanding of the PMI trends by reaction and workup.      
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Figure S5. Step PMI distribution subset by top 10 major reaction subtypes based on occurrences in the 

collected dataset. 

 

Figure S6. Step PMI distribution subset ranked by median PMI from all reaction subtypes in the collected 

dataset. 

 

Besides the learnings from the generic characteristics of the step PMI and attributed workup under different 

reaction categories and subtypes, the analysis also quantified the benefits of telescoped processing (Figure 

S7). For telescoped processes, well-designed large-scale sequential chemical transformations without 

isolating the intermediates were shown to significantly reduce waste in pharmaceutical manufacturing.  The 

median step PMI for telescoped 2-transformation process is around 27 and 4-transformation process is 

around 22, which are 24% and 42% reduction, respectively, comparing to single-transformation processes 

on per transformation basis.  This again confirms our previous statement that additional purification steps 

can significantly increase PMI – the fewer intermediates are isolated, the lower the PMI.  It is culminated 

in the recent literature8F

9 where seven-step telescoped scale-up process without isolating any intermediates 

has been demonstrated in one of the HCV drugs’ synthesis. 
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Figure S7. PMI per transformation distribution in telescoped processes 

In collaboration with the GCIPR, this tool was further expanded with the goal of improving the predictive 

capabilities of the model, enable better decision making in route design, and to increase access and usage 

of the tool through development of a web-based tool.   

 

Permutation Test Statistical Info 

Due to the small sample sizes of the projects from early and mid_late development stages used in the 
group comparison, we chose the non-parametric permutation test to allow us to reject or not reject the null 
hypothesis of no difference between the model errors from two development stages.  The R code used for 
the analysis is shown below: 

#Model errors from two development stages 
y1<-c(0.027624,-0.14747,-0.08868,-0.36287,-0.36021,-0.53644,-0.43178) #Group A 
y2<-c(-0.1922,-0.03659,0.212121,-0.62722,0.359712,0.431315,0.910053,1.107784) #Group B 
#Permuation test on the median differences between two groups 
set.seed(222) 
a<-y1 
b<-y2 
combined <- c(a,b) 
# Observed difference 
diff.observed <- median(b) - median(a) 
number_of_permutations <-10000 
diff.random <- NULL 
for (i in 1 : number_of_permutations) {   
  # Sample from the combined dataset without replacement 
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  shuffled <- sample (combined, length(combined)) 
  a.random <- shuffled[1 : length(a)] 
  b.random <- shuffled[(length(a) + 1) : length(combined)] 
  diff.random[i] <- median(b.random) - median(a.random) 
} 
# P-value is the fraction of how many times the permuted difference is equal or more extreme than the 
observed difference 
pvalue <- sum(abs(diff.random) >= abs(diff.observed)) / number_of_permutations 
print (pvalue)  
 
This provides the p-value of 0.0125. 
 
As a comparison, we can also use Welch test assuming normality and unequal variance between these two 
groups and evaluate the difference between the mean of the model errors from the two groups.  The Welch 
Two sample t-test showed p-value of 0.03292 [ t.test(y1,y2, var.equal=FALSE) ], supporting the alternative 
hypothesis of true difference in means is not equal to 0. 
 

Selected Examples for App Performance Evaluation 
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