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Abstract

AKT1 is emerging as a useful target for treating cancer. Herein, we discovered a

new set of ligands that inhibit the AKT1, as shown by in vitro binding and cell line

studies, using a newly designed virtual screening protocol that combines structure-

based pharmacophore and docking screens. Taking together with the biological data,

the combination of structure based pharamcophore and docking methods demonstrated

reasonable success rate in identifying new inhibitors (60-70%) proving the success of

aforementioned approach. A detail analysis of the ligand-protein interactions was per-

formed explaining observed activities.

Keywords: AKT1, Virtual screen, Pharmacophore, Docking, structure-based drug

discovery
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Introduction

AKT, also known as protein kinase B (PKB), is a serine/threonine kinase that exists in three

homologous human isoforms (AKT1, AKT2 and AKT3). AKT isozymes play significant roles

in apoptotic pathways and signal transduction, and therefore, influence cellular survival and

proliferation.1–3 AKT over-expression exerts considerable anti-apoptotic effects in many cell

types.1–3 Many cancers (e.g., breast, ovarian, prostate carcinomas and glioblastomas) were

found to involve mutation or loss of the AKT negative regulator PTEN.1,2 Accordingly, in-

hibiting AKT signaling is a promising approach toward managing many cancers.4–7 Several

in silico virtual screenings (VS) have been already used, followed by in vitro experiments, to

discover new classes of AKT1 inhibitors. For instance, Dong et al.8 combined ligand-based

pharmacophore and docking studies to identify nine promising hits. Biological testing of six

of these leads indicated inhibition, and IC50 values between 3.9 and 143.9 µM. Cell line tests

on two of these ligands indicated apoptosis. Alternatively, Chuang et al.9 employed solely

structure-based docking. From 48 promising candidates, 12 compounds displayed compara-

ble or more potent cytotoxic activity compared to the reference compound, H-89, against

HCT-116 colon cancer cells. The best results came from compounds a46 and a48: IC50 values

of 201 and 158 µM, respectively. Compound a48 showed 75% inhibition at 100 µM concen-

tration. Al-Sha’re et al.10 used pharmacophore/quantitative structure–activity relationship

(QSAR) modeling to identify optimal binding models and found new dual AKT3/AKT1

inhibitors. All 40 tested hits fit a pharmacophore model. Unfortunately, only six of them

exhibited anti-AKT3 and/or AKT1 bioactivities.

Thus, as previously suggested,11 combining ligand-based pharamcophore and docking

studies results in more success than either approach alone. Researchers have applied similar

methods to search for new AKT2 and AKT3 inhibitors.10,12 Herein, we have identified and

characterized new AKT1 inhibitors. We used a VS protocol that combines structure-based

pharmacophore and docking screens, and we tested our results against biochemical assays.
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Methods

Virtual Screening

A combination of structure- and ligand-based approaches provides superior results for drug

discovery in silico, relative to using either approach alone.11 However, for many targets

there are no (or limited) ligands available, thus rendering this combination impossible. In

these cases, structure-based pharmacophore models could be of great help and should be

intensively tested.

Herein, we tested whether a recently introduced structure-based pharmacophore approach

in Phase software (Schrödinger package), in combination with docking followed by rescoring

with the new Glide-SP scoring function, can achieve reasonable virtual screening (VS) results.

We tested this approach on the full (102 targets) DUD-E benchmark. Surprisingly, we found

that the structure-based pharmacophore hypothesis (an evaluation of the docking of more

than 600 small fragments; the default number in Phase) performs well for most of the targets,

with an average active ligand recovery rate of 10%–15% during the first 1% database screen.13

The MD-prepared structures further increased these values. These results are equivalent to

the ligand-based pharmacophore VS. The docking technique performed much better on the

DUD-E set. Early enrichment performance shows on average of approximately 30% of known

activities are recovered in screening the top-ranked 1% of recovered decoys, similarly to the

previous DUD test results. Furthermore, we confirmed an improvement of the Glide-SP

scoring function, as claimed on Schrödinger website, as it is shown on the ACE test target,

which usually produced unsatisfied results in previous reports (Figure S14 in Fratev et.

al.14).

However, the primary aim of a real drug discovery project is very early enrichment

performance; i.e., how many active compounds will be discovered in the top 10 to 50 ligands,

which we term the success rate (SR) or efficiency (EF). According to our data, combining

these methods achieves an impressive result: a nearly 75% success rate for all 102 targets,
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often reaching 100%, for the top 10 ligands.13 Based on our data, we developed a new VS

protocol using the top 10% of the pharmacophore search (3.5 million ZINC compounds in

our case) as an input to the docking and scoring by Glide-SP (35,000 ligands). We performed

all calculations using Schrödinger’s Phase and Glide software packages, as implemented in

Schrödinger 2017-4 suite.15 Our approach may advance drug discovery, and we have already

applied it toward the discovery of GlyT2 transporter inhibitors.14

Structure and ligand preparation

We used the structure of AKT1 in complex with an inhibitor (PDB ID: 3QKK) as the

basis for our in silico studies. We undertook X-ray structure preparation for subsequent

modeling with Protein Preparation Wizard. We added missing atoms and the hydrogen

bonding network by assigning tautomer/ionization states, sampling water orientations, and

flipping Asn, Gln, and His residues in the plane of their π-systems. All resolved crystal

water molecules were deleted. Ligand 3D structures were loaded as SDF files from the ZINC

library.

Pharmacophore and docking

As aforementioned, we used a combination of structure-based pharmacophore and docking

approaches as implemented in Schrödinger Suite 2017-4. We employed the default setting for

both of these methods. An exception was that during the docking we kept 10,000 (instead of

5,000) initial docking poses, and we employed the rewards of hydrogen bonds as an option.

In vitro binding assays

All compounds are commercially available and were purchased from Sigma-Aldrich. A

FRET-based Z’-LYTE kinase assay was performed by Thermofisher Inc. Briefly, all Pep-

tide/Kinase Mixtures are diluted to a 2X working concentration. The 2X AKT1 (PKB

alpha) / Ser/Thr 06 mixture is prepared in 50 mM HEPES pH 7.5, 0.01% BRIJ-35, 10
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mM MgCl2, 1 mM EGTA. The final 10 µL Kinase Reaction consists of 0.82 - 12 ng AKT1

(PKB alpha) and 2 µM Ser/Thr 06 in 50 mM HEPES pH 7.5, 0.01% BRIJ-35, 10 mM

MgCl2, 1 mM EGTA. After the 1 hour Kinase Reaction incubation, 5 µL of a 1:4096 dilu-

tion of development reagent is added. The tested compounds were screened in 1% DMSO

(final) in the well. The IC50 of Compound 1 was obtained after activity measurements

in ten different concentrations. For 10 point titrations, 3-fold serial dilutions were con-

ducted from the starting concentration of 2 nM. The activity of all other ligands was ob-

tained only for 10 and 100 µM concentrations. More details about the protocol and assay

conditions can be found here: http://assets.thermofisher.com/TFS-Assets/BID/Methods-

&-Protocols/20180123 SSBK Customer Protocol and Assay Conditions.pdf

Cytotoxicity assay

To evaluate the cytotoxic activity of the compounds presented in this study, the previously

validated Differential Nuclear Staining (DNS) assay was used.16,17 The acute lymphoblastic

leukemia CEM (ATCC, Manassas, VA) cells were plated at a density of 10,000 cells per

well in 100 L of culture media (RPMI-1640 supplemented with 10% FBS and 1% penicillin-

streptomycin) in black flat-bottomed plastic 96-well plates (BD Biosciences, Rockville, MD).

24 h later cells were treated with increasing concentrations of each compound; from 0.1 to 7.5

M final concentrations (diluted in 1% DMSO). As a vehicle and positive control for death,

cells were treated with 1% DMSO and 1 mM of H2O2 respectively. Untreated cells were also

included as viable cell controls. Each experimental point was included in triplicate. Treated

cells were incubated for 48 h, at 37 C in humidified 5% carbon dioxide (CO2) atmosphere.

Two hours prior the end of the incubation period, cells were stained with a mixture of Hoechst

33342 (Invitrogen, Eugene, OR, USA) and Propidium iodide (PI; MP Biomedicals, Solon,

OH, USA) at a final concentration of 1 g/ml for each dye and incubated for 2 h. Hoechst

permeates and stains the nuclei of healthy and dead cells, whereas PI permeates only the

cells with compromised membranes, defined as dead cells, to subsequently stain their nuclei.
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Image acquisition was performed using the IN Cell Analyzer 2000 bioimager system (GE

Healthcare, Pittsburg PA, USA) acquiring four contiguous images per well, generating 2X2

montages, using a 10x objective, from two fluorescent channels (Hoechst; 453 nm and PI;

617 nm emission signals). To obtain percentages of live and dead cells, image analysis was

accomplished by using the IN cell Investigator workstation 3.2. In this assay, cells positive

for Hoechst (blue) are counted as the total number of cells in the captured images, whereas

cells positive for both dyes, Hoechst and PI (red), are recognized as the dead cell population.

Results and discussion

In silico Virtual screening

Toward discovering new AKT1 inhibitors, we developed a special protocol for our high-

throughput virtual screening (HTVS). We combined a recently introduced structure-based

pharmacophore approach with the docking method in the framework of the Schrödinger

2017-4 package.13–15 This type of pharmacophore model is based on the docking of several

hundred fragments into the binding site (specifically, the AKT1 ATP binding pocket). The

pharmacophore points are defined in accordance with their best position . These are the

places within the binding site that were predicted to be essential for ligand binding (Figure 1

A). Eight point pharmacophore model was created for our VS study (Figure 1 B). This model

requested a presence of an aromatic ring with both acceptor and donor capable substituents

at the upper part of the ATP binding site, aromatic and/or hydrophobic core, along with

a donor, at the center and also an aromatic rings that would be able to interact with the

loop residues at the lower end of the binding pocket. We used the default settings (albeit

four matched pharmacophore points, not all eight), to test the success of the structure-

based pharmacophore approach when information on ligand–protein interactions is limited.

However, this could be further refined based on more AKT1’s specific key structural features.

Initital screening was done on 3.5 million compounds from the ZINC1518 library via the
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developed pharmacophore model. Further, the top 35,000 best candidates were subjected to

docking, using the Gide SP scoring function, and finally top-scoring 100 ligands were visually

inspected and nine promising candidates with scores of at least approximately −9kcal/mol

were chosen for biological evaluation.

We initially developed and tested our approach on the DUD-E dataset.13 The DUD-

E results for AKT1 (Figure 2) gave a recovery (success) rate of the active ligands, versus

decoys, of 100%, 90%, and 76% for the top 10, 20, and 50 ligands, respectively. Furter,

We successfully applied our protocol during HTVS for identifying new glycine 2 transporter

inhibitors(GlyT2), and discovered several hits with submicromolar activity. The best hit

had an IC50 value of 0.48 µM against human GlyT2 protein.14

In vitro binding assay and Cytotoxicity in human cancer cell lines

The potential anticancer activity of the proposed molecules were evaluated for 1)their AKT1

binding affinity using in vitro binding assays and 2)cytotoxicity using human cell line experi-

ments. Initially, the selected nine compounds (Figure 3 shows the structures, ZINC number,

and docking score of the slected compounds)were tested with in vitro single-point AKT1

binding assay at 10 µM concentration and also cell line experiments were performed for

them in the acute lymphoblastic leukemia cell line; CEM by a differential nuclear staining

assay. The cell line assay consists on performing live cell imaging of a treated population to

determine cell viability. Cells were exposed for 48 h to a gradient of concentrations of the

compounds ranging from 0.1 to 7.5 M. Thereafter, images were acquired and analyzed to

obtain percentages of live and dead cells(See Methods section).

Five of these ligands(compounds 1, 2, 5, 6, and 13) showed an AKT1 inhibition of more

than 10% at 10µM; further testing was done at 100 µM concentration (Table 1). As shown in

figure 4A, the CEM cells exhibited differential amounts of cytotoxicity against the different

compounds tested. Compounds 1, 2, 3, 7, and Z22 displayed a slight cytotoxic activity

at 5 µM, with values below 15 % of cell death. Moreover, compounds 4, 5, 6 and Z18
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demonstrated the highest cytotoxic values at the aforementioned concentration on CEM

cells; 19.69%, 29.74%, 22.83% and 19.14%, respectively (Figure 4A). Those four compounds

were selected to construct the dose-response curves (Figure 4B). Also, compound 5 and

6 maintained the uppermost values throughout the range of experimental concentrations

(Figure 4B). Interestingly, compound 6 was found to be one of the strongest AKT inhibitors

tested in this study (Table 1), presenting 45% of inhibition at a 100 µM.

Table 1: Observed biological activity of tested compounds. Each experimental value is a
mean of two independently performed tests.

Compound
Name

%Inhibition
at

10 µM
mean

%Inhibition
at

100 µM
mean

Cell inactivity
at 7.5 µM

1 22 76 No
2 11 47 No
3 4 n/a Yes
4 6 n/a Yes
5 12 26 Yes
6 29 45 Yes
7 7 n/a No

z18 13 27 Yes
z22 8 n/a No

Compounds 3 and 4 were active in the cell line measurements, but were not even mod-

est AKT1 inhibitors. Compound 1 showed the highest AKT1 activity (76% inhibition at

100 µM), and our 10 points measurements indicated an IC50 value of 46.4 µM (Figure 5).

Compound 2 showed also modest yet considerable inhibition: approximately 50% at 100

µM. However, compounds 1 and 2 did not exhibit any considerable activity in our cell line

experiments, at concentrations of 7.5 or 50 µM. This may be attributable to the low ligand

concentration (no apoptosis). Compounds 1 and 2 may be more selective to AKT1, whereas

compounds 3 and 4 may be much more active to other kinases from this class (AKT2/3,

PKA, PKC, and so on). This may explain the considerable cellular lethality, typical to

some much stronger inhibitors. For instance, research suggests that compound 3 may also

be an EPHB4 inhibitor. Knockdown of EPHB4 inhibits phosphatidylinositol 3-kinase/AKT
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signaling, accompanied by a reduction in cell viability.19 Cell viability can be rescued by a

constitutively active form of AKT, thus explaining the activity in our cell line experiments.

Another example is compound z18, which showed weak AKT1 activity yet produced sig-

nificant tumor cell apoptosis (nearly 40% at 50 µM concentration). The literature predicts

this compound to also be a GPR91 (succinate receptor 1) inhibitor, which is pertinent to

the PI3K/Akt/mTOR pathway via upregulation of VEGF20.21 Thus, one can expect this

compound to exhibit a synergetic effect, in that it can bind to other proteins in the AKT

signaling cascade. We are currently testing this hypothesis in our laboratory.

Thus, finding selective ligands via VS is challenging, necessitating a combination of cell

line and binding experiments. Binding tests of a panel with many more kinases will also be

helpful. Additional selectivity and activity improvements can be achieved relatively easily

by more advanced in silico methods, such as free energy perturbation (FEP) and especially

FEP+22.23

Our compounds exhibited a plateau curve; i.e., similar cell death above a given ligand

concentration (Figure 4 B). This is typical of ATP-competitive inhibitors and differs from

our reference ligand, API-1, which features allosteric AKT1 binding (Figures 1B and 1C in

Severson and Meyer paper24). For instance, the highly potent GSK690693 agent (IC50 of 2

nM) resulted in approximately 20% cell mortality at≥0.5 µM. Thus, our cell line experiments

provided an additional experimental validation that our new hits bind to the ATP pocket.

Interestingly, the IC50 values of new hits in most of VS studies were at greater than 50–

100 µM. One of the reasons is that we omitted the presence of natural peptide. Furthermore,

our pharmacophore model was the default model; i.e., we did not improve it based on specific

AKT1 structural features or expert opinion. For instance, the aromatic points R42 and R43

(Figure 1 B) could be deleted, the number of pharmacophores could be reduced only to the

most significant, and most importantly the requested number of matches could be set more

strictly and increased. However, one of our aims in this study was to evaluate also the default

performance of the method as it is implemented in Schrödinder package and requested 4 of
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8 pharmacophore point’s match. Our experience demonstrated that matching all points is

the best approach and we highly recommend it.14

Structural basis of the observed activity

The compound 6 structure is typical for an AKT inhibitor. It has a purine core attached

to piperazine. However, the indazole ring may be too big to fit well and interact with the

P-loop, in particular Phe161 (Figure 6). Compound 2 has similar structural features and

almost identical interactions at the upper part of the ATP binding pocket (Glu228 and

Ala230). It also forms hydrogen bonds with Glu234 and Glu278, but does not contact the

loop and exhibits only moderate activity, proving that interactions with the loop residues

are an important factor for binding (Figure 7). This has been demonstrated in structure

activity optimization studies,25 and is also evident from data of compound 4. The last

ligand provides neither stable contact with the loop residues nor with those from the other

side of the binding grove, and the activity was completely lost. This also provides additional

information for further SAR studies. Thus, appropriate optimization, guided by approaches

such as FEP+, may greatly enhance the activity. On the other hand, the ring of the most

active ligand, compound 1, exhibits interactions along the ATP binding pocket and forms

several hydrogen bonds within the loop (residues Phe161 and Gly162), which contributes to

its activity (Figure 8).

Conclusions

Our data demonstrates that a combination of structure-based pharmacophore and docking

approaches was successful in discovering new potential AKT1 inhibitors. When we combined

the binding and cell line data, we obtained a reasonable success rate of identifying new hits

(60%–70%). However, during the pharmacophore search the choice of a model matching more

features, e.g. more specific and significant potential ligand-protein interactions, seems to be

critical for both activity and selectivity in identifying new hits. Recently, we identified also
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highly potent (≤0.5 µM) glycine transporter 2 leads in this manner.14 Thus, our approach

is useful for VS when (1) no ligands are known for a target, (2) the number of ligands is

limited, or (3) a conventional ligand-based pharmacophore search is infeasible.
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Figures
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Figure 1: Pharmacophores [acceptor (pink), negative charge (red), aromatic ring (orange),
and donor (blue)] are represented as solid spheres and donouts, excluded volumes are repre-
sented by spheres and some of the fragments that generated these points are also shown.(Top)
Structure-based pharmacophore model of AKT with 9 pharmacophore points based on MD
generated AKT structure. (Bottom) Structure-based pharmacophore model employed in the
study that contains with eight pharmacophores and generated by PDB ID 3QKK.16



Figure 2: Recovery rate of the active ligands vs decoys achieved on the AKT1 subset, from
the DUD-E set by a combination of Phase structure-based pharmacophore screen and Glide
SP docking software, in the framework of Schrodinger 2017-4. X-axis represents 1-Specificity
and Y-axis represents Sensitivity.
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Figure 3: VS-identified hits, confirmed by in vitro studies. Compound name, ZINC number,
and docking score are also shown.
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Figure 4: Analysis of the cytotoxic properties of compounds 5 and 6 against the acute
lymphoblastic leukemia CEM cells. A differential nuclear staining assay (DNS) was employed
to evaluate the cytotoxic activity of these compounds. Cells were exposed for 48 h at
different concentrations of compounds 5 and 6, from 0.1 to 7.5 µM. A) Cytotoxicity values
of CEM cells exposed to 5 µM of each compound. Compounds 4, 5, 6 and Z18 displayed
the highest toxicity. B) Cytotoxicity dose-response curves of increasing concentrations of
the experimental compounds 4, 5, 6 and Z18. Each plot represents an average of three
experiments.
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Figure 5: Ten-point AKT1 inhibition measurements for ligand 1. All values are based on
experiments conducted twice.
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Figure 6: (A) 3D representation of compound 6-AKT1 interactions. Ligands are rendered
in green stick models, interacting amino acids are rendered as grey stick models and Hy-
drogen bonds indicated in yellow dotted lines. (B) 2D representation of compound 6-AKT1
interactions, as identified by our docking studies.
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Figure 7: (A) 3D representation of compound 2-AKT1 interactions. Ligands are rendered
in green stick models, interacting amino acids are rendered as grey stick models and Hy-
drogen bonds indicated in yellow dotted lines. (B) 2D representation of compound 2-AKT1
interactions, as identified by our docking studies.22



Figure 8: (A) 3D representation of compound 1-AKT1 interactions. Ligands are rendered
in green stick models, interacting amino acids are rendered as grey stick models and Hy-
drogen bonds indicated in yellow dotted lines. (B) 2D representation of compound 1-AKT1
interactions, as identified by our docking studies.
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