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A machine learning (ML) model is trained on-the-fly as a computationally inexpensive energy predictor before
analyzing how to augment convergence in Genetic Algorithm (GA)-based approaches by using the ML model
as a surrogate. This leads to a machine learning accelerated genetic algorithm (MLaGA) combining robust
qualities of the GA with rapid learning of the ML. The MLaGA is used to search for stable, compositionally
variant nanoparticle alloys to illustrate its capability for accelerated materials discovery, e.g., nanoalloy cat-
alysts. The MLaGA, in this case, yields a 50-fold reduction in the number of required energy calculations
compared to a traditional “brute force” GA. This makes searching through the space of all compositions of
a binary alloy particle in a given structure feasible, using density functional theory calculations.

I. INTRODUCTION

The current rate of discovery of clean energy materi-
als remains a key bottleneck in the transition to renew-
able energy, and computational tools enabling acceler-
ated prediction of the chemical ordering and structure
of such materials, e.g., nanoparticle alloys and catalysts,
are in high demand.

Genetic algorithms (GAs) are metaheuristic optimiza-
tion algorithms inspired by Darwinian evolution. Per-
forming crossover, mutation and selection operations, the
algorithm progresses a population of evolving candidate
solutions. Selecting well designed operators and opti-
mal parameters, GAs have exhibited a high degree of
robustness in terms of finding ideal solutions to diffi-
cult optimization problems1,2. The robustness results
from the evolutionary process being able to advance so-
lutions that would have been very difficult to predict
a priori. Though, GAs often require a large number
of function evaluations, resulting from typical offspring
not being very “fit” solutions. Modern machine learning
(ML) methods have the capacity to fit complex func-
tions in high-dimensional feature spaces while control-
ling overfitting3,4. However, the high-dimensional feature
space means that finding an optimum in an ML model
is not a simple task. The robustness of the GA is an-
alyzed while accelerating its convergence through inte-
gration with an on-the-fly established Gaussian process
(GP) regression model of the feature space.

For materials applications, GAs have typically em-
ployed (semi-) empirical potentials (EP)5–11 to describe
the potential energy surface (PES).12–15 The utilization
of more accurate methods to describe the PES, such as
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density functional theory (DFT) has been limited, due
to computational cost. To account for the increased
computational cost of searching the PES directly with
DFT, studies have often been limited in size,16 though
these methods have successfully been used in a number
of investigations.17–25 This study focuses on utilizing the
GA to gain an understanding of chemical ordering within
larger particles. Searching across a range of composi-
tions is particularly important in the field of materials
discovery, where composition can have a profound effect
on the desired property e.g. catalytic activity.26,27 Fur-
ther, the optimal composition may vary with the size of
the nanoparticle. Therefore, the accurate description of
chemical ordering is important; where, for certain mo-
tifs, the ordering is very complex.28 Focus is placed on
expediting a fast unbiased homotop search by reducing
the number of energy evaluations needed to explore the
PES and locate the putative global minimum (GM) for
a given template structure.

II. RESULTS AND DISCUSSION

The chemical ordering of atoms is optimized for a 147-
atom Mackay icosahedral template structure.29 Searches
elucidate the full convex hull of possible PtxAu147−x
for x ∈ [1, 146] compositions. A small number of
PtAu compositions will preferentially distort to form
rosette-icosahedral instead of the Mackay icosahedral
structures.30 The GA locates these structures in a num-
ber of cases, though as structure optimization is not the
focus of these benchmarks, when the rosette distortion
occurs, the calculations are prevented from entering the
population preserving the template structure.

The excess energy is used to assign fitness within the
GA, as in Equation 1.
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Eexcess = EAB −
EA · nA
N

− EB · nB
N

(1)

For particles containing a total of N atoms, nA and nB
are the number of atom type A and B, respectively. EAB
is the total energy of the mixed particle, while EA and
EB are the energies of the pure particles. The number of
homotops for each particle rises combinatorially toward
the 1:1 composition. The number of possible homotops
is given by Equation 2.

HN =
N !

NA!NB !
(2)

There are a total of 1.78 × 1044 homotops for all 146
compositions. The total number homotops for each com-
position is shown in Fig. 1 as well as an example of a
randomly ordered icosahedral structure under considera-
tion in this study.

We first run a traditional GA (described in details in
the Methods section) to baseline our benchmark and then
describe the ML extensions and their results. When using
the traditional GA, it is possible to locate the hull of local
minima with ∼16,000 energy evaluations. This is signif-
icantly lower than the total number of homotops that
are present, and thus the number of energy calculations
required if a brute-force method was used (1.78× 1044).
However, this is still typically above the number of energy
calculations one would wish to perform if a more expen-
sive energy calculator were being employed. To overcome
inefficiencies in this method, the underlying search algo-
rithm is optimized and coupled with machine learning
selection. A GP regression model is used to predict ex-
cess energies of nanoparticles before employing electronic
structure calculations. The squared exponential kernel
was utilized for the mapping function, as in Equation 3.

k (x,x′) = exp

(
− 1

2w2 ‖x− x′‖2
)

(3)

The kernel is applied to determine relationships between
the fingerprint vectors (x) of two candidates, where ‖x‖
is the Euclidean L2-norm and w denotes the kernel width.

The training dataset is comprised of unique numeri-
cal fingerprint vectors, with features representing distinct
chemical ordering within a particle, based on a simple
measure, the averaged number of nearest neighbors, as
in Equation 4.
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N
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]
(4)

Where, e.g. #A-A accounts for the number of ho-
moatomic bonds between atom type A. The summed
mass (M) is appended to account for compositional

changes. The ML model is trained on relaxed nanopar-
ticles, though predictions are based on features gener-
ated for the unrelaxed structure. The set of descriptors
generated in the fingerprint vector are invariant to small
changes to the coordinate system, such as a small ex-
pansion or contraction of the lattice resulting from the
geometry relaxation. A similar ∆-learning method, has
been discussed by von Lilienfeld et al.31

Within the ML accelerated GA (MLaGA) implemen-
tation, exists two tiers of energy evaluation, one by the
ML functions giving a predicted fitness and the other
by the energy calculator providing the actual fitness. A
nested GA has been implemented to search the surrogate
model representation, generated by the ML. This acts as
a high throughput screening function based solely on pre-
dicted fitness, running in the “master” GA. The nested
surrogate GA takes the current population and is able
to progress through additional search iterations, where
evaluation and selection are based only on the current
model of the PES. The final population from the nested
GA returns unrelaxed candidates to the master GA.

This is well suited to making large steps on the PES
without performing expensive energy evaluations. A dif-
ficulty when searching with the MLaGA is that conver-
gence criteria typically used in these studies is no longer
suitable. The MLaGA methodology is specifically imple-
mented to limit the number of energy evaluations that
are performed. Therefore, every candidate in the gener-
ation typically progresses the population. This progres-
sion within the population continues until the ML routine
is unable to find new candidates that are predicted to be
better, essentially stalling the search. For this reason,
convergence is considered to have been achieved by the
point at which the ML routine prevents new candidates
from being evaluated. The general MLaGA methodology
is shown in Figure 2.

The GA can be run with a pool or generational pop-
ulation. When running the MLaGA with a generational
population, a ML model is trained and utilized to search
for a full generation of e.g. 150 candidates. When com-
bining the MLaGA with the generational nested GA, a
greater number of candidates are generated in total, com-
pared with the traditional GA. However, the majority
of candidates generated in the nested GA routine are
discarded prior to the expensive energy evaluation step.
Therefore, the MLaGA with a nested search, is able to
locate the full convex hull of minima in an average of
1200 candidates. It is possible to reduce the total num-
ber of energy calculations through the employ of different
acceptance criteria. Tournament acceptance was partic-
ularly efficient at reducing the number of required energy
calculations, reducing to fewer than 600 for the search.

Tournament acceptance is able to improve search ef-
ficiency by restricting the number of candidates passed
from the nested, to the master GA. To exploit this fur-
ther, the MLaGA can also be run with a pool based pop-
ulation where the surrogate model is trained for each new
data point resulting from an electronic structure calcu-
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lation. In this case, the search must progress in serial.
Despite the potential for further reduction in the num-
ber of calculations required, this may end up being time
consuming. This is because, performing the electronic
structure calculations cannot be parallelized, as would
be possible with the generational population. When this
methodology is utilized the number of energy calculations
required to search the convex hull is approximately 310.

When training a new model for every energy calcula-
tion, it is also possible to exploit uncertainty within the
variance distribution on the predicted mean, as in Equa-
tion 5.32

σ2 (x∗) = λ+ k (x∗,x∗)− kTK−1k (5)

Where a new candidate has the fingerprint vector x∗, k is
the covariance vector between a new data point and the
training data set, K is the covariance, or Gram, matrix
for the training data and λ is the regularization hyperpa-
rameter. In order to progress the search as efficiently as
possible, the cumulative distribution function (cdf), as in
Equation 6, is used as the fitness of a candidate.

P̃ (E[x] < E[best]) =
1√
2π

∫ 0

−∞
e−(E[x]−E[best])

2
/σ2

xdx (6)

When the fitness function also accounts for the variance,
it is possible to utilize the inherent uncertainty within a
prediction to either exploit the current known informa-
tion in the model, or to explore unknown regions of the
search space.33 The cdf is calculated up to the current
known fittest candidate in the composition. The pool
based MLaGA is able to locate the convex hull of sta-
ble minima in approximately 280 energy calculations. A
comparison of the different methods is in Fig. 3. There
are clear advantages to performing the search with the
augmented ML method.

To ensure that advantages of the methodologies dis-
cussed above were not an artifact of utilizing the less ac-
curate EMT calculator, the MLaGA was tested search-
ing directly on the DFT PES. As a significant reduc-
tion in the number of energy calculations is likely to be
achieved and parallelization of calculations is favorable,
the search is performed with the generational population
setup. Utilizing the MLaGA methodology, while allowing
the nested search to run for a greater number of gener-
ations, it is possible to locate the convex hull of minima
with approximately 700 DFT calculations. When opti-
mizing geometries with the DFT calculator, there was a 0
eV barrier to structural rearrangement for a small range
of the Au deficient compositions.

The convex hull located for the DFT search is in Fig.
4. The shaded region shows the difference in stability
between the distorted structures and the most stable
icosahedral structures located. The complete core-shell
Au92Pt55 structure is located as the most stable for both
the EMT and DFT searches. There is good general agree-
ment between the structures obtained elsewhere on the

hull, aside from the region of distortion. Further there
is broad agreement in the efficiency of the search rou-
tines based on the benchmarking and actual searches.
Fig 4 also shows the convergence profile as a function
of each subsequent DFT calculation. The abrupt bend
after around 150 calculations corresponds to a particu-
larly favorable chemical ordering that is distributed to
all compositions in the following calculations. This is of
course an effect of similar chemical ordering across the
whole Au-Pt composition range.

Coupling ML with the GA provides significant advan-
tages in accelerating searches. Performing a search on
the surrogate model provides a cheap energy descriptor
without requiring expensive electronic structure calcula-
tions to assess stability of these nanoparticles. The exact
method should be optimized based on the advantages of
parallelizing the execution of energy calculations and re-
ducing the total CPU hour cost of the search. A hierarchy
of methods have been utilized to reduce the total number
of energy calculations required to fully search the convex
hull of local minima from 16,000 to around 300.

III. METHODS

A. Computational details

The effective-medium theory (EMT) potential12 is
used as the energy calculator for initial benchmarking.
The fast inertial relaxation engine34 optimization rou-
tine is utilized to relax the structures, with forces on
all individual atoms minimized to at least 0.1 eV Å-1.
DFT calculations are performed using GPAW with a
real space implementation of the projector-augmented
wave method.35 GPAW is run in the linear combination
of atomic orbitals mode36 with a double zeta basis set
and RPBE exchange correlation functional.37 Calcula-
tions are run spin-polarised with a Fermi smearing of
0.05 eV in a non-periodic 32 × 32 × 32 Å unit cell.

B. Traditional Genetic Algorithm

The GA implemented within the Atomic Simulations
Environment (ASE) software package38 has been utilized.
A niching fitness function is employed to efficiently search
across the full compositional convex hull.39 When initial-
izing the traditional GA, the population size is set to 150
candidates. The method for selecting parents is handled
by roulette wheel selection. Selection probabilities are di-
rectly related to the ascribed fitness, which accounts for
the stabilities of the nanoparticle. Offspring are created
by either mating two parents, or by mutating a single can-
didate. The mating and mutation routines are mutually
exclusive and thus are not allowed to stack i.e. perform-
ing crossover and mutation before evaluation. Cut and
splice crossover functions, described by Deaven and Ho,5
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are used to generate new candidates with a call probabil-
ity of 0.6. Random permutation mutations are utilized
with a call probability of 0.2, e.g. swapping the posi-
tions of two random atoms of different elemental species.
A random swap mutation is also employed with a call
probability of 0.2, where one atom type is swapped for
another. Convergence criteria is assigned through a lack
of progression in the population e.g. the fitness of the
population does not change for a number of generations.6

The GA is run with relatively loose convergence criteria,
when there has no observed change in the population for
two generations, the search is concluded.

IV. DATA AVAILABILITY

The datasets generated during and/or analyzed during
the current study are available from the corresponding
author on reasonable request.
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FIG. 1: The homotop optimization problem for the 147
Mackay icosahedral nanoparticle.

FIG. 2: Flowchart for the MLaGA method. As specified
in the text the method only terminates when ML
assisted GA fail to produce candidates that are

predicted to improve the population.
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FIG. 3: (Top) The convex hull located with the
MLaGA employing the EMT calculator. (Bottom) The

number of energy calculations as a function of
composition of the particle. Data is shown for the

traditional GA (GA), the ML accelerated GA
(MLaGA), the serialized MLaGA (sMLaGA) and the
MLaGA utilizing uncertainty (uMLaGA). The dark

lines and the shaded areas show the average and
variation of five repeated searches respectively.
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FIG. 4: (Left) The convex hull located with the
MLaGA employing the DFT calculator. (Right) The

convergence profile for the GA search. The distance is
the cumulative energy deviation from the correct convex
hull, it is plotted against each energy calculation i.e. it

gives an indication of the energy gain of each
calculation.


