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We present a simple approach for orbital space partitioning to be employed in the projection-
based embedding theory developed by Goodpaster and coworkers [J. Chem. Theory Comput. 2012,
8, 2564]. Once the atoms are assigned to the desired subspaces, the molecular orbitals are projected
onto the atomic orbitals centered on active atoms and then singular value decomposed. The right
singular vectors are used to rotate the initial molecular orbitals, taking the largest gap in the singular
values spectrum to define the most suitable partition of the occupied orbital space. This scheme
is free from numerical parameters, contrary to the Mulliken charge threshold or the completeness
criterion previously used. The performance of this new prescription is assessed in a test set of several
distinct reactions, the deprotonation of decanoic acid, the torsional potential of a retinal derivative,
and the critical points along the reaction coordinate of an example of the Menshutkin SN2 reaction
inside a carbon nanotube.

I. INTRODUCTION

Despite the fact that, for a given one-particle ba-
sis, the exact electronic, non-relativistic wave function
is formally known, i.e., the full configuration interaction
(FCI), its factorially growing computational cost renders
most of its practical application to problems of chemi-
cal and physical interest prohibitively expensive. Several
truncations of the FCI expansion or alternative ansätze,
which are collectively referred to as wave function theo-
ries (WFT) hereafter, have been successful in providing
tunable accuracy and systematic convergence toward the
FCI limit, but even these approximations are often times
too demanding computationally. One viable avenue is to
resort to density functional theory (DFT), whose inclu-
sion of electron correlation within a mean-field framework
greatly offsets the computational bottleneck imposed by
the more accurate WFT approaches. On the other hand,
DFT is plagued by the lack of a formal route toward
the FCI limit and its considerable inability to remove
the self-interaction error, among other problems. For-
tunately, DFT can be comparable to WFT methods in
many instances, if not always quantitatively, at least in
allowing for more qualitative predictions.

Most of the current understanding of chemistry re-
lies on the knowledge based on the qualitative picture
of chemical sub-units. This idea readily translates into
the notion of local environments, relying on the assump-
tion that the chemistry of an entire class of compounds
can be reduced to one or few of the so-called functional
groups. This fact naturally leads to the idea of multilevel
approaches, which works under the assumption that the
bulk of the sought chemistry/physics can be achieved if
the region(s) primarily responsible for the phenomenon
under consideration is (are) treated at a higher, more ac-
curate level of theory, while the remainder of the system
in question, deemed lower in importance, can be incor-
porated through methods that are more amenable from
the computational viewpoint.

Several examples of multilevel schemes can be found in

the literature. Some of the earlier endeavors on this front
attempted to describe the background by embedding the
high-level region in the electrostatic potential of the envi-
ronment, treating it in an additive manner in (QM/MM)
methods,1 or in a subtractive manner in ONIOM-type
methods.2–6

While electrostic interactions dominate in the long-
range, short term interactions are more nuanced, requir-
ing more robust embedding procedures.7–9 In density ma-
trix embedding theory (DMET),8,10–13, the active region
is treated as an open-quantum system coupled to a sim-
ilarly sized quantum bath, which together are embedded
in a mean field background. The benefits of DMET lie
in the fact that the active region is allowed to remain
entangled with the nearby atoms, enabling the approach
to be used with strongly correlated systems.

If strong correlation between the active and the envi-
ronment regions is not present, then more efficient em-
bedding strategies based on DFT might be used.14–16

Given the particular advantages of WFT and DFT, it
seems desirable to combine their strengths within a multi-
level framework. Recently Manby, Miller, and co-workers
started exploring this route.17–21 In their approach, the
entire system is initially computed at the DFT level,
yielding a set of Kohn-Sham (KS) orbitals. These or-
bitals are in turn made local according to the Pipek-
Mezey (PM) localization procedure,22 and identified with
the atoms in the “active” and “environment” subsystems,
named A and B, respectively. It is worth noting that the
entire system can be partitioned in more than two sub-
systems without loss of generality of the arguments pre-
sented here. This step is carried out by evaluating the
Mulliken charges and including all orbitals whose Mul-
liken charges have a contribution from one of the active
atoms that is 0.4 or greater. Inspired by the work of
Huzinaga and Cantu,23 the two subsystems can be made
orthogonal, that is, they can be treated independently,
by means of introducing a projector with the goal of iso-
lating the contribution from the orbitals in B from the
total density of the system. This projector is accom-
panied by a level-shift parameter µ that ensures exact
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orthogonality between A and B in the limit of µ → ∞,
which is, for practical purposes, taken to be 106, with
negligible error. This approach, with some slight modifi-
cations, has been applied successfully to a wide range of
chemical problems.24–28

Although the projection-based embedding has already
seen significant successes, its use as a “black box” method
presents some challenges. The Mulliken charge thresh-
old employed in the partition of the A and B orbital
subspaces is rather arbitrary, while the very concept of
Mulliken charge can have deleterious effects, as it does
not have a basis set limit and is not always in accordance
with well-established chemical intuition backed by empir-
ical evidence.29,30 In fact, such charges tend to degrade
as the basis set is enlarged. It can also pose problems
in the underlying Pipek-Mezey localization step, as it in
turn depends on the Mulliken charge analysis.

One attempt to tackle these deficiencies was proposed
by Hégely et al.31 The Mulliken charge analysis above
was replaced by the algorithm proposed by Boughton and
Pulay (BP)32 commonly used to categorize local orbitals
in terms of spatial domains, and instead of the projector
and level-shift parameter, the Huzinaga equation was ex-
plicitly solved. Even though the BP scheme is believed
to be more reliable than the Mulliken analysis, it is still
based on a seemingly arbitrary 0.015 least-squares resid-
ual and the presence of Mulliken charges is not entirely
prevented, as the authors used PM localized orbitals.
Resorting to the solution of the Huzinaga equation, ac-
cording to the authors, “eliminates the bias caused by
the arbitrary level shift parameter of the original the-
ory, though it has a very small effect on the numerical
results.”31 This scheme has also been explored in con-
junction with the dual basis scheme in order to further
alleviate the underlying computational burden.33

Alternatively, Hammes-Schiffer and co-workers pro-
posed a mechanism through which they simultaneously
optimize the orbitals in A and B such that the result-
ing subspaces are mutually orthogonal by construction.34

By doing so, the orbital energies in B no longer need
to be pushed to very high energies, meaning that it is
also free from the level-shift parameter. This approach
is reported to display smaller errors than the Huzinaga-
based embedding scheme discussed above. However, A
and B are again comprised of PM orbitals and are as-
signed to which subspace based on a predetermined Mul-
liken charge threshold (not reported), thus some of the
drawbacks pointed out above may also afflict this pre-
scription.

In order to remedy these weaknesses, we propose an
alternative way to construct the orbitals and their parti-
tioning into the appropriate subsystems. The motivating
idea is that conventional orbital localization procedures
(like PM) seek too stringent of a localization condition,
finding orbitals of near atomic character. However, a
good embedding calculation only needs the occupied or-
bitals regionally localized, and this is the strategy we take
in this paper. It is independent of Mulliken charges and

is made completely black-box, meaning that it does not
rely on PM or any other explicit localization algorithm.

II. THEORY

A. Projection-based embedding theory

The main working equations follow from the first pa-
per from Manby et al.17 and are summarized below in
order to facilitate the subsequent discussion. An initial
calculation is carried out at the low level of theory, DFT
in the present case, involving the entire system and which
is used to describe the environment. At the end of this
step, one is left with a set of molecular orbitals (MO)
{φi}, with i indexing the occupied MOs, and an atomic
orbital (AO) density matrix γ. Upon proper partition of
the occupied orbital space into the two subsystems A and
B, it follows that {φi}={φAi }

⋃
{φBi } and γ = γA + γB .

The total energy of the unpartitioned system can be
written as:

E[γA + γB ] = tr(γAh) + g[γA]︸ ︷︷ ︸
Energy of isolated A

+ tr(γBh) + g[γB ]︸ ︷︷ ︸
Energy of isolated B

+ g[γA,γB ]︸ ︷︷ ︸
Non-additive two-electron term

(1)

where the h is the one-electron Hamiltonian matrix
and g groups the two-electron terms that contain the
Coulomb, exchange and (potentially) correlation contri-
butions. The term g[γA,γB ] gathers the non-additive
two-electron terms that account for the interaction be-
tween subsystems. The intersystem interaction can be
suppressed and later incorporated with the aid of the
projector P = SγBS, where S is the AO overlap matrix.
Thus, the Fock matrix for subsystem A, FA, becomes:

FA = hA in B + g[γAemb] (2)

where the effect of the interaction of A with B is ac-
counted for via an effective one-particle potential that is
taken as an additional term to the usual h and subse-
quent calculation yields γAemb, the density matrix of A
embedded in B, that is, self-consistently determined by
FA. Explicitly:

hA in B = h + g[γA + γB ]− g[γA] + µP (3)

with µ being the level-shift parameter, which is set to
106. The final energy expression of A embedded in B
becomes:
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E[γAemb;γA,γB ]

=E[γAemb] + E[γB ] + g[γA,γB ]

+tr[(γAemb − γA)(hA in B − h)]

(4)

It is straightforward to confirm that Equation 4 re-
duces to Equation 1 in the case of exact self-embedding,
i.e., that A and B are treated at the same level of theory
and µ is large enough to ensure that {φAi }⊥{φBi }. For
the purposes of this paper, where we would like A to be
treated at some WFT level, the last term in Equation 4
corrects for the fact that γAemb 6= γA. Analogously, em-
bedding a wave function in A within a DFT potential
provided by B follows from Equation 4:

E[ΨA;γA,γB ] =〈ΨA|ĤA in B|ΨA〉
+E[γB ] + g[γA,γB ]

−tr[γA(hA in B − h)]

(5)

B. Singular value decomposed orbitals

Given that there are well-established limits in the for-
malism shown above, i.e., the self-embedding case and
the exact orthogonalization of orbitals in A and B, the
concern regarding the performance of this approach shifts
to the construction of the orbital subspaces. First, the or-
bitals should be, to a great extent, spatially restricted to
the atoms that constitute each subsystem, and for that,
using a localization scheme tends to be the natural choice,
such as the Ruedenberg-Edminston,35 Boys,36 Pipek-
Mezey,22 and intrinsic bonding orbitals.30 We propose a
different route. Starting from the expansion of the occu-
pied MOs in terms of the AO basis, one has φ = χCocc,
where χ represents the AO basis of choice. Alternatively,
one can work with orthogonalized AOs, which can be ac-
complished by turning to C̄occ = S1/2Cocc. In this basis,
we define the following projector Q̂A:

Q̂A =
∑
µ̄∈A
|µ̄〉〈µ̄| (6)

where {µ̄} is the set of orthogonal AOs associated with
atoms in subsystem A. It is simple to verify that the
orthogonal complement of Q̂A is Q̂B and that these pro-
jectors are idempotent. In practical terms, we split C̄occ

into matrices that are comprised of only the AOs belong-
ing to the centers in each subsystem. By letting C̄A

occ be
the MO coefficients from AOs in subsystem A, we have
that:

Q̂A =
∑
µ̄∈A

|µ̄〉〈µ̄| ⇒ QAC̄occ = C̄A
occ (7)

New orbitals can obtained by rotating the original
MOs Cocc according to the right-singular vectors of C̄A

occ,
with the corresponding singular values signaling the rela-
tive importance of their associated vectors. The singular
value decomposition (SVD) of C̄A

occ is given by:

C̄A
occ = UAΣAV∗A. (8)

The column vectors in VA are identical to the eigenvec-

tors of C̄†
A

occC̄
A
occ. A new set of orbitals are then obtained

through a rotation of the original MOs, Cocc. We call this
procedure Subsystem Projected AO DEcomposition,
and will refer to it by the acronym SPADE hereafter,
with the orbitals it generates named SPADE orbitals.
Thus:

CSPADE
occ = CoccV

A (9)

Using only an appropriate partition of the atoms into
active (A) and environment (B) subsystems, the corre-
sponding orbital subspaces ensue from the distribution
of singular values. The largest difference between succes-
sive singular value signals the most adequate partition of
the set of MOs. To illustrate this point, we take ethanol
as an example. Upon selection of the OH- group as the
active subsystem, the active orbital subspace is expected
to be spanned by five orbitals, in accordance with Ref.
17, where PM orbitals and 0.4 threshold in the Mulliken
charge contribution from the oxygen and hydrogen atoms
in A were used. Application of the procedure above yields
a set of singular values {σi}, whose squares can be seen
as effective occupation numbers, with i being an orbital
label. Plotting {σ2

i } and the singular value difference
∆σ2

i = σ2
i − σ2

i+1 results in Figure 1.
It is apparent that singular value decomposing the MO

coefficients in accordance with Equation 8 produces a
singular value distribution in which the largest difference
σ2
i −σ2

i+1 agrees with the atomic partition designated ini-
tially, so the active orbital subspace should contain five
orbitals. These orbitals are plotted side-by-side in Fig-
ure 2 with the five Pipek-Mezey orbitals whose Mulliken
charge contribution from the OH- group exceeds 0.4.

The attractiveness of turning to the SPADE orbitals
as shown above is two-fold. First, due to the square of
the singular values being a quantity analogous to occupa-
tion numbers, they can be seen as similar to the natural
population analysis, which has been proven capable of
avoiding (some of) the flaws of the Mulliken analysis.
Second, it follows from the fact that C̄A

occ only contains
the coefficients from atoms in A that the rotated orbitals
will be mostly constrained to their corresponding subsys-
tems. The SPADE procedure automatically “localizes”
the orbitals, but contrary to most localization schemes
that tend to localize the orbitals in atoms or bonds, the
SPADE orbitals are local only in the sense that they re-
main in their native subsystems, which is one of the re-
quirements for successful embedding.
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FIG. 1: Distribution of the square of the singular values (σ2)
from ΣA in Equation 8 and ∆σ2

i = σ2
i − σ2

i+1 from a calcula-
tion on ethanol with the OH- group as the active subsystem
at the PBE/6-31G* level of theory. The orbital depicted is
the SPADE orbital preceding the largest gap, which connects
the active and the environment subsystems.

C. Physical rationale for singular value partitioning

In the previous section, the decision to partition the
orbital space at the point of largest gap in the singular
value spectrum was largely empirical, in that it agreed
with chemical intuition. However, one can view this in
another, perhaps more physical way. Performing an SVD
on the projected occupied MO vectors is identical to com-
puting the eigenvectors of the one particle density matrix
projected onto the same AO space. As a single determi-
nant state, before projection this density matrix is idem-
potent, with all eigenvalues either equal to 1 or 0. How-
ever, after projection onto a subsystem, the resulting den-
sity matrix is non-idempotent, with occupation numbers
(eigenvalues of projected density matrix) distributed in
between 1 and 0. This non-idempotency tells us that the
active subsystem is (statically) correlated with the rest
of the system. In fact, if the active system and environ-
ment were separated to infinite distance, this projector
would not mix the occupied and virtual spaces, leaving
the projected density matrix idempotent.

While electron correlation is one mechanism by which
a density matrix can become non-idempotent, finite tem-
perature effects can also have this response, and the use of
finite temperature in non-interacting systems to approxi-
mate static correlation has been explored successfully in a
number of works such as the TAO-DFT method.37 If we
assume that the non-idempotent projected density can
be associated with the ground state of a smaller non-
interacting system at finite temperature, then the dis-
tribution of electron occupations (ni) should follow the
Fermi-Dirac distribution:

ni =
1

1 + e(ei−µ)/kBT
. (10)

The point on this sigmoid distribution at which the sec-
ond derivative ∂2ni/∂e

2
i goes to zero, is the Fermi level.

By choosing the largest gap in the eigenvalue spectrum of
the projected density matrix, we are essentially choosing
to partition our system at the Fermi level of the finite
temperature non-interacting system. Under this model,
an active system selection which produces a relatively
“low temperature” spectrum should be expected to yield
good embedding results, as it is an indication of only
weak correlation between the active subsystem and envi-
ronment. However, this rationale is contingent upon the
spectrum being sigmoidal, and poor active subsystem se-
lection could possibly yield a spectrum which does not
follow this behavior, resulting in a poor partitioning.

III. COMPUTATIONAL DETAILS

The embedding potential that is added to the core
Hamiltonian in order to obtain hA in B is constructed
with the aid of Numpy, taking advantage of the Python
API in the Psi4 quantum chemical package.38 A local
version of Psi4 was modified in order to allow for the
required implementation of the effective Fock matrices.
The procedure for construction of the SPADE orbitals is
based on the linear algebra module of NumPy.

The effect of the choice of density functional is tested
by carrying out calculations with a pure and a hy-
brid functional, and this is accomplished at the low
level of theory with the PBE39,40 and the B3LYP
functionals,41,42 respectively. The WFT methods used
as high level of theory in the embedded portion of the
calculations were chosen to be the Møller-Plesset per-
turbation theory to second-order (MP2), coupled clus-
ter single and double excitations (CCSD),43 and CCSD
with perturbative triple excitation correction through
fourth-order (CCSD(T)).44–46 The basis sets used in this
work were the augmented correlation consistent polar-
ized valence double zeta (aug-cc-pVDZ)47,48 and Pople’s
6-31G*49 and the latter with addition of diffuse functions,
6-31+G*. Calculations where the electron repulsion in-
tegrals are approximated by density-fitting50–53 are ex-
panded in the cc-pVDZ-JKFIT54 (SCF) and cc-pVDZ-
RI55,56 (MP2) auxiliary basis sets.

IV. RESULTS AND DISCUSSION

A. Reaction energies

Instead of examining the capabilities of projection-
based embedding with orbitals originated from the
SPADE prescription put forth in Section II in one or
few selected cases, we start investigating the perfor-
mance of the SPADE approach by presenting results from
embedding calculations carried out for the molecules
in the test set of reactions suggested by Mayhall and
Raghavachari.57 We regard this as a balanced set that



5

FIG. 2: The five SPADE (top) and PM (bottom) embedded orbitals of ethanol when the active subsystem is the OH- group at
the PBE/6-31G* level of theory.

samples different situations, with the active subsystem
undergoing chemically distinct reactions, involving elec-
tron donor and acceptor environment subsystems as well
as closed and open shell configurations. The reactions
considered in this paper are summarized in Table I.

TABLE I: Test set of reactions (Ref. 57). X = F, CH3, and
‖ denotes the partition into active (right) and environment
(left).

Deprotonation

1) X3C-‖-CH2OH+
2 → X3C-‖-CH2OH + H+

2) X3C-‖-CH2OH → X3C-‖-CH2O− + H+

3) X3C-‖-CH2NH+
3 → X3C-‖-CH2NH2 + H+

4) X3C-‖-CH2NH2 → X3C-‖-CH2NH− + H+

5) X3C-‖-COOH → X3C-‖-COO− + H+

H-abstraction

6) X3C-‖-CH2OH → X3C-‖-CH2O• + H•

7) X3C-‖-CH2NH2 → X3C-‖-CH2NH• + H•

Ionization energy

8) X3C-‖-CH2O− → X3C-‖-CH2O• + e−

9) X3C-‖-CH2NH− → X3C-‖-CH2NH• + e−

SN2

10) X3C-‖-CH2F+Cl− → X3C-‖-CH2Cl+F−

The comparison of the reaction energies for the reac-
tions in Table I obtained from embedded calculations
carried out with a certain WFT method are compared
against the calculations at the same levels of theory with-
out embedding using our SPADE scheme and the PM or-
bitals selected according to the Mulliken charge cut-off,
referred to as PM/Mulliken hereafter. The results are
shown in Figure 3.

The general trend when comparing different WFT ap-
proaches for a given substituent X (X = F, CH3) is that
the overall error profile changes little regardless of the
higher level of theory employed. In other words, it means
that even though the error is progressively mitigated as
the embedded calculations are performed at MP2, CCSD,
and CCSD(T), the general qualitative picture of the er-
rors emerging from embedding remains fairly similar.
This implies that, since the only difference between the
SPADE and the PM/Mulliken embedded calculations is
the choice of the orbital partition, the discrepancies be-
tween these two schemes for a given reaction can be at-
tributed to the construction of the orbital subspaces and
the mean-field characterization these orbitals provided in
the embedded calculations.

Albeit the two orbital selection schemes comparing well
in most instances, some discrepancies require further ex-
planation. In the case of deprotonation reactions, the
departure of the proton should not change the size of
the embedded orbital subspace, that is, the embedded
Brønsted-Lowry acid and its conjugate base are expected
to have partitioned orbital spaces of the same size. It
turns out that, while the PM localization produces the
anticipated nine orbitals with Mulliken charge over 0.4
from the active atoms for X3C-CH2OH, the deprotonated
species, X3C-CH2O−, has only eight PM orbitals that
meet this criterion, and this is the reason for the much
larger error in reactions 2 and 8 when the PM/Mulliken
orbitals are employed.

A known deficiency in the concept of Mulliken charges
is revealed when they are computed in a basis containing
diffuse functions, leading to unphysical charges. The PM
orbitals do, in turn, rely on Mulliken charges, thus they
may also be plagued by this drawback. In this context, it
is important to note that the calculations whose results
are reported in this section were carried out using the
aug-cc-pVDZ basis set, where “aug” denotes augmenta-
tion of the cc-pVDZ set with diffuse Gaussian primitives.
It happens that, in the case of X3C-CH2NH−, there is at
least one orbital generated by the PM localization proce-
dure that does not comply with the idea of a local orbital
in the aug-cc-pVDZ basis set, which is shown in Figure
4.
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FIG. 3: Errors from the full energies at the high level of theory for the reactions in Table I using PBE/aug-cc-pVDZ as the
low level of theory.

FIG. 4: One of the PM orbitals in (CH3)3C-CH2NH− that
does not localize properly at the PBE/aug-cc-pVDZ level of
theory.

It is clear that the orbital portrayed in Figure 4 does
not localize on any particular atoms or bonds, but it sig-
nificantly delocalizes over the entire anion. Due to the
fact that the test set contains anions, it is strongly rec-
ommended that diffuse basis sets be used for a proper
treatment of such species. It is well-known that the Mul-
liken charges do not have a defined basis set limit and can
be very sensitive to the choice of basis set, which seems
to be the case here. Since this anion also participates in
reaction 9, that explains why the errors in these reactions
with the PM/Mulliken scheme are so different from those
with SPADE orbitals. Even though our method shares
with the PM/Mulliken scheme the inability to provide a
defined basis set limit, it seems much less prone to suffer
from its potential deleterious effects.

B. Convergence with respect to the size of the
active subsystem

If the embedding of a subsystem into another is suc-
cessfully performed, it should be expected that the total
energy of the embedded calculation would approach the
energy of the entire system computed at the higher level
of theory as the size of the active subsystem is increased.
In order to investigate the convergence of the energy for
different molecular partitions, we chose the deprotona-
tion of the decanoic acid, as reported in Refs. 31 and 34,
and shown in Fig. 5. The smallest embedded calculation
is performed with an active subsystem consisting of the
carboxyl/carboxylate functional groups. The active sub-
system is subsequently extended, one neighboring carbon
at time, where the hydrogen atoms directly bonded to the
a certain carbon atom are also included in the subsystem
to which the carbon atom in question is assigned.

Since one of the main conclusions of Subsection IV A is
that the main source of error in the current type of em-
bedding is the mean-field treatment in the presence of the
embedding potential, rendering the errors in correlation
energy from MP2, CCSD, CCSD(T) in close resemblance,
analysis of the convergence behavior of the MP2-in-PBE
energy should suffice to elucidate the efectiveness of a
certain embedding approach. Figure 5 displays the con-
vergence of the deprotonation energy at the MP2 level
with respect to the size of the active subsystem, compar-
ing the performance of the PM scheme with the proposed
SPADE orbitals. We also assess the effect of the basis set
on the quality of the embedded calculations, which is re-
alized by reporting the convergence toward the MP2 limit
with the 6-31+G* and aug-cc-pVDZ basis sets.

Firstly, the embedded calculations with 0 and 10 car-
bon atoms refer to the limits in the absence of embedding,



7

-15

-10

-5

 0

 5

 10

 15

 20

 0  2  4  6  8  10

E
rr

o
r 

fr
o

m
 M

P
2

 (
k
c
a

l/
m

o
l)

Number of carbon atoms in the embedded subsystem

SPADE - 6-31+G*
PM/Mulliken - 6-31+G*
SPADE - aug-cc-pVDZ

PM/Mulliken - aug-cc-pVDZ

HO

O

FIG. 5: Errors of MP2-in-PBE from the full MP2 energies
in the deprotonation of decanoic acid using the PM/Mulliken
and the SPADE approaches.

with the former being the entire system computed with
the PBE functional (low level), while the latter is the
analogous calculation at the MP2 level of theory (high
level). Even though the PM/Mulliken results display the
expected behavior for larger embedded subsystems, we
can see that this scheme seems to be much more sensi-
tive to the employed basis set, which is clear for active
subsystems with fewer carbon atoms. The decanoate an-
ion has one fewer orbital than the decanoic acid in the
cases where the 6-31+G* basis set is used and one or
two carbon atoms are embedded, and also for the embed-
ded calculation with one embedded carbon atom with the
aug-cc-pVDZ basis set. The erratic convergence shown
by the PM/Mulliken approach in conjunction with the
6-31+G* basis is dramatically reduced by changing to
aug-cc-pVDZ after the second embedded carbon.

The source of the distinct convergence pattern be-
tween the two basis sets under the PM/Mulliken ap-
proach seems to be related to the ability of the PM local-
ization scheme to properly define local orbitals that can
be identified with the 1s orbital of the oxygen atoms in
the decanoate anion. We tried changing the level shift
parameter to 105 and 107, without noticable change. A
plot of the canonical embedded orbital energies referring
to this orbital from the four combinations of basis sets
and orbital localization/partition is provided in Figure 6.

Apart from the discrepancy seen for the embedded sub-
system comprised of only the carboxylate (one carbon),
the PM O1s orbital energy from the aug-cc-pVDZ basis
set readily resembles those in the SPADE embedded cal-
culations, which can also be attributed to the improper
density formed by a smaller orbital subset, as the Mul-

-20.325

-20.320

-20.315

-20.310

-20.305

 0  2  4  6  8  10

O
1

s
 o

rb
it
a

l 
e

n
e

rg
y
 (

E
h
)

Number of carbon atoms in the embedded subsystem

SPADE - 6-31+G*
PM/Mulliken - 6-31+G*
SPADE - aug-cc-pVDZ

PM/Mulliken - aug-cc-pVDZ

FIG. 6: MP2-in-PBE Oxygen 1s orbital energies in the de-
canoate anion as a function of the size of the embedded sub-
system.

liken charge cut-off leads to the decanoate anion being
one orbital short in the embedding step in comparison
to its conjugate acid. This inconsistency is exacerbated
if the 6-31G+ is used instead, whose O1s orbitals con-
verge to the same values as the SPADE approach rather
later in the process of increasing the size of the active
subsystem.

The results displayed in Figure 6 only partially ex-
plain the oscillatory convergence observed in the embed-
ded calculation of smaller active subsystems with the
PM/Mulliken combination presented in Figure 5. The fi-
nal form of these plots depends on error cancelation from
multiple sources. The energies computed with the PBE
functional consistently overshoot those at the MP2 level
of theory, that is, the more orbitals are embedded, the
smaller (less negative) the final embedded energy, and
vice-versa. So, in the cases where the decanoate anion
has one fewer embedded orbital than the decanoic acid,
which, in the case of 6-31+G* basis set, is found when we
embed one and two carbons, the error cancellation actu-
ally plays in favor of a smaller overall error. It turns out
that manually adding the missing orbital in both cases
leads to much larger errors. This is also the reason why
the one carbon embedded system with the aug-cc-pVDZ
basis set underestimates the deprotonation energy of the
decanoic acid.

The complications discussed above arising from the
utilization of the PM/Mulliken approach are greatly mit-
igated by turning to SPADE orbital partition. Not only
the effect of the basis set is much less pronounced, which
is a desirable feature, but the relative size of the parti-
tioned orbital subspaces remain the same for both the
decanoic acid and its conjugate base as the size of the
embedded subsystem grows. This scheme is responsible
for errors that are very small, even for only a single car-
bon in the active subsystem, which are also noticeably
comparable between the two basis sets being tested.
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FIG. 7: Structure of the trans isomer of the retinal deriva-
tive. The C11-C12 bond is highlighted in red and the relevant
carbon atoms are numbered.

C. Torsional potential of a retinal derivative

One of the biochemical compounds that has enjoyed
most popularity and has been devoted much attention
is the rhodopsin protein due to its role as the pigment
responsible for vision. More precisely, its biological func-
tion is primarily associated with the retinal cofactor,
which has served as model system for the investigation of
the rhodopsin activity.58–60 A central step in the vision
mechanism is the absorption of a photon in the visible
range by rhodopsin, after which the retinal chromophore
undergoes a cis-trans isomerization by a twist of the C11-
C12 bond. This process is emulated with the chosen reti-
nal derivative as depicted in Figure 7.

The examination of torsional potentials may pose diffi-
culties to embedding theories, as the orbitals may exhibit
dramatic changes followed by the torsion along a bond,
leading to discontinuities in what would otherwise be a
smooth potential energy curve. We first show in Fig-
ure 8 the torsional potential of the retinal derivative at
four levels of theory: Hartree-Fock (HF), MP2, and the
functionals PBE and B3LYP.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  20  40  60  80  100  120  140  160  180

R
e

la
ti
v
e

 e
n

e
rg

y
 (

k
c
a

l/
m

o
l)

C10-C11-C12-C13 dihedral angle (degrees)

HF
MP2

B3LYP
PBE

FIG. 8: Torsional potential of the retinal derivative as func-
tion of the C10-C11-C12-C13 dihedral angle computed with
(non-embedded) HF, MP2, PBE, and B3LYP with the 6-31G*
basis set. Energies shifted with respect to the trans isomer.

Figure 8 shows the expected smooth evolution of the
torsional potential as the dihedral angle in question is
varied. The discontinuity in the PBE potential refers to

the lack of convergence of the underlying SCF procedure
for dihedral angles of 89◦-91◦. That means that this dis-
continuity will also be present in the torsional potential
from embedded calculations where PBE orbitals are used
to construct the embedding potential for the posterior
WFT treatment. This drawback is satisfactorily sorted
out by turning to the hybrid functional B3LYP.

In the embedded calculations for the torsional poten-
tial of the retinal derivative, we choose the active sub-
system as the four carbons directly associated with the
twist of the bond, that is, the C10, C11, C12, and C13
atoms, along with the four hydrogens bonded to them.
This case also presents a new situation in comparison
with presented so far, since the embedded subsystem is
found between two regions that serve as the environment.
Figure 9 shows the four combinations of the construction
of the orbital subspaces, SPADE and PM/Mulliken, with
the functional used to generate the embedding potential,
PBE and B3LYP.
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FIG. 9: Torsional potential from the four combinations of
the two strategies for the construction of the orbital subspace
(SPADE and PM/Mulliken, referred to as PM) and the PBE
and B3LYP functionals.

The most important feature of the embedded torsional
potential of the retinal derivative as provided in Figure
9 is that the threshold of 0.4 in Mulliken charges in not
suitable for the successful application of this approach
to the current system. Both SPADE and PM/Mulliken
schemes active orbital subspaces consist of 16 embedded
orbitals in the cis and trans conformations. As the di-
hedral angle departs from either end, the active orbital
subspace partitioned according to the PM/Mulliken pre-
scription eventually reaches a point where it “loses” one
orbitals to the environment, that is, the associated Mul-
liken charge contribution from one of the atoms falls be-
low 0.4. Specifically, the Pipek-Mezey orbital whose den-
sity is found mainly on C13, C14, and C15 draws Mul-
liken charge from C13, which is part of the active sub-
system, and whose contribution is found below 0.4 be-
tween 50◦ and 130◦ (B3LYP) or 140◦ (PBE). This drop
in Mulliken charge is responsible for the discontinuities
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observed in the corresponding potential curves, trait not
present in the potential profiles deriving from embedded
SPADE orbitals. To better illustrate the variation of the
Mulliken charge contribution from C13 to the PM orbital
in question, we plot its MP2-in-B3LYP torsional poten-
tial, along with the abovementioned Mulliken charge in
Figure 10.
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FIG. 10: MP2-in-B3LYP torsional potential using the
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mer).

From the analysis of Figure 10, it is clear that the dis-
continuities seen in Figure 9 coincide with the Mulliken
charge from C13 falling below the set threshold of 0.4. In
turn, our criterion, by virtue of being free of a fixed nu-
merical parameter, does not encounter such a problem.
It does not mean that the largest difference between the
squares of successive singular values remains constant,
but rather that this difference refers to the same two or-
bitals throughout the rotation along the C11-C12 bond.
It can be argued that admitting a more relaxed Mul-
liken charge cut-off could solve this discrepancy, but this
new value would remain arbitrary in the sense that there
would be no guarantee that it would be suitable for other
problems.

The two functionals tested here, PBE and B3LYP,
have significantly distinct natures. While PBE is a pure

functional, B3LYP accounts for exchange in a hybrid
fashion, that is, 20% of the exchange potential stems
from Hartree-Fock, percentage which is determined in
a empirical manner. Thus, another important conclu-
sion to be drawn from Figure 9 is that, for the entirety
of the SPADE curves and where the PM/Mulliken or-
bital spaces agree with the SPADE ones, the effect of the
intrinsic character of the functional providing the embed-
ding potential does not play a major role.

One of the driving arguments behind the development
of multilevel approaches such as embedding methods is to
reduce the overall computational expense of dealing with
the entire system at the high level of theory. Substantial
savings can be attained if the electron repulsion integrals
(ERI) are computed via density-fitting. The error due to
the use of density-fitted ERIs and the error in the MP2-
in-B3LYP potential from the full MP2 results are plotted
in Figure 11.
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FIG. 11: Errors in the MP2-in-B3LYP energies from the full
MP2 results (MP2) and errors of embedding using density-
fitted ERIs versus exact ERIs (DF).

It can be concluded from Figure 11 that one can safely
turn to density-fitting as a viable and reliable alternative
to the commonly costly computation of ERIs by more
traditional means. The error from the corresponding full
MP2 energies are maximum in about 10◦ from the max-
imum in the torsional potential in either direction, and
fall as the dihedral angle approaches 90◦. Given the size
of the retinal derivative, the relatively small size of the
embedded subsystem, and the difficulty of the underly-
ing problem, the error from the MP2 energies remaining
below 3 kcal/mol throughout the entire range of torsion
angles signals the aptitude of the proposed scheme for
reliable estimation of torsional potentials.

We would like to acknowledge that, at the closing of
this manuscript, it came to our knowledge that Manby
and Miller recently introduced a different approach aimed
at overcoming the mismatch in the orbital subspaces that
gives rise to the discontinuities throughout a potential en-
ergy surface, such as those seen in the torsional potential
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of the retinal derivative when the PM/Mulliken scheme
is employed, as shown in Figure 9.61

D. Menshutkin SN2 reaction inside a carbon
nanotube

As a last example, we studied the Menshutkin SN2
reaction involving ammonia and chloromethane, leading
to the methylammonium and chloride ions in gas phase
(GP) and inside a carbon nanotube (CNT). It has been
proposed that the energy barrier of this reaction can be
made lower relative to the gas phase pathway if the reac-
tive system is found inside a CNT, much like the observed
effect of a low-dielectric solvent.

The reactive system by itself in gas-phase (GP) is ex-
pected to pose no computational challenges, but when
considered inside the CNT, it turns into a sizable calcu-
lation. It is comprised of 852 electrons in 165 atoms, and
with the 6-31G* basis set, there are 2089 basis functions
in total. The geometries of the critical points along the
reaction coordinate that we consider here, namely the re-
actants, products, and transition state (TS) are obtained
from Song and Martinez.62

In Ref. 62, GP and CNT energy profiles for this reac-
tion were presented, with energies shifted with respect to
the reactants, at the CASPT2(4,4)/6-31G* level of the-
ory. First, we carried out the same calculations, but at
the MP2/6-31G* level of theory, and found no apprecia-
ble discrepancy between the energy differences of these
methods. This can be interpreted as evidence that the re-
active system can, in both chemical environments, be ad-
equately treated by a single reference determinant. Even
though our current approach poses no limitation to using
such multireference methods, this allows for embedding
calculations to be done where the embedded region can
be treated at the MP2 level instead of the more costly
multireference analog.

In the embedding calculations for this system, we as-
signed the active subsystem to be the reactive pair, i.e.,
NH3+CH3Cl, while the environment is comprised of the
CNT structure. This translates into 18 doubly occupied
embedded MOs being carried over to the correlated step.
This means that the mean-field calculation, in this case
DFT using the B3LYP functional, exceeds the WFT part
in computational demand. The results from the embed-
ding calculations, along with pure B3LYP and MP2 re-
sults and the numbers reported by Song and Martinez
are presented in Figure 12.

First, as stated above, although this transition state
involves some static correlation, the results indicate that
this does yet not spoil the accuracy of single reference
MP2, which is found to be comparable to CASPT2(4,4)
level results for both the GP and CNT reactions. In the
case of the GP B3LYP energy profile, even the qualitative
picture is incorrect, with the energy computed at the
given TS geometry being lower than that of the product.
The correct energy ordering is recovered in the presence

of the CNT, but the B3LYP energy differences are not
to be trusted quantitatively when taking the CASPT2(4,
4)/MP2 results as reference.

Even though B3LYP does not seem to be adequate by
itself, it is able to provide a reliable embedding potential.
From Figure 12, it is evident that the main characteris-
tics of the reaction pathway are preserved in the embed-
ding picture, but can be achieved by much more afford-
able means. With only 18 out of 426 occupied orbitals
being correlated, the embedded TS energies, where the
largest deviations from the CASPT2(4,4)/MP2 reference
are found, exhibit remarkable accuracy. The SPADE
result is 0.1 kcal/mol and 0.9 kcal/mol higher in en-
ergy than the CASPT2(4,4) and MP2 numbers, respec-
tively, while the same differences are 0.9 kcal/mol and
1.7 kcal/mol with the PM/Mulliken scheme.

In conclusion, the projection-based embedding theory
is able to correctly and quantitatively predict the effect
of the CNT to the energy profile of the reaction in ques-
tion, more precisely the lowering of the energy barrier.
The SPADE approach shows marginal advantage over
the PM/Mulliken scheme, with energies within chemical
accuracy from the reference numbers.

V. CONCLUSION

Projection-based embedding theory has consistently
proven itself a promising and reliable multilvel alterna-
tive to more costly calculations, without renouncing ac-
curacy. One of its potential disadvantages until recently
was the dependence on the concept of Mulliken charges
for orbital localization and somewhat arbitrary cut-off
values of this quantity for the purpose of partition of the
associated orbital subspaces. According to the numeri-
cal examples explored so far, it appears as though this
SPADE approach provides significant improvements on
this front.

The SPADE approach both localizes and partitions the
orbitals in a black-box fashion, in a manner that only re-
quires the assignment of the atoms to the desired subsys-
tems. And it does so while avoiding arbitrary numerical
parameters and potentially faulty quantities.

It is shown that the proposed scheme exhibits remark-
able convergence to the high level of theory with respect
to the size of the embedded subsystem by means of in-
vestigation of the deprotonation of decanoic acid. More-
over, it is also able to correctly address difficult problems,
such as the smooth evolution of the torsional potential
energy, without displaying discontinuities, which is illus-
trated by the case of retinal. Lastly, a sign of the power
of the projection-based embedding theory becomes ap-
parent by it successfully capturing the effect of the car-
bon nanotube over the reaction pathway, even when the
CNT is completely treated at the lower level of theory,
with moderate advantage of the SPADE procedure.

Although the results in this study indicate that the
SPADE procedure is quite effective, this behavior is not
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FIG. 12: The NH3+CH3Cl → H3NCH+
3 + Cl− Menshutkin SN2 reaction. (a) Pictorial representation of the geometries of the

reactants, transition state (TS), and products inside the carbon nanotube (CNT). (b) Potential energy diagram in gas phase
(GP) in the CNT relative to the energy of the reactants. SPADE and PM are MP2-in-B3LYP calculations using the SPADE
and the PM/Mulliken schemes.

always guaranteed. The lack of a rigorous basis set limit
may compromise the application of the current strategy
to more challenging cases, requiring extremely large ba-
sis sets. Furthermore, it is certainly possible that a poor
active atom definition might create a singular value spec-
trum where the number of orbitals in each subsystem
change along the course of a reaction. We have been able
to observe this effect by choosing only the carbons C11
and C12 in the retinal derivative torsion example, case
where the largest gap in the singular value spectrum be-
haves similarly to the Mulliken charges (Fig. 10). Even
though this possibility exists, it is yet to be observed
when atoms are adequately assigned, as none of the sys-
tems studied with this prescription have fallen into this

category, attesting to its robustness.

Future work will focus on extending the idea of SPADE
orbitals to the unoccupied MOs, with the goal of effec-
tively truncating the virtual space, thus making WFT-
in-DFT embedding even less computationally expensive.
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