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ABSTRACT: A hybrid system accomplishing cooperativity be-

tween an organophotoredox acridinium catalyst and a chiral chro-

mium complex catalyst was developed, enabling the unprecedented 

exploitation of unactivated hydrocarbon alkenes as precursors to 

chiral allylchromium nucleophiles for the asymmetric allylation of 

aldehydes. The reaction proceeded under visible light irradiation at 

room temperature and with high functional group tolerance, afford-

ing the corresponding homoallylic alcohols with up to >20/1 dia-

stereomeric ratio and 99% ee. The addition of Mg(ClO4)2 elicited 

profound enhancement of both reactivity and enantioselectivity.  

The catalytic asymmetric allylation of aldehydes to produce en-

antiomerically enriched secondary homoallylic alcohols represents 

a fundamental process in synthetic organic chemistry.1 The meth-

odology developed to this end thus far can be classified into three 

main categories. Firstly, chiral Lewis acids, Lewis bases, and 

Brønsted acids have been used to promote the reaction of preac-

tivated allylmetal species, such as allyltin, -silicon, and -boron rea-

gents (Figure 1(a)).1 Alternatively, the Nozaki-Hiyama-Kishi 

(NHK) allylation is a chromium-mediated reductive C‒C bond-

forming reaction using allylic halides as precursors to nucleophilic 

allylchromium intermediates.2 Despite their high reactivity towards 

carbonyl groups, these allylchromium species exhibit broad func-

tional group tolerance, enabling the NHK reaction to be extensively 

applied to multifunctional substrates in complex molecule synthe-

sis.3 Based on the pioneering work by Fürstner,4 who developed the 

first catalytic NHK reaction (using manganese(0) as a stoichio-

metric reductant and TMSCl as a catalyst turnover facilitator), 

many catalytic asymmetric variants of the NHK allylation have 

been reported (Figure 1(b)).3b,3c,5 However, there still remains room 

for improvement in the two traditional methods represented by Fig-

ure 1(a) and 1(b), particularly in their overall efficiency and re-

dox/atom/step economy. To address these issues, Krische reported 

the versatile catalytic asymmetric coupling of primary alcohols 

with dienes/allenes under transfer hydrogenative conditions (Fig-

ure 1 (c)), but this powerful method has not yet utilized cyclic 

dienes as pronucleophiles.6 During our study, Glorius’ group re-

ported an elegant diastereoselective allylation of aldehydes medi-

ated by an iridium photoredox/chromium hybrid catalysis. Their 

racemic reaction utilized electron-rich aromatic- or amine-substi-

tuted alkenes as precursors for allylchromium nucleophiles to fa-

cilitate photocatalyzed single-electron oxidation. A preliminary ap-

plication to an asymmetric variant was reported for one substrate 

combination, but the enantioselectivity was only 20% ee.7 Herein 

we report an asymmetric hybrid catalyst system comprising an or-

ganophotoredox catalyst and a chiral chromium complex catalyst, 

which enables the asymmetric allylation of aldehydes by nucleo-

philic chiral allylchromium species generated in situ from unacti-

vated hydrocarbon alkenes by C(sp3)‒H bond activation (Figure 

1(d)). 8,9  

 

 

Figure 1. Four strategies for catalytic asymmetric allylation of al-

dehydes. (a) Chiral Lewis acid/base or Brøsted acid-catalyzed re-

actions using preactivated allylmetals as nucleophiles. Metal-de-

rived waste is generated, and synthesis of allylmetal reagents re-

quires additional steps. (b) Chiral chromium complex-catalyzed 

NHK reaction. Halide-, silicon-, and manganese-derived waste is 

generated. (c) Krische reaction. The reaction proceeds with high 

atom economy, but the scope does not extend to cyclic dienes. (d) 

This work. The reaction proceeds through photoredox catalyst-me-

diated allylic C(sp3)‒H metalation of unactivated alkenes, generat-

ing chiral allylchromium nucleophiles. 



 

 

Figure 2. Proposed catalytic cycle. 

 

Our mechanistic rationale for this transformation is illustrated in 

Figure 2. Based on precedent from the Wu laboratory,10 allyl radi-

cal 4 should be accessible from alkene 1a via single-electron oxi-

dation of the -bond by a photoexcited electron-donor substituted 

acridinium catalyst (D•+–Acr•; D = 2,6-xylyl and 2,4,6-mesityl) to 

generate radical cation 3, followed by deprotonation. A reduced 

form of the chiral chromium(II) catalyst 5 would then intercept the 

thus-formed allyl radical 4 to give chiral allyl chromium(III) com-

plex 6. It was anticipated that this species would react with alde-

hydes 2 via a six-membered chair transition state to produce enan-

tiomerically-enriched chromium alkoxide 7 in a syn-selective fash-

ion. Protonolysis of 7 should then afford the target homoallylic al-

cohol 8 and an oxidized chromium(III) complex 9. Finally, single-

electron reduction of 9 by the reduced form of the photocatalyst 

(D–Acr•) would regenerate 5 and the oxidized form of the photo-

catalyst (D–Acr+), thus closing the catalytic cycle.11 Photocata-

lyzed C(sp3)‒H bond activation followed by oxidative interception 

of the resulting carbon-centered radical by a metal complex (i.e., 

corresponding to the process from 1a to 6 in Figure 2) is an emerg-

ing method for the catalytic generation of organometallic species 

from substrates traditionally considered inert.12‒14 However, em-

ployment of the organometallic intermediates generated by this 

method has mainly been limited to cross-coupling reactions. Exten-

sion of the chemistry to facilitate addition of these nucleophiles to 

polar moieties, such as carbonyl groups, has been hitherto unex-

plored with the exception of one recent report by the Glorius 

group.7,15  

 

Table 1. Optimization of Reaction Conditionsa 

 
aGeneral reaction conditions: 2a (0.25 mmol), 1a (5.0 mmol), CrCl2 

(0.0125 mmol), ligand (0.0125 mmol), 10 (0.00625 mmol), and ad-

ditive (0.25 mmol) were reacted in dichloromethane (DCM; 2.5 

mL) at room temperature under 430 nm LED irradiation for 12 h. 

Yield and dr were determined by 1H NMR analysis of the crude 

mixture using 1,1,2,2-tetrachloroethane as an internal standard. The 

ee of 8a was determined by chiral stationary HPLC analysis after 

isolation. n.d. = Not determined. bWithout CrCl2. c10 mol % Et3N 

was added. d5 mol % Et3N was added. e2,4,6-Mes-Acr+•ClO4
– 11 

was used as photocatalyst. 

 

Based on this hypothesis, we commenced optimization of the re-

action conditions using benzaldehyde (2a) and cyclohexene (1a: 20 

equiv) as model substrates, and a combination of 5 mol % CrCl2 

and 2.5 mol % acridinium photoredox catalysts (2,6-Xyl-

Acr+•ClO4
–; 10),16 under 430 nm visible light irradiation at room 

temperature (Table 1). As expected, the desired reaction did not 

proceed at all in the absence of chromium complex (entry 1). In the 

presence of CrCl2, however, 8a was obtained in 36% yield with an 

excellent diastereomeric ratio (dr) of >20/1 (entry 2). Encouraged 

by this finding, we then trialed various chiral ligands for the chro-

mium catalysts, which have previously proven effective for asym-

metric NHK reactions (entries 3–6).5 However, this resulted in 

strong retardation of the reaction, with only L117 affording 8a with 

diminished yield (12%) and low enantioselectivity (20% ee). 

Through extensive screening of other chiral ligands, we identified 

an Indane-BOX ligand (L5)18 which was effective for inducing 

good enantioselectivity (74% ee), although the yield of 8a re-

mained unsatisfactory (8%, entry 7).  



 

To improve both the reactivity and enantioselectivity, we next 

investigated the effect of additives. While the addition of LiCl19 or 

LiI20 was not beneficial (entries 8 and 9), LiBF4 dramatically en-

hanced the reactivity; 8a was obtained in 40% yield with 63% ee 

(entry 10). Following screening of related cationic lithium salts, we 

were delighted to discover that addition of LiClO4 increased the 

enantioselectivity up to 99% ee (entry 11). Further exploration of 

alkali and alkali-earth metal perchlorates (entries 12–14) identified 

as Mg(ClO4)2 the optimal additive; 8a was obtained in 68% yield 

with >20/1 dr and 99% ee (entry 14).21,22 Additionally, use of pho-

tocatalyst 11, bearing a mesityl group instead of a xylyl group, did 

not prove detrimental to these results (entry 15).  

With these optimized conditions in hand, our attention turned to 

the substrate scope. The reaction of cyclohexene (1a) with substi-

tuted benzaldehydes afforded products 8a–8g with almost complete 

diastereo- and enantioselectivity (up to >20/1 dr, 99% ee). The re-

action exhibited notable tolerance of aryl halide moieties (8b–8d), 

and proceeded chemoselectively at the aldehyde functional group 

in the presence of a ketone (8e) or an ester (8f) functional group. 

The method was also easily extended to other cyclic alkenes, with 

both cyclopentene (1b) and cycloheptene (1c) reacting with excel-

lent stereoselectivity (8h–8k).  

Furthermore, linear alkenes were also competent substrates. 

Tetrasubstituted alkene 1d reacted with various aldehydes includ-

ing ortho-, meta-, and para-substituted benzaldehydes, an electron-

rich benzaldehyde, and a heteroaromatic aldehyde, affording the 

corresponding products 8l‒8q (containing an allylic quaternary car-

bon) with excellent enantioselectivity. The loading of alkene 1d 

could be reduced to 2 equiv, likely due to a lowered oxidation po-

tential of 1d relative to 1a–1c. For less reactive aldehydes, such as 

o-tolualdehyde and p-methoxy benzaldehyde, the chiral chromium 

alkoxide complex generated from CrCl3•3THF and NaOt-Bu23 ex-

hibited higher catalytic activity than the CrCl2-derived species (8m 

and 8p). We postulate that this is as a result of allychromium spe-

cies 6 bearing alkoxide ligands (X = OR) possessing higher nucle-

ophilicity than those bearing electron-withdrawing chloride ligands 

(X = Cl).24,25 The reaction of aliphatic aldehydes also proceeded 

with high enantioselectivity (8r‒8u) following minor modifica-

tions of the reaction conditions (dichloroethane (DCE) as solvent, 

20 mol % MgPhPO3 additive). In the case of unsymmetric trisub-

stituted alkene 1e, an inseparable mixture of 8v and 8w (itself as a 

diastereomixture) was produced with moderate regioselectivity (re-

gioisomeric ratio; rr = 8v/8w = 1.9/1). Nevertheless, both the reac-

tivity and enantioselectivity of 8v were very high: using 2.5 mol % 

and 0.5 mol % loadings of the chromium catalyst and photocatalyst 

11 respectively, products were obtained in 97% combined yield, 

with 8v in 95% ee. Major isomer 8v presumably derives from 

prenylchromium species with the chromium atom at the terminal 

carbon, while minor isomer 8w originates from 2-methyl but-2-

enylchromium species with chromium at the terminal carbon. We 

anticipate that improvement of the regioselectivity for interception 

of the carbon-centered radical by the metal complex in the case of 

unsymmetric alkenes will constitute a very important avenue for 

future research.  

 

Table 2. Substrate Scope of Catalytic Asymmetric Allylationa 

 
aGeneral reaction conditions: aldehyde 2 (0.25 mmol), alkene 1 

(5.0 mmol), CrCl2 (0.0125 mmol), L5 (0.0125 mmol), 10 (0.00625 

mmol), and Mg(ClO4)2 (0.25 mmol) were reacted in DCM (2.5 mL) 

at room temperature under 430 nm LED irradiation for 12 h. Yield 

was isolated yield. The dr was >20/1 in each case (8a‒8k), as de-

termined by 1H NMR analysis of the crude mixture. The ee was 

determined by chiral stationary HPLC analysis after isolation. bAl-

kene (2 equiv), CrCl2 (2.5 mol %), L5 (2.5 mol %), 11 (0.5 mol %), 

Mg(ClO4)2 (1 equiv), and DCM (0.125 M) were used. cAlkene (20 

equiv), CrCl3•3THF (10 mol %), NaOt-Bu (30 mol %), L5 (10 

mol %), 11 (1.25 mol %), Mg(ClO4)2 (1 equiv), and DCM (0.0625 

M) were used. dAlkene (5 equiv), CrCl2 (10 mol %), L5 (10 mol %), 

11 (1.25 mol %), Mg(ClO4)2 (1 equiv), and DCM (0.0625 M) were 

used. eAlkene (20 equiv), CrCl2 (20 mol %), L5 (20 mol %), 11 (5 

mol %), Mg(ClO4)2 (1 equiv), and DCM (0.0625 M) were used. 
fAlkene (5 equiv), CrCl2 (10 mol %), L5 (10 mol %), 11 (5 mol %), 

Mg(ClO4)2 (1 equiv), and DCE (0.05 M) were used. gAlkene (20 



 

equiv), CrCl2 (20 mol %), L5 (20 mol %), 11 (5 mol %), MgPhPO3 

(20 mol %), and DCE (0.1 M) were used. Reaction time was 48 h. 

 

The following experimental results provide key insights regard-

ing the reaction mechanism (see Supporting Information for de-

tails). Firstly, the addition of TEMPO (2,2,6,6-tetramethylpiperidi-

nyloxyl) as a radical trapping agent to the reaction between 1d and 

2a under otherwise optimized conditions completely inhibited the 

desired reaction. A TEMPO adduct of 1d at the terminal carbon 

was detected by 1H NMR analysis of the crude mixture after 

workup. This result supports our hypothesis that the reaction pro-

ceeds through carbon-centered radicals derived from alkene 1. Sec-

ondly, a radical clock experiment using 2-phenylcyclopropylcarb-

aldehyde and 1d was performed. The reaction proceeded in 77% 

yield without any cyclopropane ring-opening. Thus, ketyl radicals 

derived from aldehydes are not involved in the catalytic cycle. 

These results, together with the observation that the presence of the 

chromium complex was essential for the reaction (Table 1, entry 1), 

are all consistent with our working hypothesis for the reaction 

mechanism depicted in Figure 2. 

In conclusion, we have developed the first catalytic asymmetric 

allylation of aldehydes using unactivated hydrocarbon alkenes as 

pronucleophiles. The reaction enabled direct access to enantiomeri-

cally and diastereomerically-enriched homoallylic alcohols with 

high functional group tolerance, starting from readily available and 

stable substrates. Critical for success was the development of an 

asymmetric hybrid catalyst system comprising an acridinium pho-

toredox catalyst and a chiral chromium complex catalyst. The hy-

brid catalysis enabled a key radical–polar crossover process involv-

ing catalytic generation of chiral and nucleophilic (i.e., polar) or-

ganometallic species from simple alkenes via allylic C(sp3)–H ac-

tivation. Studies to improve the efficiency of the process further, 

fully elucidate the reaction mechanism, and expand the substrate 

scope are currently ongoing. 
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