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Abstract 

Recognizing substructures and their relations embedded in a molecular structure 

representation is a key process for structure-activity or structure-property relationship 

(SAR/SPR) studies. A molecular structure can be either explicitly represented as a 

connection table (CT) or linear notation, such as SMILES, which is a language 

describing the connectivity of atoms in the molecular structure. Conventional SAR/SPR 

approaches rely on partitioning the CT into a set of predefined substructures as 

structural descriptors. In this work, we propose a new method to identifying SAR/SPR 

through linear notation (for example, SMILES) syntax analysis with self-attention 

mechanism, an interpretable deep learning architecture. The method has been evaluated 

by predicting chemical property, toxicology, and bioactivity from experimental data 

sets. Our results demonstrate that the method yields superior performance comparing 

with state-of-art methods. Moreover, the method can produce chemically interpretable 

results, which can be used for a chemist to design, and synthesize the activity/property 

improved compounds. 

 

Keywords 

Virtual screening, Deep learning, Self-attention mechanism, Molecular descriptor, 

SAR/SPR 

  



1. Introduction 

Illuminating the relationship between molecular structures and chemical properties or 

bioactivity has always been a topic of significant interest in the chemical community.1  

However, this relationship is progressively difficult to clarify based on empirical 

measurements and heuristic rules with the explosive increase of experimental data. 

Cheminformatics has been an area of active research by predicting the molecular 

properties or bioactivity from molecular structures with the aids of high performance 

computers and machine learning methods.2 In the recent decades, with the emergence 

of deep learning methods,3 machine learning has gathered increasing attention from the 

scientific community. Data-driven analysis has become a routine procedure in many 

chemical and pharmaceutical applications, including virtual screening,4-5 chemical 

property prediction,6-7 and de novo molecular design.8-10 In many such applications, 

machine learning has shown strong potential to compete with or even outperform 

conventional approaches.  

The Merck Molecular Activity Challenge sparked a trend of training deep learning 

networks with molecular fingerprints and other descriptors. The winning team used a 

multi-task model with a large number of precomputed molecular descriptors that 

improves upon a random forest baseline by a margin of 15%.4 By using the same 

training strategy, Andreas and colleagues proposed the most accurate results of the 

Tox21 challenge for toxicity prediction.11 Although many works demonstrated that 

massive multi-task networks trained with numerous molecular descriptors can provide 

significant boosts in the predictive power of conventional models for virtual screening 

and property prediction,12-13 their inherent ‘black-box’ nature has persistently drawn 

considerable criticisms in the modeling community. Such models make the relationship 

between properties and structures more difficult to interpret. 

Therefore, there are growing interests from both chemistry and machine learning 

field to directly learn molecular properties of compounds according to the atomic 

topology of a molecule, instead of predefined fingerprints or descriptors. Duvenaud and 

co-workers presented “neural fingerprints” (NFP) trying to extract data-driven features 



instead of hand-crafted features from molecules.14 The architecture was based on 

generalizing the fingerprints such that it can be learned via a back-propagation 

algorithm. Later, Kearnes and co-workers presented molecular graph convolutions, a 

deep learning system using a representation of small molecules as undirected graphs of 

atoms.15 Following this idea, other researchers proposed several improved graph 

convolutional network (GCN) for dynamically extracting molecular feature vector to 

predict target properties.16-18 Despite the considerable predictive performance, such 

congenital deficiencies of GCN like limited information propagation across the graph 

and unintuitive feature extraction indicates that the model still has space to improve. 

Apart from graph representation, with the prevalence of generative model, 

researchers pay closer attention to molecular language representation, or molecular 

linear notation. Many unsupervised learning with diverse generative models were 

utilized for de novo molecular design.9, 19-21 Most of them employed SMILES (the most 

popular molecular linear notation) as input to generate new molecules with specific 

properties. These studies proved that a molecular linear notation can be directly used in 

SAR/SPR studies. Compared to CT-based approaches, a structure linear notation input 

to sequence-based network is easier. However, to our best knowledge, there is no 

previous studies that directly input SMILES to deep learning model for biochemical 

properties prediction. We have two reasons to directly use SMILES in deep learning 

process:  

(1) Substructures relations are embedded in SMILES, and represented in its 

syntaxes to be discovered per se. 

(2) The SMILES notation fits more naturally as deep learning models require 

molecular sequences of various lengths as input. 

We propose to apply self-attention mechanism with improved sequence model for 

high interpretability and convenient modeling as well as considerable predictive 

performance. The self-attention mechanism has been originally developed for a 

sentence analysis in computer science.22 It has also been successfully applied in many 

fields, especially in nature language process (NLP) area such as machine translation,23 

sentiment classification and textual entailment.22, 24 



The self-attention mechanism allows us to explicitly elucidate SAR/SPR for 

chemists. As a type of ‘end-to-end’ approach, we directly train the models with 

SMILES notations without any predefined assumptions to avoid biases. While the 

self-attention mechanism is learning from a large size of chemical structure data 

privileged substructures associated to the activity/property can be naturally picked up 

by weighting the critical parts (substructures) represented by SMILES syntaxes. 

Thus, we demonstrate that this method can not only outperform most of state-of-

art models on molecular property prediction, but identify important functional groups 

that are directly related to concerned activity/property, such as stability, toxicity or 

bioactivity. 

2. Methods and materials 

2.1 Molecular representation  

Atomic connectivity in a molecule can be described by a SMILES notation, a text 

sequences.25 This representation encodes the topological information of a molecule 

based on common chemical bonding rules. For example, the 6-carbon ringed molecule 

benzene can be encoded as ’c1ccccc1’. Each lowercase ‘c’ represents an aromatic 

carbon atom, and ’1’ the start and closing of a cycle/ring, hydrogen atoms can be 

deduced via simple rules. In a conventional network-based learning approach, each 

letter in a SMILES notation was sent to RNN models for training. This process cannot 

reflect the features of chiral centers, charges, cyclic connection descriptors. To preserve 

these critical chemical features, we train RNNs with normal tokens and combined 

tokens (the SMILES notations grouped by a pair of square brackets []).  

 

2.2 Word embedding process 

In one-hot encoding approach, each molecule is represented by a number of token 

vectors. All token vectors have the same number of components. Each component in a 

vector is set to zero except the one at the token’s index position. This data storage 



protocol requires great memory space and introduces inefficiency. Therefore, we 

employ word embedding algorithm 26-27 in SAR/SPR studies. To use this algorithm, 

each token vector is compressed to an information-enriched vector, and transformed 

from a space with one dimension per word to a continuous vector for unsupervised 

learning. This data representation can record the “semantic similarity” of every token. 

This process expedites the convergence of a training. In summary, each molecular 

structure is converted into a SMILES string, which is then encoded into a one-hot 

matrix, and then is transformed to a word embedding matrix at the embedding layer. 

Suppose we have a molecular, which has n tokens, represented in a sequence of 

molecular embeddings: 

𝑀 = (𝑡1, 𝑡2, … 𝑡𝑛)     (1) 

where 𝑡𝑖  is a vector standing for a d dimensional token embedding for the i-th token in 

a molecule. M is thus a molecule represented as a 2D matrix, which concatenates all 

the token embeddings together. M should have the shape n-by-d. 

 

2.3 BiLSTM model & self-attention mechanism 

Our proposed model consists of three parts. The first part is a bi-directional LSTM. The 

second part is the self-attention mechanism, which provides a set of summation weight 

vectors for the LSTM hidden states. The third part is a fully connected layer for property 

prediction. Figure 1 shows the proposed molecular attentive embedding model that was 

used in this work. 



 

Figure 1．Model architecture. There are three fundamental components in our model: 

a BiLSTM structure, a self-attention metric and a fully connected layer.  

 

In Figure 1, each SMILES string is converted to a two-dimensional embedding 

matrix, which has the shape of n-by-d. Token vectors in the molecular matrix M are 

independent to each other. To gain some dependency between adjacent tokens within a 

a molecule, a bi-directional LSTM is used to process a molecule: 

ℎ𝑖
⃑⃑  ⃑ = 𝐿𝑆𝑇𝑀⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑(𝑡𝑖, ℎ𝑖−1

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ )     (2) 



ℎ𝑖
⃐⃑⃑⃑ = 𝐿𝑆𝑇𝑀⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ (𝑡𝑖, ℎ𝑖+1

⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑⃑)     (3) 

ℎ𝑖
⃑⃑  ⃑  is concatenated with ℎ𝑖

⃐⃑⃑⃑  , and a hidden state ℎ𝑖  is obtained to replace token 

embedding 𝑡𝑖, and thus ℎ𝑡  becomes a more information-enriched vector which gains 

some dependency between adjacent tokens in a molecule. For simplicity, we note all 

ℎ𝑖 in every time step i as H. 

ℎ𝑖 = (ℎ𝑖
⃑⃑  ⃑, ℎ𝑖

⃐⃑⃑⃑ )       (4) 

𝐻 = (ℎ0, ℎ1 …ℎ𝑛)     (5) 

If the hidden unit number for each uni-directional LSTM is set as u, the shape of H 

would be n-by-2u. 

The next goal is to know which part of the molecule is explicitly considered by 

the prediction model. In other words, we want to identify the relationship between 

tokens and concerned property/activity. We achieve this by introducing self-attention 

mechanism. The attention mechanism takes the whole LSTM hidden states H as input, 

and outputs a vector of weights a: 

𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤2tanh (𝑊1𝐻
𝑇))  (6) 

where 𝑊1  is a weight matrix with a shape of da-by-2u, and 𝑤2  is a vector of 

parameters with size da, which is an adjustable hyper-parameter. As a result, the 

annotation vector a has a size of n, which is equal to the length of H. The softmax 

function ensures all the computed weights sum up to 1. The LSTM hidden states H are 

summed according to the weight provided by a to get a vector representation m of the 

input molecule. Intuitively, the attention coefficients directly determine which parts of 

the molecule are associated with the activity/property by highlight the related tokens’ 

latent vectors ℎ𝑡s in m. 

Note that this vector representation usually focuses on a specific component of a 

molecule, like a special oxygen atom or a triple bond. However, there might be multiple 

components in a molecule that together results in a special function, like being toxic or 

being active to a specific target. (For example, ‘c1ccccc1’ and ‘CCCC’ are both 

hydrophobic groups.) We need multiple vector representations that focus on different 

functional group of the molecule. Thus, we need to perform multiple attentions. 



Here, we extend the 𝑤2  to a r-by-da matrix, note it as 𝑊2 , and the resulting 

annotation vector a becomes annotation matrix A. r is also an adjustable hyper-

parameter. Formally,  

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊2tanh (𝑊1𝐻
𝑇))  (7) 

We compute the r weighted sums by multiplying the annotation matrix A and LSTM 

hidden states H, the resulting matrix is the self-attentive molecular embedding: 

𝑀𝑎 = 𝐴𝐻       (8) 

where 𝑀𝑎 is a self-attentive molecular embedding that contains the latent relationship 

between tokens and targeted chemical property. The size of 𝑀𝑎 is r-by-2u. Finally, 

𝑀𝑎 is combined with a fully connected layer for property prediction. 

 

2.4 Model Training and Evaluation  

Both of the self-attention mechanism and BiLSTM models were implemented with 

Pytorch28, an open-source library for deep learning. Classification tasks were evaluated 

by the area under the receiver operating characteristic curve (AUC) or the accuracy of 

model, and all regression tasks were evaluated by the mean squared errors (MSE). The 

AUC indicates classification (or ranked order) performed by measuring the area under 

the curve of true-positive rate versus the false-positive rate, AUC value of 1.0 means 

perfect separation whereas a value of 0.5 implies random separation. The MSE 

represents the error between the predicted value and the true value. The lower MSE 

values means better predictive performance. We used 5-fold cross-validation, where 

each model used 70% of the data for training, 10% for validation (parameters selection), 

and 20% as a test set. We repeated all the experiments three times with different choices 

of random seed. Self-attention mechanism BiLSTM (SA-BiLSTM) models were 

trained for 10–20 M steps using the Adam optimizer29 with learning rate [0.001, 0.003, 

0.005, 0.01], clip [-0.5, -0.3, 0, 0.3, 0.5] and batch size [64, 128, 256, 512]. We used 

grid search for parameter optimization. 

To establish a baseline without the self-attention, we also trained conventional bi-

directional LSTM model with the same data preprocessing. To compare with the SA-

BiLSTM model, we used identical inputs and fold assignments. The hyper-parameters 



were chosen by same grid search method as SA-BiLSTM model. 

 

2.5 Visualization of the Attention  

One of the most useful aspects of the self-attention mechanism is that the obtained 

attention weights allow us to identify SAR/SPR and interpret what the model has 

learned from the data. The elucidating the molecular embedding is quite straight 

forward due to the existence of annotation matrix A. Each row in the attentive 

embedding matrix Ma corresponds annotation vector 𝑎𝑖. Each element in this vector 

corresponds to the LSTM hidden state of a token on that position contributes to. 

Thus, we can draw a heat map and know which part of molecular tokens are more 

important in one specific task. In addition, by summing up overall the annotation 

vectors and then normalizing the resulting weight vector, we can figure out which 

tokens the embedding takes into account, and which ones are skipped by the model. 

Then, we convert the SMILES representation to graph representation and maintain the 

tokens’ weights that associated to each atom in molecules. The visualization procedure 

of attention weights is shown in Figure 2. The higher the attention coefficient, the darker 

the color. 

 

Figure 2．The visualization procedure of attention weights. 

 

2.6 Benchmark datasets  

In this work, we evaluate our model by applying it to three different learning tasks: 

chemical properties prediction, toxicity prediction and bioactivity prediction. For each 

task, we selected serval representative data sets for comparison. And we also selected 



different task types (classification and regression) to better demonstrate the predictive 

performance. For chemical properties prediction, we chose three datasets: (1) aqueous 

solubility dataset of 1,144 molecules with their corresponding intrinsic solubilities in 

log10 (mol/L) as measured by Delaney and co-workers 30; (2) a subset of the 

photovoltaic efficiency of 20,000 organic molecules previously used by Duvenaud and 

co-workers14; (3) COMDECOM stability dataset of 9,746 molecules measured in 

DMSO or H2O solutions for up to 105 days.31 For toxicity prediction, we chose Tox21, 

a public database measuring toxicity of 7,831 compounds on 12 targets. This dataset 

has been used in the 2014 Tox21 Data Challenge.32 For bioactivity prediction, we used 

(1) DUD-E database, which has 102 targets and comprising 22,886 active compounds 

and 50 chemically similar decoys for each active compound.33 (2) a dataset of the half-

maximal effective concentration (EC50) in vitro of 10,000 molecules against a sulfide-

resistant strain of P. falciparum, as measured by Gamo and co-workers34 (3) HIV 

dataset introduced by the Drug Therapeutics Program (DTP) AIDS Antiviral Screen, 

which tested the ability to inhibit HIV replication for over 41,127 compounds. A 

summary of the three types of datasets is shown in Table 1.  

 

Table 1. Details for dataset groups. The percentage of positive compounds are reported 

as mean of each task. 

Category Dataset Task Task Type Compounds %Positive 

Chemical 

property 

Solubility 1 Regression 1,144 / 

Photovoltaics 1 Regression 29,978 / 

Stability 1 Classification 9,746 33.9 

Toxicology Tox21 12 Classification 11,764 4.7 

Bioactivity 

DUD-E 10 Classification 122,886 2 

HIV 1 Classification 41,128 3.5 

Drug efficacy 1 Regression 10,000 / 

Eg. Properties, or output labels, are either 0/1 for classification tasks, or floating-point 

numbers for regression tasks 



3. Experiments and discussion 

3.1 Chemical properties prediction  

3.1.1 Aqueous solubility & photovoltaic efficiency  

Figure 3 compares single task (ST) language-based models results to published results 

on these datasets. The best-case MSE of the self-attentive BiLSTM (SA-BiLSTM) 

model on photovoltaics and solubility datasets were 1.18 ± 0.06 percent units and 0.38 

± 0.04 log M units. These results were much better than the original results reported by 

Duvenaud and co-workers (1.43 ± 0.09 and 0.52 ± 0.07) with the same fold assignments 

and were comparable to multiple task (MT) GCN model reported by Kearnes and co-

workers (0.46 ± 0.08 and 1.10 ± 0.06). 

Note that multiple task models used extra training data to improve the results, 

which were unfair to compare with single task model. Even so, SA-BiLSTM model 

improved MT GCN model by a margin of 0.8 log M units in solubility dataset. 

 

 

Figure 3. Comparison of language-based models to published graph models on two 

chemical property prediction datasets with same fold assignments. 

 

3.1.2 Chemical stability 

Bovens and co-workers constructed a random forest (RF) classification model with 

molecular fragments and reported the best-case accuracy of 72.9.31 Later, Liu and co-

workers applied naïve Bayesian model based upon atom center fragment features and 



achieved an accuracy of 76.5 %.35 Their results with the same fold assignments of 9,764 

compounds are listed in Table 2. Our SA-BiLSTM model improves RF model by a 

margin of 7.3%, and upon naïve Bayesian model by a margin of 3.7% for accuracy and 

a margin of 7.1% for recall. 

 

Table 2. Comparison of language-based models to published conventional machine 

learning models on stable prediction dataset with same fold assignments. 

Dataset Metric RFa Bayesianb BiLSTM SA-BiLSTM 

Stability 

ACC (%) 72.9 76.5 79.1  81.2 

AUC (%) -- 83.5 84.2  85.9 

Recall (%) -- 73.0 77.2  80.1 

aRandom forest from ref 30. bNaive Bayesian from ref 34. 

 

To further investigate the dependence of atom features on local chemical 

environments, we analyzed a few representative molecules in the stability dataset. We 

randomly selected 3 examples of negative and positive molecules from the test set, 

when the model had a high confidence (> 0.8) in predicting the label. As shown in 

Figure 4, we found that the model captured key factors strongly associated with the 

stability behind the molecule. For the unstable molecules, the model focused on 

heteroatoms, especially oxygens atom, sulfur atom and halogen atom (Figure 4(a)). It 

can also identify some important functional groups like chlorinated hydrocarbon 

(Figure 4b) and hydrazine in (Figure 4c). For the chemically stable molecules, the 

model paid attentions to the carbon atoms and related functional groups, like tert-butyl 

group (Figures 4d and 4f). 



 

Figure 4. Heatmap of stable dataset molecules with the two-extreme score. Red 

unstable feature and Green Stable feature. The higher the attention coefficient, the 

darker the color. 

 

3.2 Toxicity prediction  

We used the modified Tox21 dataset reported in Wu’s work.36 In original paper, their 

graph convolutional network (GCN) model achieved the best performances in the test 

sets and reported the best-case average AUC of 0.829. In addition, Fernandez and co-

workers trained 2D Convolution Networks (CCN) with molecular 2D images on the 

same dataset and reported the best-case average AUC of 0.708.37 We also realized that 

there are many other better performance model, but we chose the CNN as reference 

because they utilized raw material of molecule (molecule image) to train the network, 

which was similar to our idea to some degree (molecular language). Herein, we should 

reiterate that we did not intend or expect to outperform presented approaches, but rather 

we demonstrate the utility of modern machine learning technique and molecular 

language representation can obtain both considerable results and good interpretability. 

SA-BiLSTM models achieved AUC scores between 0.72 and 0.91 for the 12 

separate prediction targets, shown in Figure 5. The average AUC value is 0.842, which 

is significantly better than the CNN model and surpassing the GCN model results in 



8/12 cases (p-values = 0.033).  

 

 

Figure 5. Language-based models’ performance on the 12 targets in the Tox21 dataset 

in comparison to graph-based GCN and CNN models. 

  

Selecting six representative toxic molecules from SR-MMP and NR-AhR datasets, 

we can color the molecules based on the results of the self-attention coefficients. As 

shown in Figure 6, SA-BiLSTM model can explicitly identify property related 

functional groups like phosphoric acid esters, long-chain quaternary ammonium salt, 

aliphatic halide, hydrazones and carboxylic acid, among which are well-known for 

reaction or toxicity. 



 

Figure 6. Heatmap of toxicity dataset molecules. Red predicted toxic or reactive 

features. 

3.3 Bioactivity prediction 

Duvenaud and Kearnes implemented their graph-based model in the drug efficacy 

datasets with the same condition as mentioned in 3.2 section. They reported ST best-

case MSE of 1.16 ± 0.03 and MT best-case MSE of 1.06 ± 0.06, respectively. Our 

results show that the SA-BiLSTM model have a significant improvement compare to 

neural fingerprints model and is comparable with the MT graph-based model, which is 

shown in Figure 7. For HIV dataset, we compared with the results reported in Wu’s 

work,36 where GCN and weave GCN achieved the best performances for the test set in 

the paper. Our SA-LSTM model improves upon weave GCN by a margin of 9.8% for 

the test set. 

We do not report results for the DUD-E dataset group because our models 

performed extremely well on the DUD-E datasets (all subsets of DUD-E had median 

5-fold-average AUCS > 0.99). The same situation has also been reported by Kearnes 

and co-workers15. The results can be attributed to the preprocessing of DUD-E datasets. 

However, we did not remove this dataset because it is clear enough to compare 

visualization of attention mechanism to protein-ligand interaction.  

 



 

Figure 7. Comparison of language-based models to published models on drug efficacy 

and HIV datasets with same fold assignments.  

 

The two properties (stability and toxicity) visualized above are directly related to 

molecular substructures. Thus, it would be easy for our model to identify specific 

functional groups relevant to the target properties. However, identifying key molecular 

substructures related to the bioactivity of a molecule can be more challenging. 



 

Figure 8. Examples for visualization of bioactive compounds with self-attention 

weights. Two authentic ligand-target interactions of RS1 (A) and WAY-344 (C) are 

shown on left. The predicted interaction sites of RS1 (B) and WAY-334 (D), colored 

in red, are shown as comparisons on right. 

 

To exemplify this, we used a well-trained model to predict the bioactive compound 

of MMP-13. For typical active molecules selected from the test set, our model predicted 

with high confidences (> 0.8) comparing with the highlight parts with the authentic 

interaction sites. 

Figure 8A shows the protein-ligand interaction of RS1 and MMP-13 (PDB ID: 

830C)38, and Figure 8B shows the attention weight of RS1. Figure 8C shows the 

protein-ligand interaction of WAY-344 and MMP-13 (PDB ID: 2PJT)39, and Figure 8D 



shows the attention weight of WAY-344. In both cases, molecular components with 

weights higher than 0.8 overlap substantially with the interaction sites between a 

compound and a protein. In the case of 830C, there are four main interaction sites with 

different kind of interactions, including hydrogen bonds, metal and hydrophobic 

interactions.  

All of the key components of RS1 that related to the interactions were recognized 

and highlighted by the attention weight, even though there are some redundant parts 

like sulfur atom. In the case of 2PJT, the highlighted part of WAY-344 almost 

correspond to the part of interaction sites as well. This result suggests that the self-

attention mechanism in the proposed model is superior in finding the relations of 

substructures and bioactivities in an interpretable format.  

3.4 Exploratory experiments 

Effect of multiple attentive vectors 

Another intuitively important parameter is the number of attention rows in the 

molecular embedding, which we assigned r in the 2.3 section. Having multiple rows in 

the molecular embedding is expected to provide more abundant information about the 

encoded content. 

It makes sense to evaluate how significant the improvement can be brought by r. 

Taking the models we used for Photovoltaic Efficiency and Drug Efficacy dataset as an 

example, we change r from 1 to 30 for each task, and train the resulting 10 models in 

photovoltaic efficiency and drug efficacy datasets independently (Figure 9). 

Figure 9 shows that there is significant difference between having only one 

attention row for the molecular embedding and multiple rows. The models are also quite 

stable with respect to r, since in the two figures a wide range of values between 5 to 30 

are all generating comparable curves. Apart from this, we found that the number of r 

significantly affected the visualization.  



 

Figure 9. Effect of the number of rows (r) in model training on photovoltaic efficiency 

(left) and drug efficacy dataset (right). 

 

Taking two molecules in drug efficacy dataset as examples, the model focused on 

different part of molecule with different number of rows (Figure 10). Redundant 

attention rows can lead to meaningless visualization. We observed that for most of cases, 

a few attention rows (5-10) were enough.  

 

Figure 10. Effect of the number of rows (r) in visualization.  

4 Conclusions 

In this paper, we have proposed a deep learning method with a molecular self-attention 

mechanism. The results are interpretable for SAR/SPR studies when using SMILES as 

input. The model is successful because the substructures and their relations were 

already encoded in SMILES syntaxes. What we do is to consider SMILES as a chemical 

natural language, and use deep learning methods to figure out the relations among the 



substructures and activities/properties from the chemical databases.  

Our self-attention model outperforms the previous graph-based models and 

conventional machine learning models in most of cases. Furthermore, we demonstrated 

that the self-attention mechanism can explicitly identify the relationship between 

SMILES tokens and targeted chemical property. We believe that this study will provide 

new insights into the structure-activity relationship, and may find more applications in 

other fields in the future. 
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