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Kesterite-structured Cu2ZnSnS4 (CZTS) is a semiconductor that is being studied for use as the absorber layer in thin-film solar
cells. Currently the power-conversion efficiencies of this technology fall short of the requirements for commercialisation, despite
the promising sunlight-matched optical band gap. Disorder in the Cu-Zn sub-lattice has been observed and is proposed as one
possible explanation for the shortcomings of CZTS solar cells. Cation site disorder averaged over a macroscopic sample does not
provide insights into the microscopic cation distribution that will interact with photogenerated electrons and holes. To provide
atomistic insight into Cu-Zn disorder we have developed a Monte Carlo (MC) model based on pairwise interactions. We utilise
two order parameters to relate Cu-Zn disorder to the processing temperature for stoichiometric systems: one based on cation site
occupancies (the Q order parameter) and the other based on cation pair-correlation functions. Our model predicts that the order
parameters reach a plateau at experimentally relevant low temperatures, indicating that Cu-Zn order in stoichiometric CZTS is
thermodynamically limited. Around room temperature, we predict a minimum of 10% disorder in the cation site occupancy
within (001) Cu-Zn planes.

1 Introduction

Amongst the semiconductors being developed for applications
in thin-film photovoltaic (PV) devices, kesterite-structured
Cu2ZnSnS4 (CZTS) stands out as being composed of low-
cost, earth-abundant and non-toxic elements. While the ma-
terial has many of the bulk properties required to be a high-
efficiency photovoltaic absorber, such as a high absorption co-
efficient of 104cm−1 and a direct band gap of 1.5 eV1, the
power-conversion efficiencies (PCEs) of solar cells are con-
siderably less than the theoretical maximum of 28% as pre-
dicted by the Shockley-Queisser limit2 based on its sunlight-
matched optical band gap. The current confirmed record PCE
for the kesterite-based alloy Cu2ZnSn(SxSe1−x)4 (CZTSSe) is
at 12.6%3, while that of the pure sulfide material lags even
further behind at 9.1%4, both of which are far below that of
the similar PV technology Cu(In1−y,Gay)Se2 (CIGSe) with a
record PCE of 22.6%5.

The low open-circuit voltage (compared to the optical band
gap) limits achieved device efficiencies6,7. This is referred
to as the VOC deficit. It is possible that the efficiency of de-
vices fabricated with absorber layers produced from different
synthesis procedures may be limited by different factors, mak-
ing it a difficult task to pinpoint a universal origin of the VOC
deficit in CZTS solar cells. Defects and bulk disorder in CZTS

is one possible explanation for the VOC deficit8,9. For record-
efficiency devices, produced by the hydrazine-based solution
method pioneered at the IBM T. J. Watson Research Cen-
ter3,10, this has been attributed to fluctuations in electrostatic
potential due to Cu-Zn disorder, and associated band tailing11.
The origin of the VOC deficit is still an on-going debate6.

Substitutional disorder within the cation sublattice of tetra-
hedrally bonded multinary semiconductors is a particularly
likely form of disorder12. This can decisively alter the elec-
tronic properties of a material13. Substitutional disorder be-
tween Cu+ and Zn2+ ions has a low enthalpic cost due to the
similar ionic radii and chemical character of the two species.
Density functional theory (DFT) predicts a low formation en-
ergy for the [Cu−Zn +Zn+Cu] antisite defect pair14 and there is a
large body of evidence for the presence of disorder amongst
Cu+ and Zn2+ ions in CZTS15–20. Furthermore, Ref. 18–21
indicate a distinct order-disorder transition attributed to Cu-Zn
substitution.

During the high-temperature synthesis of CZTS disorder
can be ‘frozen in’ to the material as it cools to room temper-
ature. Studies have been conducted to determine if low tem-
perature post-deposition annealing could improve device per-
formance and some improvements were observed from such
treatments22,23. However, in the latter study the authors pos-
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tulate that a high level of order amongst the Cu+ and Zn2+

ions would require years of this treatment23. It is unclear if
the disorder is due to slow kinetics, which could possibly be
improved through optimising the processing conditions, or if
the disorder is due to fundamental thermodynamic limitations
for the material at room temperature24. In our study, we model
only the thermodynamic equilibrium disorder as a function of
temperature. Therefore, our model could be used to isolate
disorder due to equilibrium thermodynamics and kinetic limi-
tations in experiments.

Devices made from an alloy of Cu2ZnSnS4 and
Cu2ZnSnSe4, i.e. Cu2ZnSn(SxSe1−x)4, make the highest
performing devices3,10. In this study we focus on the pure
sulfide. The VOC deficit is worse in CZTS devices6 and so
potentially studying causes of the problem in this particular
system could be more informative. Although ultimately the
aim for this technology is to make thin-film devices from
CZTS, in which the material is likely to be polycrystalline
with grain boundaries, we focus on the bulk material. We
are doing this for two reasons. Firstly, to improve the
understanding of the fundamental material properties before
attempting to understand a more complex system. Secondly,
it has been proposed that the VOC deficit in CZTSSe devices
could be associated with properties of the bulk crystal25. It
is believed that the most recent high-performance devices are
not limited by interface recombination26,27. Furthermore,
devices fabricated from single crystals have demonstrated
a VOC deficit of 530 mV, which equals that of the record
thin-film devices, indicating that the deficit could largely be
due to bulk disorder28.

Studies on various multinary semiconductors have indi-
cated that it is not sufficient to consider only point defects to
understand the defect physics of this type of compound due to
the likely presence of structural disorder and extended antisite
defects, which can dramatically lower the formation energy of
defects12,29. System sizes that avoid artificial periodic disor-
der and associated finite-size effects would be beyond compu-
tationally feasible limits for density functional theory (DFT)
or other first-principles calculations. However, some studies
have investigated substitutional disorder through Metropolis
Monte Carlo (MC) simulations of the redistribution of local
structural motifs centred on the S-ions in CZTS, with energies
calculated by DFT, out to nearest-neighbour interactions29,30

and another study has been carried out using a cluster expan-
sion of interacting dimers and trimers in CZTS24, for system
sizes of 1200 atoms and 512 atoms respectively. Prior to these
studies there has been little work modelling disordered phases
in CZTS, apart from one study where the choice of the dis-
ordered phase was arbitrary31 and another investigating the
configurational entropy of possible independent microstates in
systems of up to 64 atoms32.

In this study, we simulate substitutional disorder between

Cu+ and Zn2+ ions for system sizes of up to 105 atoms. We
use on-lattice Metropolis MC simulation with a classical in-
teratomic interaction model to calculate lattice energies, and
perform Cu-Zn substitutions. We develop methods to ensure
that the equilibrium disordered configuration has been reached
at each simulation temperature and tools to quantify the struc-
tural disorder in the equilibrated configurations that are ob-
tained. We assess finite-size effects on the disorder process
and finish with the temperature dependence of thermodynamic
Cu-Zn order in our model of CZTS. Simulations are per-
formed in parallel over different temperatures using GNU par-
allel33, and the associated simulation codes have been made
openly available.

2 Computational Methodology

2.1 Lattice model of Cu2ZnSnS4

The crystal structure of Cu2ZnSnS4 can be described by two
inter-pentrating face-centred cubic (FCC) lattices: one of
metal cations and one of sulfur anions. This is shown in Fig-
ure 1a, where green planes are a guide to the eye to distinguish
the anion sub-lattice. We consider the sulfur sub-lattice to be
invariant as any substitution between ions in the cation sub-
lattice and sulfur anion sub-lattice would be energetically in-
feasible. The sulfur sub-lattice is implicit during the MC sim-
ulations but incorporated later in calculations of lattice elec-
trostatics. The cation lattice can be described by alternating
layers of Cu-Sn and Cu-Zn in (001) planes, as shown in Fig.
1b. For computational convenience, we map this FCC lattice

Fig. 1 Representations of the crystal structure of
kesterite-structured Cu2ZnSnS4 where green planes are used as
guides to the eye: a) supercell indicating the two inter-penetrating
anion and cation sub-lattices, b) the conventional unit cell
highlighting a Cu-Zn layer in the (001) planes along the c-axis.
Visuals were produced using VESTA34.
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onto a simple cubic (SC) lattice for our simulations by intro-
ducing empty lattice sites.

The separation between lattice sites is our model is re-
scaled using DFT (PBEsol functional) optimised lattice pa-
rameters of a = b = 5.44 Å35. Kesterite has a tetragonal
lattice with a c

2a ratio close to 1 (0.998 from DFT/PBEsol-
optimisation). We use a value of 1 in the MC simulations,
which has a minor effect on the lattice energy as confirmed
from explicit calculations using the General Utility Lattice
Program (GULP)36. Lattice energies of an ordered 64 atom
supercell with the exact DFT/PBEsol-optimised lattice param-
eters and an equivalent supercell with the approximated lattice
parameters differed by less than 2%.

In our model we fix the position of Sn ions with ideal
site occupancy and simulate only two-dimensional disorder
amongst Cu and Zn ions in Cu-Zn layers (Fig 1b). This is
the most prevalent type of substitutional disorder observed ex-
perimentally for near stoichiometric samples18. To simulate
only nearest-neighbour Cu-Zn disorder within the Cu-Zn lay-
ers, we use a cut-off radius of 2 lattice units (to account for
the empty sites between each cation, shown in Fig. 4). The
model does not account for strain effects during Cu-Zn substi-
tutions as it is fixed on-lattice. It has been reported that there
is a small change in the c lattice parameter with increased dis-
order37; however, due to the similar ionic radii of Cu and Zn
we neglect this effect, but it could be incorporated into future
models.

2.2 Pair interaction model and Metropolis Monte Carlo
simulation of cation disorder

The MC method can be used to calculate thermodynamic in-
formation about a system of interacting ions, which we repre-
sent on a 3D lattice as described above. We assume that the
potential field of an ion is spherically symmetric and consider
two-body forces acting between all pairs of ions in this system.
If we know the positions of the N interacting ions on the lat-
tice then the potential energy of the system can be calculated
using equation 1, where V is the Coulombic potential between
two ions and di j is the minimum distance between ions i and
j38.

E =
1
2

N

∑
i=1

N

∑
j=1

V di j (1)

To calculate the properties of the system, the canonical (NVT)
ensemble is used where the number of ions, volume and tem-
perature are all constant. The trial MC moves are swaps be-
tween nearest-neighbour Cu and Zn ions.

Using a standard MC method for our system would involve
placing each of the N ions at random positions in the lattice
to define a random point in the 3N-dimensional configura-
tion space. However, most configurations are improbable so

performing this calculation for every possible configuration
would be inefficient and unnecessary to sufficiently evaluate
the ensemble. The custom MC code in this study makes use
of the Metropolis modified MC scheme38. In this implemen-
tation of the MC method, instead of choosing configurations
randomly and then weighting them, the Metropolis algorithm
considers the relative probability of a system being in a new
configuration, β , to that of being in the current configuration,
α . This is shown in equation 2, where Eα is the energy of
state α , Eβ is the energy of state β , and Z is the partition func-
tion. For most systems, calculating the value of the partition
function requires the summation over a large number of states.
However, within the Metropolis scheme, in the expression for
the probability of the trial Z cancels out.

pβ

pα

=
e−

Eα
kbT

Z
Z

e−
Eα
kbT

= e−
E

β
−Eα

kBT (2)

The relative probabilities of the two states are completely de-
termined by the energy difference, such that if:

∆E = Eβ −Eα ≤ 0, then
pβ

pα

≥ 1 (3)

and if

∆E = Eβ −Eα > 0, then
pβ

pα

< 1 (4)

It is then decided if this new configuration should be added
to the trajectory of the system (towards the minimum energy
configuration), or not, based on the probability of the new con-
figuration relative to the current configuration. If the relative
probability is ≥ 1, as shown in equation 3, then the move is
accepted and added to the trajectory. However, if the rela-
tive probability is < 1 then the move will only be accepted if

e−
∆E

kBT ≥ a random number generated between 0 and 1.
Lattice energy summations of the system were performed

before and after a proposed Cu-Zn substitution out to a finite
radius to obtain ∆E. Within periodic boundary conditions, the
upper limit for the cut off radius is half the minimum dimen-
sion of the system. Details of the convergence in ∆E with
respect to the cut off radius used in the lattice summations are
given in the SI. Equation 5 is used to calculate the electrostatic
interaction between pairs of ions in the system, where q1 and
q2 are the bare formal charges, r is the separation of the point
charges, εr is the effective dielectric constant of the crystal and
ε0 is the permittivity of free space.

Eelectrostatic =
q1q2

4πε0εr
e2 1

r
= q1q2Ielectrostatic (5)

To calculate a value of Ielectrostatic to use in our MC model, we
use the separation of nearest-neighbour Cu-Zn ions for r (3.8
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Å). We then select a value for εr to reproduce the Cu-Zn order-
disorder transition temperature that has been reported experi-
mentally19. This corresponded to εr = 13 and Ielectrostatic =
-0.284 eV in our model. The calculated value for the static di-
electric constant of perfect single crystal CZTS is 9.939. The
difference between the calculated dielectric constant for the
perfect crystal and the effective value required to reproduce
the order-disorder temperature can be explained by the pres-
ence of imperfections and other polarization mechanisms in a
real system. For example, in a polycrystalline thin-film there
will be additional contributions to dielectric polarisation from
the presence of internal interfaces and inhomogeneity in the
electrical properties40.

3 Results and discussion

3.1 Equilibration

Due to the stochastic nature of the trajectory from an initial
configuration in the MC method, we cannot draw any conclu-
sions about the equilibrium thermodynamic properties of that
system at the given simulation temperature until equilibrium
has been reached. The number of simulation steps required
to reach this point is the ‘equilibration time’. Equilibration is
often considered as the point at which the value of a quantity
of interest, which initially changes by a large amount, even-
tually converges to fluctuating about a steady average value.
This is dependent upon the principle that a system in equilib-
rium spends the majority of time in a small subset of states in
which the properties take a narrow range of values41.

Our MC model for Cu-Zn disorder is analogous to the Ising
model of a ferromagnet and we describe the rationale for our
equilibration procedure by referring to this common example.
In the case of an Ising model, the trial moves in the Metropolis
algorithm are spin flips, whereas in our model the trial moves
are swaps between Cu and Zn ions. For the Ising model, one
MC step corresponds to attempting a trial spin-flip at all sites
in the system once. Similarly, for our model one MC step cor-
responds to sweeping across the entire lattice and attempting
a near-neighbour Cu-Zn swap at each Cu and Zn site. In the
case of the Ising model it is usually the average magnetisation
of the system, or internal energy, as a function of temperature
that are the quantities of interest. For our system, we are in-
terested in the configuration of the ions (and extent of thermo-
dynamic disorder) and the corresponding distribution of the
electrostatic potential across the system, as this can be related
to the observed band tailing. We now explore two methods to
gauge when the system has reached the equilibrium disordered
configuration at each simulation temperature: the pair correla-
tion function (PCF) for information on the structural disorder
and also the variance of the distribution of on-site electrostatic
potentials of species in the system.

Fig. 2 The pair correlation function (PCF) between pairs of Zn ions
in Cu2ZnSnS4. PCFs of an initial ordered lattice are plotted with
that of a disordered initial lattice as reference points as well as
systems that have been evolved from both of these initial
configurations at T = 650 K. Widths of the bars plotted are
arbitrarily chosen to ensure all data is visible.

3.1.1 Pair correlation functions from ordered and dis-
ordered initial lattices We first attempted two simulations for
each temperature, one starting from an initial ordered lattice
and one from an initial disordered lattice (produced by ran-
domly ‘shuffling’ Cu and Zn ions in the ordered lattice), until
both simulations converged to the same equilibrium configu-
ration. To gauge the point at which this had been reached, we
compare the pair correlation functions (PCFs) for each config-
uration, an example of this analysis is given in Fig. 2.

We found that systems initialised from a disordered lattice
required a substantially larger number of MC steps to evolve
away from the initial configuration. This can be seen in Fig.
2 from the Zn-Zn PCFs. The most noticeable feature when
comparing the PCF for an ordered initial lattice to that of a
disordered lattice is the emergence of a new nearest-neighbour
Zn-Zn peak at

√
2 due to the clustering of Zn ions once Cu

and Zn ions have been allowed to substitute. This point is
discussed further in section 3.2 as an order parameter, but for
now we just remark that the peak is largest for the disordered
initial lattice and decreases for the system evolved from this
initial configuration at moderate simulation temperatures. Af-
ter a considerably large number of MC steps the peak for the
two systems evolved from the ordered and disordered initial
lattices were not of the same height. This observation may be
explained by the entropic penalty in going from a disordered
to a more ordered system, suggesting that this method may not
be computationally efficient. We therefore adopted an alterna-
tive approach to check for equilibration, as outlined below.
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Fig. 3 Variance in the distribution of the on-site electrostatic
potential of Sn ions in a 80×80×80 Cu2ZnSnS4 system (containing
512,000 ions in total) across a range of simulation temperatures.
Each mega Monte Carlo step corresponds to sweeping across the
lattice and attempting 100 trial moves per lattice site.

3.1.2 Variance in the distribution of on-site electro-
static potentials Our second method is analogous to using the
point at which the average magnetisation fluctuates about a
steady value in the Ising model, as discussed earlier. We check
the number of MC steps required for the variance of the dis-
tribution of on-site electrostatic potentials of Sn ions to fluc-
tuate about a steady value. We use Sn ions because we have
fixed the locations of Sn ions in our simulations, making them
stationary reference points. There is one crystallographically
distinct Sn lattice site in Cu2ZnSnS4. We start from an ordered
lattice and as all ions are on their correct lattice sites, there is
only one unique chemical environment for Sn and the variance
in electrostatic potential is zero. As the system evolves, and
Cu and Zn ions are substituted, unique chemical environments
emerge for the Sn ions in the system.

We calculate the on-site electrostatic potential out to a finite
cut-off radius of 10 lattice units. Details of our convergence
test are included in the SI. An example of a test to determine a
suitable number of MC steps for equilibration (i.e. steps to run
before collecting data on the system) is shown in Fig 3. We
perform this check for the largest system size in our study and
the whole simulation temperature range we study. A larger
system may require a considerably larger number of MC steps
to equilibrate and we perform the check for each temperature
because if there is a phase transition (as suggested in several
works18–21), there could be ‘critical slowing down’ close to
the transition temperature.

From Fig. 3, we take 20 mega MC steps as a suitable num-
ber of equilibration steps before we start collecting data. One
mega MC step consists of attempting on average 100 trial Cu-
Zn substitutions per site per data point, i.e. 100 sweeps of the

lattice per mega MC step. The absence of variance in Fig. 3
when the simulation temperature is at 0 K is because the sys-
tem remains ordered.

3.2 Order parameters

To quantify the extent of substitutional Cu-Zn disorder in our
system, we consider two order parameters to enable us to in-
vestigate long- and short-ranged order.

3.2.1 Pair correlation functions Pair correlation func-
tions (PCFs) show the number of pairs of particular species
with particular separations within the system. We generate
reference PCFs of ordered and disordered systems (using equi-
librated configurations at low and high temperatures, respec-
tively) of the same size. The most noticeable feature in the
PCFs of the system was the emergence of a new nearest-
neighbour peak in the Zn-Zn PCF at

√
2. This can be ex-

plained using Fig. 4. In the ordered lattice the shortest Zn-Zn
spacing is 2 lattice units. Once Cu and Zn begin to substitute a
new shortest Zn-Zn spacing of

√
2 lattice units becomes pos-

sible. An increase in the intensity of this
√

2 peak indicates
more clustering of Zn ions and so provides insights into the
extent of short-ranged disorder in the system. The same anal-
ysis is not possible using the Cu-Cu PCF because a

√
2 Cu-Cu

separation is present between the (001) planes in the ordered
lattice.

3.2.2 Cation site occupancy An order parameter used in
experimental literature to quantify Cu-Zn disorder in kesterite-
structured Cu2ZnSnS4, Cu2ZnSnSe4 and Cu2ZnSn(SxSe1−x)4
is based on cation site occupancies18. In ordered CZTS, Cu
ions occupy 2c sites in the Cu-Zn layers indicated in Fig. 1b
and 2a sites in the Cu-Sn layers. Sn ions occupy the 2b sites
and Zn ions occupy the 2d sites21. In completely disordered
CZTS Cu and Zn are found evenly distributed over 2c and
2d sites, indicating disorder in the Cu-Zn layers. A measure
of increasing order is when Cu shows a preference to occupy
2c sites and Zn to occupy 2d sites. For ordered CZTS, the
parameter Q = 1, corresponding to all Zn ions on 2d sites and
all Cu ions on 2c sites. For fully disordered CZTS Q = 0,
corresponding to no preference for Cu or Zn to occupy their
ideal crystallographic site.

Q =
[Cu2c +Zn2d ]− [Zn2c +Cu2d ]

[Cu2c +Zn2d ]+ [Zn2c +Cu2d ]
(6)

However, it is possible that this metric may overestimate the
extent of disorder in a system as locally ordered domains, dis-
placed relative to the configuration of the initial lattice, would
be considered as disordered. We therefore compare the extent
of order at each simulation temperature inferred from our PCF
analysis to that suggested by the Q parameter as we increase
the system size to check for the formation of locally ordered
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Fig. 4 Normalised Zn-Zn pair correlation functions (PCFs) at 0K (a) and 800K (b) for an (001) Cu-Zn plane in the cation sub-lattice of
Cu2ZnSnS4 with structure shown in (c). Crosses denote the gap sites used in our lattice model to map an fcc lattice onto a sc lattice. Before a
Cu-Zn swap, the nearest-neighbour Zn-Zn pair is 2 lattice units apart. After a Cu-Zn swap there is a Zn-Zn pair separated by r=

√
2. The 0K

PCF is for the perfectly ordered lattice before any Cu-Zn substitutions have occurred and shows a Zn-Zn PCF peak intensity of zero at r=
√

2.
The 800K PCF shows an increase in the peak intensity at r=

√
2, once Cu and Zn ions begin to substitute.

domains. A decrease in Q and an increase in Zn-Zn PCF
√

2
peak intensity correspond to a reduction in order in the sys-
tem. For the case of locally ordered domains, a low Q (sug-
gesting large extents of Cu-Zn disorder) could coincide with
a relatively small

√
2 Zn-Zn PCF peak, suggesting long-range

disorder, but short range order within the Cu-Zn planes.

3.3 Finite size effects

To investigate finite size effects, we perform simulations
for system sizes ranging from 12×12×12 (= 1,728 ions) to
80×80×80 (= 512,000 ions). We investigate the disorder be-
haviour of the systems as a function of temperature using the
two order parameters in Fig. 5. Fig. 5a shows the increase
in the intensity of the Zn-Zn PCF at r =

√
2 with temperature.

Fig. 5b shows the decrease in Q from 1 to 0 with increased
simulation temperature. Both order parameters show approxi-
mately the same disorder temperature.

Our model shows clear signs of finite size effects for the
smallest systems, in the regime used in previous studies. We
consider a 72×72×72 size system to give a converged disor-
der process with respect to system size. The high-temperature
Zn-Zn nearest-neighbour PCF peak shown in Fig. 5a can be
understood as the Cu-Zn planes beginning to melt. Within
the cation sub-lattice, there are 12 sites

√
2 apart. In the Q =

0 disorder regime, Cu shows no preference to occupy the 2c
sites and Zn to occupy the 2d sites, we can therefore expect
the density of Zn

√
2 away from every other Zn to converge

towards 2/12 (approximately 0.167). However, we cannot ex-
pect the PCF peak at high-temperatures to reach a complete
plateau at high-temperatures as is seen for the Q order param-

eter due to the lower stoichiometric ratio of Zn relative to Cu
in Cu2ZnSnS4.

3.4 Thermodynamically limited Cu-Zn order

For production runs to probe Cu-Zn disorder in stoichiometric
CZTS (Cu2ZnSnS4), we use a system size of 72×72×72 (=
373,248 ions). This setup was found to yield order-disorder
behaviour that is converged with respect to system size (see
Fig. 5). To improve our statistics, we performed 20 indepen-
dent Monte Carlo simulations, each using different random
number seeds. There is a plateau in the maximum obtainable
Cu-Zn order as described by the plateau in Q with decreasing
temperature below the ideal value of 1. For a system that is
equilibrated at room temperature, overcoming any kinetic bar-
riers, a value of Q = 0.9 is obtained. This finding fits well with
experimental works that have been unable to achieve high Cu-
Zn order, even with long and low temperature anneals23,43.

Thermodynamically limited disorder in the Cu-Zn sub-
lattice of CZTS arises due to the low energy for antisite for-
mation as Cu and Zn have similar charge and ionic radii. The
gain in configurational entropy, even at low temperatures, is
sufficient to cause a disordered sub-lattice as described by the
Monte Carlo simulations. Experimentally, the situation can
be further complicated by kinetic barriers, which give rise to
metastable configurations. Our model suggests, however, that
no improvement beyond a Q value of approximately 0.9 will
be achievable at room temperature. We also note that there
is no signfiicant difference in the order/disorder behaviour de-
scribed by the PCF analysis and the Q order parameter (Fig.
5), suggesting that locally ordered domains are not present in
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Fig. 5 Two order parameters to assess finite-size effects. (a) The
nearest-neighbour (r =

√
2) Zn-Zn pair correlation function peak

intensity for systems of various sizes at thermodynamic equilibrium
across simulation temperatures ranging from 150 to 850 K,
indicating clustering of Zn ions and deviation from the perfectly
ordered lattice with a r =

√
2 peak intensity greater than zero. (b)

The Q order parameter based on Cu and Zn site occupancies in
Cu2ZnSnS4 as a function of simulation temperature. Q = 1
corresponds to a fully ordered lattice and Q = 0 corresponds to
complete Cu-Zn disorder within the (001) plane. (b).

disordered configurations of our model.

4 Summary and further work

In summary, we have developed a Monte Carlo model to
simulate cation disorder in kesterite-structured semiconduc-
tors based on electrostatic pairwise interactions. The model

Fig. 6 The Q order parameter based on Cu and Zn site occupancies
in Cu2ZnSnS4 for 72×72×72 (= 373,248 ions) averaged over 20
independent Monte Carlo simulations and anomalous X-ray powder
diffraction data for Cu2ZnSnSe4 from Ref. 18. Experimental data
has been shifted by 70◦C to account for the difference in the
order-disorder transition temperature for the pure sulfide and pure
selenide reported in Ref. 42.

reproduces a Cu-Zn order-disorder transition temperature in
pure sulfide CZTS at approximately 250◦C (Fig. 6), in
agreement with transition temperatures reported experimen-
tally19,42. The value of the Q order parameter calculated for
disordered equilibrium lattice configurations from our simula-
tions is also in good agreement with values reported experi-
mentally18.

We are able to probe temperatures lower than those typi-
cally accessed during the annealing treatments of CZTS, and
our model predicts that at experimentally relevant low tem-
peratures (0 – 25 ◦C) the Q order parameter based on the oc-
cupancy of Cu 2c and Zn 2d crystallographic sites reaches a
plateau. As our model considers only thermodynamic effects,
the results demonstrate that CZTS is thermodynamically lim-
ited to achieving Cu-Zn order corresponding to a Q < 0.9,
where Q = 1 corresponds to a fully ordered Cu-Zn sublattice
in CZTS.

We conclude that Cu-Zn disorder will always be present
in the material, even for high-quality stoichiometric crystals.
The ubiquitous disorder found in our model is consistent with
recent experimental observations18. It is however possible
that disorder may be suppressed in off-stoichiometric sam-
ples44. Extending the Monte Carlo procedure to treat off-
stoichiometric kesterites and incorporating the effects of disor-
der on electron transport and recombination in kesterite solar
cells will be a valuable line for future research.
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5 Data access statement

The Monte Carlo model is implemented
in the code ERIS, which is available from
https://doi.org/10.5281/zenodo.1248445 under an MIT
open-source license. Data from our Monte Carlo simula-
tions is available from the online repository ZENODO at
HTTPS://DOI.ORG/10.5281/ZENODO.1251122.
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6 S. Bourdais, C. Choné, B. Delatouche, A. Jacob, G. Larramona,
C. Moisan, A. Lafond, F. Donatini, G. Rey, S. Siebentritt, A. Walsh and
G. Dennler, Advanced Energy Materials, 2016, 6, 1502276.

7 R. Aninat, L.-E. Quesada-Rubio, E. Sanchez-Cortezon and J.-M.
Delgado-Sanchez, Thin Solid Films, 2017, 633, 146 – 150.

8 S. K. Wallace, D. B. Mitzi and A. Walsh, ACS Energy Letters, 2017, 2,
776–779.

9 J. Li, D. Wang, X. Li, Y. Zeng and Y. Zhang, Advanced Science, 2018,
1700744.

10 T. K. Todorov, K. B. Reuter and D. B. Mitzi, Advanced Materials, 2010,
22, E156–E159.

11 T. Gokmen, O. Gunawan, T. K. Todorov and D. B. Mitzi, Applied Physics
Letters, 2013, 103, 103506.

12 L. L. Baranowski, P. Zawadzki, S. Lany, E. S. Toberer and A. Zakutayev,
Semiconductor Science and Technology, 2016, 31, 123004.

13 S. Lany, A. N. Fioretti, P. P. Zawadzki, L. T. Schelhas, E. S. Toberer,
A. Zakutayev and A. C. Tamboli, Physical Review Materials, 2017, 1,
035401.

14 S. Chen, J.-H. Yang, X. G. Gong, A. Walsh and S.-H. Wei, Physical Re-
view B, 2010, 81, 245204.

15 S. Schorr, Solar Energy Materials and Solar Cells, 2011, 95, 1482–1488.
16 T. Washio, H. Nozaki, T. Fukano, T. Motohiro, K. Jimbo and H. Katagiri,

Journal of Applied Physics, 2011, 110, 074511.

17 B. G. Mendis, M. D. Shannon, M. C. Goodman, J. D. Major, R. Claridge,
D. P. Halliday and K. Durose, Progress in Photovoltaics: Research and
Applications, 2012, 22, 24–34.
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