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Abstract

Active mid-infrared spectroscopy with tunable lasers is a leading technology for

standoff detection and identification of trace chemicals. Information-theoretic optimal

selection of the laser wavelength offers the promise of increased detection confidence at

lower abundances and with fewer wavelengths. Reducing the number of wavelengths

required enables faster detections and lowers sensor power consumption while keeping

the optical power under eye safety limits. This paper presents an approximation to

the mutual information which operates ∼40 000× faster than traditional techniques,

thereby making near-optimal real-time sensor control computationally feasible. Ap-

plication of this technique to synthetic data suggests it can reduce the number of

wavelengths needed by a factor of two relative to an evenly-spaced grid, with even

higher gains for chemicals with weak signatures.
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Active mid-infrared (MIR) spectroscopy1 is a popular technique for detection and iden-

tification of trace chemicals (both surface residues and vapors/aerosols) at distances of up

to tens of meters.2–13 The MIR reflectance spectrum can be obtained either by illuminating

the target with a broadband source and dispersing the received light at the detector, or

by scanning the wavelength14 of a tunable, narrowband source such as a quantum cascade

laser.10,11 Use of a tunable source offers many advantages, including higher optical through-

put (for a given level of illumination, such as dictated by eye safety), simpler detectors (no

need for a Fourier-transform infrared or other complex spectrometer), and the ability to

select only wavelengths which help discriminate between target chemicals (i.e., no photons

need be emitted at uninformative wavelengths).

A block diagram of a laser-based chemical sensor is shown in Figure 1. The active IR

Figure 1: Block diagram of an active MIR chemical sensor. An active IR sensor interrogates
the target with a tunable laser and reports the reflectance spectrum to the detection and
control algorithm. The detection algorithm compares the measured spectrum to a library
of spectral signatures, and the control algorithm selects additional wavelengths to measure
until the desired level of confidence is reached.

sensor comprises a tunable laser (which can be raster-scanned over the target to build up

an image) and a broadband imager. The active sensor reports the reflectance spectrum,

in the form of a hyperspectral image (HSI), to the detection and control algorithm. The

detection algorithm15–18 compares the measured spectrum to a library of spectral signatures.

If the results of the detection algorithm are inconclusive, the control algorithm selects fur-

ther wavelengths to measure. This process repeats until the desired detection confidence is

obtained.
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Information theory is often used for feature selection in the machine learning commu-

nity,19 and has been applied to the optimization of various chemical sensors,20–22 the charac-

terization of spectral variability in hyperspectral images,23 and the characterization of limits

of detection in chemical sensors.24 In particular, previous work has presented techniques for

information-theoretic optimal wavelength selection (OWLS).25 Specifically, given candidate

wavelengths Ω, OWLS seeks

Λ = arg max
Λ⊂Ω,|Λ|≤k

I(R(Λ);Y ), (1)

where R(Λ) is the reflectance at the wavelengths Λ, Y is the identity of the chemical, and

I(R;Y ) is the mutual information between R and Y .26 The wavelengths selected with this

scheme are optimal in the sense that maximizing I(R;Y ) minimizes the mis-classification

rate.27

The simplest way to use OWLS is a priori : the sequence of wavelengths which is expected

to deliver the best accuracy is selected offline, before any data have been measured. It is

desirable, however, to select the next wavelength(s) to measure adaptively based on the data

which have been measured so far, as described in Algorithm 1.

For offline use, I(R;Y ) is estimated at each step (line 6) using the Kozachenko-Leonenko

(KL) estimator.28 Computing the first 10 wavelengths (from 500 candidates) to optimally

discriminate between 67 chemicals takes six minutes on a typical laptop, and is therefore

infeasible for real-time, adaptive wavelength selection. Instead, this paper presents a geomet-

ric approximation which exploits the structure of the signature model to deliver comparable

results in under 10 ms: a 40 000× speedup.

1 Description of the Algorithm

In order to enable real-time adaptive OWLS, we need an algorithm which has the following

properties:
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Algorithm 1 Adaptive OWLS (Algorithm 2 of Ref. 25)

1: function AdaptiveOWLSDetection(Λ, Ω, α, q) . Λ is the initial set of
wavelengths

. Ω is the set of candidate wavelengths (Λ ∩ Ω = ∅)
. α is the required level of detection confidence

. q is the quantile of chemicals to retain at each step
2: D ←Measure(Λ) . D is the measured data at the wavelengths in Λ
3: c, s← Detect(D) . c is the confidence that the chemical with the highest score is

correct
. s is the detection score for each candidate chemical

4: while c < α and |Ω| > 0 do
5: Ŷ ← {y | sy ≥ q(s)} . Ŷ are the most likely chemicals

6: λnew ← arg max
λ∈Ω

I(R(Λ ∪ {λ}); Ŷ ) . Add wavelength(s) which best distinguish

between Ŷ
7: Λ← Λ ∪ {λnew}
8: Ω← Ω \ {λnew}
9: D ← D ∪Measure(λnew)

10: c, s← Detect(D)

11: return arg max s . Return chemical with highest detection score

• Selects wavelengths which contain comparable mutual information to those selected by

more rigorous means (such as the KL estimator).

• Can incrementally add new wavelengths to the existing set Λ.

• Can select wavelengths in less time than it would take to simply measure all of the can-

didate wavelengths. (Current systems can measure as fast as 1 ms per wavelength.13)

The geometric approximation is inspired by the structure of the signature model illus-

trated in Figure 2: the cluster corresponding to each chemical forms a line emanating from

a single point (the reflectance of the bare substrate). For double pass absorption (such as

from a thin film on a metallic surface), the linear relationship is exact in the absorbance

domain (i.e., the logarithm of reflectance). For more general cases, this linear behavior is a

reasonable approximation for low abundances (where the signal-to-noise ratio (SNR) is low

and the most benefit can be gleaned from OWLS). Therefore, each chemical can be thought

of as corresponding to a vector which begins at the point corresponding to bare substrate
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Figure 2: Joint distribution of reflectance at the first two optimal wavelengths to classify
between isopropyl alcohol (IPA), triethyl phosphate (TEP), and trimethyl phosphate (TMP).
The lower left panel is the bivariate joint distribution and the panels on the diagonal are the
univariate marginal distributions. The points represent various abundances and realizations
of random noise.

and ends at the point corresponding to a typical abundance. A possible way to pick informa-

tive wavelengths is then to find the set Λ which maximizes the squared Euclidean distance

between the endpoints of all pairs of chemicals a and b:

D2
a,b(Λ) =

∑
λ∈Λ

(Ra(λ)−Rb(λ))2, (2)

where Ra(λ) is the reflectance at wavelength λ for a typical concentration of chemical a. Sim-

ply picking wavelengths which maximize the sum of this quantity over all pairs of chemicals

will not provide a good approximation to the wavelengths selected using an actual calcula-

tion of mutual information, however: given an initial set of wavelengths, the next wavelength

should be the one which contributes the most to separating the chemical pairs which are not

already well-separated. Therefore, when assessing the potential gain from adding a wave-

length, the objective function should include some form of discounting to reduce the weight

of gains which come from chemical pairs which are already well-separated. This suggests a
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function of the form

G(λ) =

∑
a,b
b>a

∣∣∣∣∣D2
a,b(λ)

D2δ
a,b(Λ)

∣∣∣∣∣
p


1/p

, (3)

which has two parameters:

• δ ≥ 0 sets how strongly gains for chemical pairs which already have large separation

are discounted. Setting δ = 0 ignores how well the current set Λ already separates any

given pair of chemicals.

• p selects how the discounted gains for each chemical pair are aggregated. The extremes

are p = 1 (sum of discounted gains) and p =∞ (maximum of discounted gains), with

intermediate values interpolating between the two behaviors.

The full procedure for geometric real-time optimal wavelength selection (GROWLS) is

shown in Algorithm 2. In practice, this function replaces the computation of I(R;Y ) on

line 6 of Algorithm 1.

2 Parameter Tuning

In order for GROWLS to be effective, the parameters δ and p must be tuned so that it

best approximates the behavior of the KL estimator. One way of selecting the parameters

a priori is to minimize the sum of the difference in mutual information captured by the KL

estimator and GROWLS:

∆ =
k∑
i=1

(
I
(
R({λKL,1, . . . , λKL,i});Y

)
− I
(
R({λgeom,1, . . . , λgeom,i});Y

))
, (4)

where k = |Λ| is the number of wavelengths selected. Figure 3(a) shows ∆ as a function of

δ and p for k = 50. For very low δ, too many wavelengths which only help easily-separable
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Algorithm 2 Geometric Real-Time Optimal Wavelength Selection (GROWLS)

1: function GROWLS(Ω, δ, p, k)
. Ω is the set of candidate wavelengths

. δ is the discount exponent
. p is the norm order

. k ≤ |Ω| is the number of wavelengths to select

2: λnew ← arg max
λ∈Ω

∑
a,b
b>a

D2
a,b(λ)

3: Λ← {λnew}
4: Ω← Ω \ {λnew}
5: while |Λ| < k do

6: λnew ← arg max
λ∈Ω

∑
a,b
b>a

∣∣∣∣∣D2
a,b(λ)

D2δ
a,b(Λ)

∣∣∣∣∣
p


1/p

7: Λ← Λ ∪ {λnew}
8: Ω← Ω \ {λnew}
9: return Λ

chemical pairs are selected, which results in performance which is worse than using evenly-

spaced wavenumbers. For all three values of p there is a broad minimum near δ = 1.6. There

is only a weak dependence on p, but the minimum for p = 1 is slightly lower than for p = 2

and p = ∞. Therefore, the parameters p = 1, δ = 1.6 were used for the remainder of this

work.

Figure 3(b) shows the trajectories of mutual information accumulation for evenly-spaced

wavenumbers, the optimal wavelengths computed using the KL estimator, and the approxi-

mate wavelengths computed using GROWLS. The geometric approximation nearly matches

the performance of the KL estimator, indicating that this scheme should deliver comparable

detection performance to the full mutual information calculation. Figure 3(c) shows the spec-

tral library of 67 chemicals together with the wavelengths selected by the three techniques.

Both the KL estimator and GROWLS pick wavelengths which are focused on informative

parts of the spectrum, ignoring the uninformative regions that the evenly-spaced scheme

samples.
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Figure 3: (a) Summed mutual information difference ∆ for k = 50 wavelengths as δ and p are
varied. There is a broad minimum for δ ≈ 1.6 and a fairly weak dependence on p. Also shown
is the mutual information difference when using evenly-spaced wavenumbers (blue dashed
line) and the bound of ∆ = 0 corresponding to exact reproduction of the results of the KL
estimator (red dash-dot line). (b) Accumulation of mutual information as wavelengths are
added. (c) Spectral library and first nine wavelengths selected by the three schemes. For (b)
and (c), GROWLS used p = 1, δ = 1.6.
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3 Simulated Results and Discussion

In order to illustrate the utility of adaptive OWLS using GROWLS (“adaptive GROWLS”),

we generated noisy synthetic data corresponding to liquid films on metallic substrates and

assessed the chemical identification accuracy. As a simplification to the industry-standard

adaptive cosine estimator (ACE),15 we used cosine similarity to match the simulated ab-

sorbance data a to the library signatures ay:

CS(a, ay) =
a · ay
||a|| ||ay||

. (5)

Figure 4(a) shows the contours corresponding to 90% chemical identification accuracy for

evenly-spaced wavenumbers, a priori OWLS (i.e., wavelengths selected a priori using the KL

estimator), and adaptive GROWLS. For this example, six wavelengths were added at each

step and GROWLS used q = 0.8 (i.e., the top 20% of chemicals were retained at each iteration

of Algorithm 1), p = 1, δ = 1.6. The two OWLS schemes deliver comparable performance to

each other, and require roughly half the number of wavelengths as the evenly-spaced scheme

for moderate abundances.

The time to reach a detection of a given confidence is given by

td = Nb(Nλtm + tc + ts), (6)

where td is the time-to-detection, Nb is the number of batches of Nλ wavelengths which are

measured, tm is the time to measure a single wavelength (∼1 ms), tc is the time to run the

detection/identification algorithm to determine the detection confidence (and, for adaptive

GROWLS, to rank the chemicals) after each batch (∼10 µs for cosine similarity with 67

candidates), and ts is the time to select the next Nλ wavelengths (∼2 ms for GROWLS with

Nλ = 6). Figure 4(b) shows the time to reach a given level of accuracy for all three schemes.

Despite the additional computational overhead, adaptive GROWLS delivers comparable per-
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Figure 4: (a) Contours corresponding to 90% accuracy, averaged over all 67 chemicals in the
library. Adaptive GROWLS delivers comparable average performance to a priori OWLS,
and both OWLS schemes out-perform the evenly-spaced wavenumbers, thereby permitting
successful detection at lower concentrations while using fewer wavelengths. (b) Time-to-
detection when 10 µg/cm2 of the target is present, averaged over all 67 chemicals. Despite
the additional computational overhead, adaptive GROWLS delivers accuracy above 90%
within about 20 ms, comparable to the performance of a priori OWLS.

10



formance to a priori OWLS: both OWLS schemes reach 90% accuracy in less than half the

time it takes evenly-spaced wavenumbers to reach this point.

The comparable performance of a priori OWLS and adaptive GROWLS is expected at

moderate concentrations: we are adding six wavelengths at each step, but often a few dozen

wavelengths are sufficient at moderate concentrations, so adaptive GROWLS does not have

much of a chance to make a difference. As noted previously, however, adaptive GROWLS

makes a substantial difference for chemicals with low absorbance.25 This is illustrated by

Figure 5, which shows the detection performance when the target is 10 µg/cm2 of benzene.

Adaptive GROWLS obtains an accuracy of 90% after just 15 ms, compared to 30 ms for

Figure 5: (a) Reflectance spectra for 10 µg/cm2 of each chemical. Benzene (thick green)
has very low absorbance with few strong spectral features compared to other chemicals,
making it very challenging to identify. (b) Time-to-detection when the target is 10 µg/cm2

of benzene.

a priori OWLS and 85 ms for evenly-spaced wavenumbers: adaptive GROWLS is able to

substantially reduce the time-to-detection in this case.
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4 Conclusions

This paper has presented a geometric approximation to mutual information which runs

approximately 40 000× faster than the standard KL estimator, thereby enabling real-time

adaptive selection of wavelengths to optimize detection accuracy. It was shown that, for

moderate abundances, this approach halves the number wavelengths needed to reach an

identification accuracy of 90%. For weak absorbers, the gains are even greater: benzene can

be identified 6× faster, even after accounting for the overhead to compute the next batch

of wavelengths. These simulated results indicate that adaptive GROWLS can enable sen-

sors with tunable sources to obtain more rapid detections. Furthermore, the approximation

presented here is applicable to any situation where the classes have the general structure il-

lustrated in Figure 2, enabling efficient feature selection in a wide variety of machine learning

contexts.
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