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Introduction 

 
In some areas of science such as in the studies of large dynamical systems, there 
has been considerable interest over more than 50 years in simplifying system 
description by reducing the order of the set of differential equations. The purpose 
has been either to make an order reduction, a simplification of the system, or to 
make an asymptotical order reduction valid in some neighbourhood of the steady 
state, as the system response approaches the steady state.  
 
In a bottom-up approach of systems modelling, a system is modeled using 
first-principle physical and chemical laws, taking into account as much detailed 
knowledge as available. However, this approach may lead to large-scale models 
with huge numbers of variables. For efficient simulations these high-dimensional 
models are inappropriate, in particular if they involve multiple time scales (with 
stiff numerical solution properties) such that 150 hrs of supercomputer time 
reportedly were required to make calculations of a steady axisymmetric, 
methane-air diffusion flame. Combustion processes may have 600 species and 
2500 reaction equations (Chevalier et.al 1992). 
 
For such high-dimensional models model reduction are welcomed into 
application. A central issue of model reduction is to address the discrepancy 
between the need to develop detailed high-dimensional multi-timescale models 
(e.g. in chemical kinetics) and the inefficiency of their use in computationally 
demanding numerical simulations. The ultimate goal of most model reduction 
techniques, however, is to find a lower dimensional approximation which contains 
all the essential information to still describe the system accurately enough for the 
purpose of the uses of model.  

 
Considering models of chemical kinetics, Gorban and Karlin suggested that 
model reduction techniques could be classified according to the following 
purposes (Gorban, Karlin, Springer 2005): 
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1.Reduce the number of species. This, in turn, can be achieved in two ways: 
– eliminate inessential species, or 
– lump some of the species into integrated components 

2. Reduce the number of reactions.  
 
3. Decompose the motions into fast and slow motions, into independent (almost- 
independent) and slaved motions, etc. 
  
However, in simulations of chemical processes often all species are relevant for 
the properties of interest and therefore may have to be considered, not only the 
ones included in the reduced mechanism. Hence the concentrations of the 
species of the full mechanism need to be automatically calculated as functions of 
the species of the reduced mechanism. This is an automatic species 
reconstruction, and is implemented in most of the model reduction algorithms, 
independently of the concepts the methods are based on. 

 
Theory of invariance plays a role in reduction of model complexity. Invariance 
theory in mathematics is at least 170 yrs old, introduced by Cayley (1845), in "On 
the Theory of Linear Transformations "  Classically, the term "invariant theory" 
refers to the study of invariant algebraic forms for the action of linear 

transformations.  

 
Now to the model reduction methods in chemical engineering. 
 
For closed and lumped systems in chemical engineering, the concept of chemical 
invariants were introduced by Aris (1965), Amundson (1966), and Froment 
(1967), Aris (1968) derived equations for chemical invariants. Aris (1968) in his  
mathematically tilted “Prolegomena” paper, stated for a reaction system of S 
species and R independent reactions ( according to his Theorem 9, “..the 
composition may be expressed in terms of extents and invariants..”, and Theorem 
8, “...there are S-R independent concentrations....that are invariant under 
reaction”.  
 
The notions of chemical invariants and variants can be applied to model 
reduction, perhaps most advantageously with few reactions but complex 
chemistry, and where the equipment part (defining flows) is usually either defined 
by a well stirred batch reactor, or an ideal plug flow pipe reactor. In the case of 
open systems, invariants may be considered by application of the  modified 
concept “asymptotic invariants” , which was first suggested by Fjeld ( contrary to 
most references, in 1968), see Fjeld (1968), submitted to the journal in 1967, see 
also Fjeld (1969), Fjeld(1971). 
 

https://en.wikipedia.org/wiki/Algebraic_form
https://en.wikipedia.org/wiki/Group_action
https://en.wikipedia.org/wiki/Linear_transformation
https://en.wikipedia.org/wiki/Linear_transformation
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Following these ideas, analytic procedures were developed to study the 
mathematical structure of the reactor, for the purpose of singling out the reaction 
variant and the reaction invariant parts of the system. One purpose of such an 
approach has been simplification in simulation and control of systems of medium 
complexity (which may have a high number of state variables due to complex 
kinetics, but with relatively few reaction equations).  
 
The ideas were elaborated much further, both published in Ph.D thesises, and in 
journal papers, such as by Asbjørnsen & Fjeld (1970). Some new ideas on 
application of projection operators, the analysis of observabilty and controllability 
as related to invariants, were developed by Fjeld et al (1974).  
 

 
1. Asymptotic invariants and system decomposition to variants and 
invariants. Preliminaries. 
 
It was suggested by Fjeld (1968) that in open systems there exists asymptotic 
invariants, a linear combination of the number of moles m of each chemical 
species, such that 
 
dm(t)/dt  = -  λ m + C  , C= a constant  vector        (1a) 
 
Why Invariants ? - this question has been answered by the Ydstie Research 
Group, see Aggarwal (2007) . Some of the advantages using invariants are that 
they 
 

¤ Provide a minimal state representation 
¤ Allow the use of the structure of physical processes for modeling. 
¤ Separate the model into modules of thermodynamics and transport  
  phenomenons.  
¤ Provide a basis for stability analysis 
¤ Provide model reduction 
 
A communication paper by Fjeld (1969) in Chem.Eng. Science suggested a 
tri-diagonal for the thermodynamic set ot equations, based on a transformation of 
the concentrations of species and the temperature in a CSTR.  
 
Fjeld (1968, 1969, 1971) used the stoichiometric matrix N, through a 
decomposition method, supported by the tridiagonal form, to construct a linear 
transformation of the concentration states m(t) to the reaction-variant states y(t), 
and the reaction-invariant states z(t). This standard approach breaks down if axial 
diffusion is present in the reactor, and this fact will be shown in the following 
sections. Next, an an alternative modelling route is presented, to account for axial 
diffusion, and still maintain the simple decomposition of the stoichiometric matrix 
as a method to arrive at reaction-invariant states. 
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2. The tridiagonal form 
 
  The starting point to develop the transformations to find invariants, is the  
  tridiagonal form of the dynamic reaction equations, which is summarized below.  
  The autonomous part of the linearized CSTR system around the steady state is  
  of the following form , where N is the stoichiometric matrix, and r is the reaction  
  rate vector,      
 

dΔm/dt =  - (q/V)Δm + NT (δr(m)/δm)Δm        (1b)
        
                    
where the system matrix is   G = - (q/V) I + NT (δr(m)/δm) 
 
If N is of full rank (the R reactions are independent), then Fjeld (1971) found 
that G can be transformed, under suitable change of basis, to the tridiagonal 
form 
 

      
   
 
or, the following associated decomposed state space description, 
 

                      

 

                                      

      

 

where y,z are vectors, the vector v is a function of m, and F, Y, and Z matrices 
of matching dimensions.     
  
As pointed out by Fjeld (1969) the transformation to eq (2) from the state 
variables consists of linear combinations of the components of v , where the 
decomposed v into y and z constitute the reaction variant and reaction invariant 
dynamics respectively. Further, for a CSTR,  F = I /Ʈ, Ʈ is the mean residence 
time, I is the unity diagonal matrix, dim(y) = R (the dimension of the reaction 
variant vector), dim (z) = S-R (the dimension of the reaction invariants). In a 
closed system F will be a matrix with zero entries. In constant temperature 
cases, the heat balance equation is not present. Then the number of invariants 
is S-R, S is the number of chemical species, and R is the number of linearly 
independent reactions, equal to the number of variants.  
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The decoupled vector z (either an asymptotic or true invariant) forms a 
”disturbance” to the reaction variant part of the system, however, with lim (z) = 0 
as t -> ∞ in the autonomous set eq(2), starting wth z(0), and decaying  
exponentially in a CSTR (unless it is a flow variant).  
 
 

Hence we observe that z is invariant under reaction, and Fjeld (1969) proved that 
G has a stable eigensubspace of dimension S-R, which is the orthogonal 
complement R┴R of RR. For symbols and indices, see section 2 below that follows 
(S is the number of species, R is the number of independent reactions). Although 
the dimension of the two subspaces (the reaction variant and the reaction 
invariant subspaces) are fixed, many different choices of coordinates are 
possible. Or differently stated, there are many transformations available that lead 
to the two subspaces. 
 
As a consequence, this state transformation allows a reduction of the dimension 
of the state space when it suffices to study the reaction variant subspace only. 
One purpose may be analysis of local stability of the reaction system. Or the 
reduction may simplify simulations and other areas of the engineering cybernetics 
sphere of theory and applications. It was shown (Fjeld 1969) for the first time that 
both the asymptotic and true invariants could be unconditionally deleted from the 
system description, in the case of analysis of asymptotic stability (“stability in the 
small”). 
 
Asbjørnsen (1972) concludes in his study on invariants in CSTRs and tubular 
reactors that “ the analysis and simulation of the dynamics of continuous chemical 
reactors for multicomponents mixtures are greatly simplified by the use of 
asymptotic invariants”.    
 
 

Some definitions: 
 
Reaction & Flow Variants:  
Variables that vary with time due to the effects of chemical reactions and physical 
flows 

Flow Variants & Reaction Invariants:  
Variables that vary with time due to other rate processes (mass transfer, 
inlets/outlet), but are independent of chemical reactions 

Reaction & Flow Invariants:  
Variables that do not vary with time and stay constant during the course of the 
reaction 
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2. Reaction network and stoichiometry 
 
Consider the linearly independent stoichiometric chemical reaction equations 
 
   NX  =  0 ;   N = ( nij ) ; X

T = (x1,x2,........xS)      (3) 
 
where i =1,2,....R;  j= 1,2,.....S ; xj denotes the jth reacting species, S is the total 
number of reacting species. 
 
Definitions: 
 
¤A reactant is a species that appears on the left-hand side of at least one   
  reaction. 
¤A product is a species that appears on the right-hand side of at least one  
  reaction. 
¤By convention, reactants and products have negative and positive entries  
  respectively, in the stoichiometric reaction equations. 
 
The R X S stoichiometric matrix N becomes 
 
                 n11   n12   ............   n1S 

         n21   n22  .............   n2S 

 

     N =                (4) 

 
              nR1   nR2  .............   nRS 

 

The number of species is S, the number of fully independent reactions is assumed 
to be R. 

 

2.  Reaction kinetics 
 
Let the molar concentration cj(k) be defined as 
                   
                  mj(k) 
          ------     = cj(k)           for j =1,2,3.....S   (5) 
                V(k)   
                   
where mj is the number of moles of the jth species, ad V is the reactor volume. The 
unit is usually given in (mole l-1), or abbreviated (M). 
 
The reaction rates are given by 
 
   ri (c, θi)  =   ϰi         rij (cj,   θ i,j) 
 
             θi     =   col(ϰ i,  θ i1, θi2.......,θiS)  ; r =  r ( c,  θ  ) 
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where  θ i,j are temperatures. 
 
Rank (N) = R follows from the independency of the equations (2); If not N is of full 
rank, a decomposition (with ordering of equations) can in many cases be made 
such that this is indeed the case for the remaining full-ranked R equations defined 
by eq(2). 
 
The invariance property is due to the structure of the stoichiometric matrix. 
Embedded in this matrix, is satisfaction of conservation of atoms. Indeed, 
let ɸ be an S x A matrix, where ɸij indicates the number of atoms of the ith type up 
to A, in the jth chemical species j up to S. A is the number of quantities conserved. 
Any row of N must satisfy the conservation equation for conservation of the A 
conserved quantities, which can be compactly expressed for all rows of N, i..e all 
of the R reactions,                            
 
       Nɸ = 0RXA  or ɸTNT =  0 AxR         (6) 
 
We conclude that the conservation law is equivalent to eq(6), i.e. the reaction 
stoichiometrics must lie in the null space of the reaction-invariance matrix ɸT . 
 
3. The dynamic model for a CSTR with inlet and outlet streams 
 
3.1 Mass balance 
With a homogeneous stirred tank reaction system,with p inlet streams, and one 
outlet stream, S species, and R independent reactions,the mole balance is 
 
  d(Vc)/dt = NTr(c,T) + Cin qin - qout c  (Vc)(t=0) = V0c0           (7) 
 
where the inlet Sxp molar concentrations, Cin = (c1

in,c
2
in, .........c

p
in) ,  

 
r is a function of both c and T, and assumed to be an Arrhenius function of T . 
 
The equation for dV/dt needs to be established through the continuity equation, a 
simple exercise which is left out here. 
 
3.2  The heat balance equation 
 
d(m cpT)/dt  =  V(- ΔhR

T)r(c,T) + Tin
TCp,in ɣin - Tcpɣout + dQext/dt     (8) 

 
where cp is the specific heat capacity, ΔhR the R-dimensional vector of reaction 
enthalpies, Tin is the p-dimensional inlet temperature vector, Cp,in is the 
p-dimensional diagonal matrix with elements being specific heat capacities of the 
inlet streams with flows ɣin .There is only one outlet stream with flow ɣout . dQext/dt is 
the external heat power, and T0 the initial temperature. 
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4. Reaction and flow variants invariants in dynamic models   
 
4.1 Finding the invariant space through simple partitioning of the 
stoichiometric matrix, applying extents of reaction as coordinates  
 

A simple partitioning method is 
 
dc/dt   = MTr(c) + 1/Ʈ ( cin - c)           (MT = NT/V )       (9) 
 
and for a batch reaction 
 
dc/dt   = MTr(c)                 (10) 
 
and the column vectors mi (i=1,.......S) ; dim MT = S x R 
 

M = [m1 m2 m3................mR  mR+1.............mS]  = [ M1 M2 ]        (11)  
dim M = R x S ; dim M1 = RxR ; dim M2 = Rx(S-R) 
 
For a batch system, defining c(0) = c0; c1(0) = c10, c2(0) = c20 
 
Then using the extent of reaction vector ξ, dim (ξ) = R 
 
dcj  =  mj

T dξ    since ξ(0) = 0               (12) 
 
Hence,  
 
c1(t) - c1(0)  =  c1(t) - c10  =  M1

Tξ                        (13) 
 
c1-c10 =  M1

Tξ     dim (c1)= R                (14) 
c2-c20 =  M2

Tξ      dim (c2)= S-R            (15) 
       

Since M1 is nonsingular, the extent of reaction ξ(t) is uniquely determined by c1 

for any c1-c10 ≥0 (note, as chemical species, c(t) is a vector with nonzero entries ci 
≥ 0). 
 

 
 

c(t) - c0 =  MT ξ(t)  = MT  
t

dttcr
0

))((                      (16)
                              

 
 
 
              




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For an open reactor as a CSTR, see section 4.2, where the simple approach 
above is extended.   
 
It should be noted, that based on chemistry insights, it may be desirable to apply a 
different variant vector than one based on any partioning and reordering of the 
stoichiometric matrix. Indeed, applying the extent of reaction vector, is one such 
particular choice which may be meaningful for the process analyst, given by 
 

ξ(t)  =  (MT)-1 (c(t) - c0)  

Any invertible transformation operating on c1 may be applied to transform c1 into a 
variant that suites the purpose of the modelling better (control, measurements, 
estimation). Indeed, Waller and Makila (1981) suggested that the variants should 
be chosen on other grounds than orthogonality, by some transformation L of the 
state variables, not purely algebraic, but based on chemical insights in the 
reaction taking place, 
 
    v = Lc              (16) 
 
 
Waller and Makila state that the most obvious L is simply L = MT

RxS
 . 

When , as advised by Fjeld (1971), see section 4.2 in the current paper, a possible 
L when M is reordered such that the M1 is of full rank, thus containing the linearly 
independent reactions, the L can be chosen equal to M1

T , 
 
    v = M1

Tc             (17) 
 
 
4.2 Simple decomposition through partitioning the stoichiometric matrix  
 
From section 4.1: 
 
  d(Vc)/dt = NTr(c,T) + cin q - q c(t)              (18) 
  
or   dc/dt   = MTr(c) + 1/Ʈ ( cin - c) ;         (19) 
 
where MT= NT/V; Ʈ = V/q 
 
Establishing a full rank submatrix N1 = V M1

T  (section 4.1) of the stoichiometric 
matrix, then with M =  ( M1 |  M2) the reaction variants can be expressed as  
                                        RxR     Rx(S-R)         
follows, by change of variables from the c-vector to the z-vector, given below: 
 
z1 = c1  (dim c1=R); z10 =  c10 ; col c = col(c1,c2); dim c2= S-R        (20) 
 
and the asymptotical invariant is given by 
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z2 = M2

T (M1
T)-1c1  - c2, with              (21) 

 
z20 = M2

T (M1
T)-1c10  - c20                 (22) 

 
The decomposed set is hence 
 
dz1/dt = 1/Ʈ (z1-z10) + M1

T r(z1, z2, M1, M2)           (23) 
 
dz2/dt = 1/Ʈ (z2 -z20)                     (24) 
 

z2 will be asymptotically invariant, dz2/dt →  0 as t  → ∞ 
 
If z2(0) is located on the submanifold (in a subspace defined by parameters (c1, 
c2) constrained by M2

T (M1
T)-1c1  - c2 = 0), then z2(t) will be truly invariant for all t 

> 0 when the initial condition z2(0) = 0. Note that this variable is flow variant if V/q 
is varying with time, hence z2 may generally not be completely invariant. 
 
So it is concluded that for a simple process as a CSTR, decomposition to obtain 
the asymptotic invariant is straightforward. 

 
4.3 A step of generalization 
 
However, the analysis in 4.2 should be extended to check its generality in more 
general models. In order to make the aforementioned method of analysis of 
invariance slightly more general when a distributed mass transport phenomenom 
is present, assume that the reaction kinetics is described as in section 2- 3, and 
that the decomposition of the stoichiometric matrix, N = [N1  N2] is such that M1

T= 
N1

T/Vin has full rank. 
 
Consider mass transport mechanisms represented through a partial spatial 
differential operator ʆ defined on a spatial domain Ω . For the purpose of simple 
formal analysis here, we do not consider the boundary conditions (implying that 
the domain is infinite). The state vector of concentrations c for a given point in Ω is 
embedded in a state space Ɲ of dimension S, so that that system dynamics is 
described in a  Ɲ x Ω space, which implies that the state space is 
infinite-dimensional (a consequence of a distributed system). 
 
∂c1/∂t = ʆ1 c1 + N1

T r(c) ; dim (c1)= R;          (25) 
ʆ1 is defined for operating on c1ЄΩ   
 
∂c2/∂t = ʆ2 c1 + N2

T r(c) ; dim (c2)=S-R; 
ʆ2 is defined for operating on c2ЄΩ               (26) 
 
resulting in 
                r(c)  = (N1

T)-1 ( ∂c1/∂t -  ʆ1 c1 )       (27) 
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∂c2/∂t - N2

T (N1
T)-1 ∂c1/∂t = ʆ2 c2  -  N2

T (N1
T)-1 ʆ1 c1       (28) 

 
As in the lumped parameter case, now define the “proposed potential asymptotic 
invariant” 
 
z := c2  -  N2

T (N1
T)-1 c1             (29) 

 
which gives 
 
∂z/∂t =  ʆ2 c2  -  N2

T (N1
T)-1 ʆ1 c1           (30) 

 
The reaction invariant property is apparently destroyed by the partial differential 
operators ʆ2 and ʆ1 in eq(28).  
 
The breakdown of the invariance property caused by distributed flow (such as 
diffusion) may perhaps be even more clearly understood and demonstrated 
mathematically if the operators ʆi  are discretized, assuming diffusion on an 
infinite line with distance parameter ℓ, just for simplification and demonstration. 
The finite elements are of length Δh. For simplicity, assume Δh is of unit length. 
Then the typical element when the diffusion term ∂2( c )/∂ℓ2 has the simplest 
discrete representation, at some discrete point k along  ℓ,  
 
∂2( ck )/∂ℓ2   ≈    ck-1 - 2ck + ck               (31) 
and    
c j  = 0 for   j < k-1 and j > k+1            (32) 
 
where (31)-(32) represent elements in a band diagonal matrix. It is observed 
that this represents the forward and backward transport of the diffusing ck  

elements, assuming for convenience that the diffusion coefficient is unity. 
Hence, the simplest discrete representation with diffusion in one spatial direction 
and chemical reaction, is (for the R reaction equations) 
 

d(c1,k) / dt = c1,k-1 - 2c1,k + c1, k+1    +  N1
T r(ck)       (33) 

 
r is defined as a rate, i.e. of component material, weighted by the stoichiometric 
coefficients, created per unit volume and time, to result in the converted material  
components in the elements of vector c1. For c2, the S-R remaining equations, 
 

d(c2,k) / dt = c2,k-1 - 2c2,k + c2, k+1    +  N2
T r(ck)       (34) 

 
Then 
 
d/dt(c2,k - N2

T (N1
T)-1 c1,k) = Δ2c2(k)  -  N2

T (N1
T)-1 Δ2

 c1(k)     (35) 
 
where 
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Δ2ci(k)  =  ci,k-1 - 2ci,k + ci, k+1     i = 1, 2         (36) 
 
The “proposed potential invariant”  zk = c2,k - N2

T (N1
T)-1 c1,k 

is described by a set of d.e.where the  r.h.s. of eq(35) can’t generally be reduced 
to an expression containing zk only.  
 
5.  An alterative approximation in modelling  
 

A promising road to be able to obtain asymptotic invariants in modeling in a 
distributed system is: Consider continuous stirred tank reactors coupled in series, 
 
 
 
 
 
 
 
Ƭ= ΔV/q   k=1    k=2    k=3.......... 
 
It is known from standard literature on reactor theory, that in the case of dispersed 
nonreacting matter flow in a tubular reactor, with axial diffusion, the input/output 
impulse response may be approximated by a series of CSTRs (H.Scott Fogler 
2004; Md Firoz Kalam 2016). The approximation will be good when the number of 
CSTRs is greater than some figure depending on the accuracy of the fit.   
 
In this case, for each CSTR element, 
 
d/dt(ci,k) =  1/ΔƬ ( ci,k-1 - ci,k )    +  Ni

T r(ck)  ; i= 1,2  ; k= 1,2,3,4....  (37) 
 
By solving for r in the first equation for i=1, when N1 is of full rank, then  
composing the expression for the asymptotic invariant, 
 
d/dt(c2,k - N2

T (N1
T)-1 c1,k) = 1/ΔƬ ( c2(k)  -  N2

T (N1
T)-1

 c1(k))     (38) 
 
Or, with   

 

zk = c2(k)  -  N2
T (N1

T)-1
 c1(k)            (39) 

 
then 
 
d/dt zk =  - 1/ΔƬ zk  +  1/ΔƬ zk-1 ;   ΔƬ= ΔV /q       (40) 
 
Cleary, at each stage k, there is no true invariant, since the state is input flow 
variant , through (q/ΔV)zk-1 if q= q(t). However, since each zk is flow variant, it 
means if q is constant, each zk will asymptotically approach zk= z0 = constant if  z0 

Ci,1 

 

ΔV 

Ci,2 

 

ΔV 

Ci,3 

 

ΔV 

 .....Ci,j…. 

     ΔV 

ETC. 
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on the reactor chain input side is a constant. So all zk , k=1,2,3, ....will be 
asymptotically flow and reaction invariant under these conditions. 
 
In this way, the potential nonexistence of invariance has been circumvented by 
applying a different discretized model of a tubular reactor with axial diffusion, a 
model which may be a good input/output approximation to the distributed model. 
The tanks-in-series model is simple and has computational advantages, although 
its physical basis is not as clear as the tubular diffusion model. 
 
Thus the analysis show that invariants contained in process models can – through 
a discrete approximation - indeed be extended to cover processes with diffusion. 
Thus the strong statement of Asbjørnsen (1972) on invariants to simplify and 
extend the application of chemical process models is more general than perhaps 
originally thought. 
  
A weak point is that the discrete approximation above has not been generally 
proved to be robust or accurate enough with reactions included, even though the 
nonreacting approximation is good; this is documented in textbooks of chemical 
engineering. However, there are also many studies published with reactions, that 
show that the CSTR approximation with various chemical reactions present, is 
applicable and useful. CSTRs cannot model high axial dispersion well, though. 
See for instance Sayer, C., Giudici, R. (2002), and I.M. Abu-Reesh (2003); the 
latter has compared tanks-in-series with axial dispersion for enzyme reactions. 
However, the two modelling approaches compare well for high Peclet numbers 
(i.e. high advective transport rate compared to diffusive transport rate). 
 
CONCLUSIONS 
 
Dynamic model reduction techniques based on the decomposition of the 
stoichiometric matrix to find the chemical invariant, break down if axial diffusion is 
present in a tubular reactor. 
Straightforward discretization of the partial differential operator does indeed show 
that the resulting discrete dynamic model cannot generally be partioned to obtain 
the reaction variant vector and the reaction invariant (asymptotic) vector. 
However, the paper demonstrate that, if the diffusional tubular reactor is discretely 
and approximatively represented by tanks-in-series, then matrix approaches to 
successfully find the chemical variant and invariant vectors of the resulting 
chemical process model is possible.  
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