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Abstract

Although real space regions have been widely used in theoretical chemistry, not much

effort has been devoted to treat them as open quantum systems. We embrace this task

here, finding closed expressions for the density operator of a quantum subsystem in real

space by tracing out the degrees of freedom in its complementary region. Our results are

then linked to previous knowledge. For single-determinant descriptions it is shown that

the entanglement orbitals coincide with Ponec’s domain natural orbitals. In general,

the subsystem density operator is written as a direct sum of fixed number of electron

sectors, with weights that turn out to be equal to those found within the theory of

electron distribution functions. As a computational application we show how to obtain

the global first order density matrix of a subsystem and its eigensolution in a couple of

toy systems. In the multi-determinant wave function case, the domain natural orbitals

defined through this open systems approach do not coincide with those of Ponec, and,

contrary to the latter, have always strictly positive occupations.
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1 Introduction

Slowly but steadily, an alternative paradigm to orbital thinking1 that uses orbital invariant

quantities is gaining popularity in the theory of the chemical bond. Quantum chemical

topology (QCT),2 as this set of techniques are collectively known, uses the 3D physical

space (or real space) as its favourite playground. This is particularly rewarding for the

practicing chemist who, despite of the orbital varnish that permeates chemical modeling,

still thinks and designs in real space, e.g. via arrow pushing.3 QCT spatial descriptors are

built from reduced (spatial) density matrices (RDMs) and do not depend on the underlying

methodology used to obtain the wavefunction of the system. In many cases, the space is

divided into regions endowed with chemical meaning, like atoms, cores, bonds, lone-pairs,

etc. through the topology induced by a relevant scalar or vector field. In the quantum theory

of atoms in molecules (QTAIM) proposed by Bader and coworkers,4 for instance, it is the

electron density ρ which is used to provide quantum atoms which, being subsystems of the

full quantum system, are open quantum objects. This fact has been acknowledged in the

QTAIM since its inception.

Density matrices traced out in real space have become, on the other hand, a basic tool in

condensed matter physics,5 and concepts such as the entanglement spectrum of a subsystem6

or its entanglement entropy7 have been proposed to characterize many of their features, from

the coupling of two systems to the systematization of the nature of topological insulators.8 In

its turn, the use of subsystems in theoretical chemistry, although relatively recent, has also

found its way. Methods such as the density matrix embedding theory (DMET)9,10 fully rest

on subsystem traces, and relatively older procedures, like the density matrix renormalization

group techniques (DMRG),11 also make use of the Schmidt decomposition that is basic to

the treatment of open systems. Consideration of entanglement measures to understand

correlation effects12 or more general chemical phenomena have also appeared.13 However,

direct application of these ideas to chemical bonding is scarce in the physical community,

although Tubman and Yang (TY in the following) have acknowledged the clear relation
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between open quantum systems (OQSs) and chemical bonding in the last years.14,15

Here we show how the original insight of Bader regarding the open nature of atoms-in-

molecules may be fully formalized in terms of concepts borrowed from the theory of OQSs.

In this journey, we will prove that the statistics of the electron population, as determined

by the electron distribution functions (EDFs) already introduced in QCT,16 is immediately

recovered from the entanglement spectrum of the subsystem. We will also show that for single

determinant descriptions, and for a partition of the space into two regions, Ponec’s domain

natural orbitals (DNOs),17,18 which have been known for years, come out naturally from the

Schmidt’s decomposition of a Slater determinant. This link, which is in fact equivalent to the

analysis provided by TY, has passed unnoticed (as far as we know) in the chemical literature.

As we will highlight, many of the electron delocalization (thus bond-order) measures used

in chemistry are also entanglement measurements. We also generalize the TY finding that

chemical bonding reflects the quantum mechanical entanglement of two spatial regions. Our

insights show that most of the modern statistical (through EDFs) and energetic (through

the interacting quantum atoms approach, IQA19,20) descriptors used in the QTAIM admit

an OQS interpretation.

2 Composite quantum systems

We succinctly review here a few informal concepts in the theory of open quantum systems

to introduce our nomenclature. Longer accounts may be found in the texts of Breuer and

Petruccione21 or of Nielsen and Chuang.22

Let the state vector of an N -electron pure state be |Ψ(1, . . . , N)〉. The density operator

defined as ρ̂ = |Ψ〉〈Ψ| enjoys the following properties: (i) Trρ̂ = 1; (ii) ρ̂2 = ρ̂; (iii) Tr (Âρ̂) =

〈Â〉. For a mixed state constructed as an ensemble of systems found in state |Ψi〉 with

probability pi, ρ̂ =
∑

i |Ψi〉 pi〈Ψi|, and: (i) Trρ̂ = 1; (ii) Tr (ρ̂2) ≤ 1, the equality being

achieved if, and only if, the state is pure. In the case of a mixed state, several entropy
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measures, like the von Neumann entropy S = −Trρ ln ρ = −
∑

i pi ln pi or the linear entropy,

Sl = Tr(ρ− ρ2), 0 ≤ Sl ≤ 1, are often used.

Now consider two systems S1, S2 with Hilbert spacesH1, H2, respectively. The composite

system S lives in the tensor product spate H1 ⊗H2. If {|φ1
i 〉} and {|φ2

j〉} are orthonormal

bases in H1, H2 (countable bases have been assumed, but the results are general), then a

state in S can be written as |Ψ〉 =
∑

ij aij|φ1
i 〉 ⊗ |φ2

j〉. The subsystems are uncorrelated if

ρ̂ = ρ̂1 ⊗ ρ̂2. Otherwise they are said to be entangled. If we are interested in observables

of subsystem S1 (through operators A1), we first extend these operators to the full system.

For instance, if A1 is an operator in S1, its extension in S is defined as A = A1 ⊗ 12.

Then we notice that the expectation value of this operator can be obtained from a reduced

density operator in subsystem S1 defined by taking the partial trace of ρ̂ over subsystem S2.

〈A〉 = Tr (Aρ̂) = TrA1ρ̂1, where ρ̂1 = Tr2ρ̂. If a system is in a pure state, any subsystem

is not, in general. For a pure state, the entropy of a subsystem’s density operator is called

its entaglement entropy, and its spectrum the entanglement spectrum. The subsystem (or

reduced) density operator will play a fundamental role in the following.

If, as before, we take |Ψ〉 =
∑

ij aij|φ1
i 〉 ⊗ |φ2

j〉 then, independently of the dimensions of

S1, S2, the matrix a can be subjected to a singular value decomposition, so that a = uαv,

where α is a diagonal matrix and u = u+, v = v+ are unitary matrices. With this, |Ψ〉 =∑
ijk uijαjvjk|φ1

i 〉⊗|φ2
k〉, and we may define new orthonormal bases |χ1

j〉 =
∑

i uij|φ1
i 〉, |χ2

j〉 =∑
k vjk|φ2

k〉 so that |Ψ〉 =
∑

i αi|χ1
i 〉 ⊗ |χ2

i 〉. This is the famous Schmidt decomposition.23

The number of non-zero αi values is called the Schmidt number, and it may be shown that∑
i α

2
i = 1.

If S is in a pure state, then ρ̂1 =
∑

i α
2
i |χ1

i 〉〈χ1
i |, and ρ̂2 =

∑
i α

2
i |χ2

i 〉〈χ2
i |, so that the

spectrum of both subystems is identical. As we will show, these states are exactly correlated

with the well known Ponec’s DNOs of computational chemistry.? ? It can be shown that S is

a product state if S1, S2 have Schmidt number equal to one, and that S(ρ) ≤ S(ρ1) +S(ρ2).

Moreover, as it can immediately be found from the Schmidt decomposition, if a pure system
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is divided into two subsystems, the entropy of each of them is equal (and zero if the state is

a product state).

3 QCT domains as open systems

As briefly commented, it is very often the case in QCT that the physical space R3 is ex-

haustively partitioned into a set of non-overlapping spatial domains Ai,
⋃
iAi = R3. For

instance, in the QTAIM these regions are associated to the attraction basins of the maxima

of the electron density ρ, which usually coincide with the nuclear cusps.4 It is easy to show

that these QTAIM domains, or QTAIM atoms, are separated by local zero-flux surfaces of

the ∇ρ gradient field, such that ∇ρ(r) · n = 0 at each point r of the interatomic surface

characterized by normal vector n.

From the spatial standpoint of QCT, the open nature of any of these subsystems is clear.

Since the number operator does only commute with the Hamiltonian of the full system, the

number of electrons of a subsystem ceases to be a good quantum number, thus its reduced

density must necessarily correspond to a mixed state.

The full density operator ρ̂ for an N−electron molecular system in a pure state can be

written as ρ̂ = Ψ?(x′1 . . . ,x
′
N)Ψ(x1 . . . ,xN). We use x = rσ to denote a general spin(σ)-

spatial(r) coordinate. Let us now consider a real space subregion A, so that the space R3 is

divided in two domains A and Ā = B, A ∪ B = R3. We introduce the indicator function of

a domain (a Heaviside-like domain weight function) ωΩ such that ωΩ(x) = 0 and ωΩ(x) = 1

for x /∈ Ω and x ∈ Ω, respectively (with an equivalent definition for the primed variables).

It is customary to define also ωΩ(x) = 1/2 for points exactly at the boundary that separates

the A and B domains, although this is unimportant here. Indicator functions have been

extensively used in QCT before.19

We can now define an N -electron spatial projection using 1N =
∏N

i=1[ωA(xi) + ωB(xi)].

Applying this projection to the x and x′ coordinates in the the ρ̂ operator above, the full
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density operator becomes a sum of 22N terms in which the primed and unprimed electrons

are separated into the A and B spatial domains. The reduced density operator of domain A,

ρ̂A, is obtained from ρ̂ by performing a spatial partial trace over the B region, with the usual

x′i → xi identification before integration. When this is done, only those terms in which the

domain assignment of each primed and unprimed pairs x′i,xi coincide survive, leaving only

2N terms. Each corresponds to a given number of alpha and beta electrons in domain A, a

spin sector in a common notation in the theory of OQSs. In order to simplify, we will group

spin sectors in spinless sectors. All our arguments are immediately generalized to the spin

resolved case. Using electron indistinguishability, the 2N terms can be classified into N + 1

sectors, using a common notation in the theory of OQSs, each contaning a different number

of electrons in A, irrespectively of their spin:

ρ̂A =
N⊕
n=0

ρ̂An , (1)

where ρ̂A0 =
∫
B

Ψ?(x1 . . .xN)Ψ(x1 . . .xN)dx1 . . . dxN and, for n ≥ 1

ρ̂An (xi≤n;x′i≤n) =
n∏
i=1

ωA(x′i)ωA(xi)×

×
(
N

n

)∫
B

Ψ?(x′i≤n,xi>n)Ψ(xi≤n,xi>n)dxi>n, (2)

with xi≤n = x1 . . .xn and xi>n = xn+1 . . .xN , for instance. Subsystem A is thus described

by a mixed density operator with N + 1 possible values for its number of electrons. Each

sector is described by its own density operator ρ̂An which can be diagonalized to obtain its

spectrum, composed of eigenvalues 0 ≤ ni ≤ 1. As we will explain, these eigenvalues are

intimately linked to traditional bonding concepts. Each ρ̂An can also be interpreted in real

space as a (not-normalized) n-electron density matrix in its sector, ρAn .

Since we are dealing with pure states and the squares of the Schmidt numbers add to

one, Trρ̂A = 1, this meaning that the individual sector ρ̂An ’s are not normalized. We can
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check that

Trρ̂An =

∫
A

ρAn (xi≤n;x′i≤n)|x′i→xi
dxi≤n =

∫
A

ρAn (xi≤n)dxi≤n = pA(n), (3)

where pA(n) is the probability that n and only n electrons reside in spatial domain A. This

result, now well known, goes back to Daudel’s theory of loges,24 and has been used to define

maximum probability domains,25 a promising tool in chemical bonding, and to construct a

statistical image of bonding through the use of electron distribution functions (EDFs).16,26

Actually, when a system is divided into two A,B regions, pA(n) is equivalent to the full

EDF, pA(n) = p(nA = n, nB = N − n). It has been shown that A−B covalency can be

interpreted in terms of the fluctuation of their electron population and that, for instance, a

measure of the A−B covalent bond order is provided by the so-called delocalization index,

δ(A,B) = −2cov(nA, nB). In the present context, this information is thus encoded in the

entanglement spectrum, and each sector corresponds to a real space resonance structure, as

already defined.27

It is practical to use in the following normalized sector densities, ρ̃An = [pA(n)]−1ρAn , that

satisfy Trρ̃An = 1 so that

ρ̂A =
N⊕
n=0

pA(n)ρ̃An . (4)

Doing so we can deal with each ρ̃An as a pseudo pure system operator, which we can manip-

ulate on its own in each sector. Except when confusion may arise, we will drop, from now

on, the tilde on the normalized operators.

4 Sector reduced density matrices

As already commented, each of the (now normalized) ρ̂An (n ≥ 1) operators can be interpreted

in real space as the n-th order spatial density matrix in its n-electron sector. Some of these

electrons may be integrated out, defining in this way sector reduced density matrices (RDMs).
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Using standard notation, the m-th order RDM in sector n is introduced as,

ρA,mn (xi≤m;x′i≤m) =
n!

(n−m)!

∫
ρAn (xi≤n;x′i≤n)|x′i→xi

dxi>m, (5)

with trace TrρA,mn = n!/(n−m)!, and spinless m-th order RDM given by ρA,mn (ri≤m; r′i≤m) =∫
ρA,mn (xi≤m;x′i≤m)|σ′i→σidσi≤m

These RDMs play in each sector the same role as the standard reduced density matrices

in the full system. Since we are basically interested in one- and two-electron operators in

molecules, the 1- and 2RDMs are particularly important.

Let us take, for instance, a strictly local one-electron operator like the electron density

operator, n̂(r) =
∑

i δ(r − ri). We use n̂ so that no confusion arises with the system’s

ρ̂. The expectation value of n̂(r) is the electron density, n(r) = ρ1(r) = Tr(n̂ρ̂). Being

a one-electron operator, we can use the 1RDM ρ1(r; r′) to get its expectation value as

ρ1(r) = Tr{δ(r − r1)ρ1(r1; r′1)}. Using the sector RDMs, the density at point r in domain

A, ρ1(r ∈ A) = ρA,1(r) turns out to be

ρA,1(r) =
N∑
n=1

pA(n)Tr{δ(r − r1)ρA,1n (r1; r′1)}, (6)

which shows that the subsystem’s expectation value is a weighted sum of well-defined den-

sities for each sector. This also evidences that the subsystem’s projected operator n̂A has

a different component in each sector, n̂A(r) =
⊕N

n=1 n̂
A
n (r), with n̂An (r) =

∑n
i=1 δ(r − ri).

These arguments can be extended easily to local two-electron operators. In other cases, like

when dealing with the kinetic energy, the presence of derivatives of the indicator functions

has to be dealt with carefully, giving rise to surface terms that are well known to QCT. We

will not discuss these subtleties here.

Once the sector RDMs have been appropriately defined, all the standard density matrix

machinery is at our disposal. For instance, sector RDMs can be diagonalized to obtain
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sector natural orbitals, geminals, etc. As we will show, these are immediately related to

other objects already defined, such as the domain natural orbitals introduced by Robert

Ponec in the nineties,28,29 or the natural adaptive orbitals,30 which promise to obtain new

insights in chemical bonding.

Notice finally that Eqs. 5 and 6 admit a simple deconvolution, so that it is easily shown

that the weighted sum in Eq. 6 allows us to write ρA,1(x;x′) = ωA(x′)ωA(x)ρ1(x;x′). This

result can be generalized to all the other subsystem RDMs.

5 The single determinant case

Let us now consider an N−electron system in a pure state described by a single-determinant

wavefunction (SDW) |Ψ〉, |Ψ〉 = (N !)−1/2det|u1(x1) . . . uN(xN)|. Using the Laplace expan-

sion, |Ψ〉 can be expanded in terms of its first n rows

|Ψ〉 = (N !)−
1/2
∑
k

det|uk1(x1) . . . ukn(xn)| × det(n|k), (7)

where k denotes the ordered set k1 < k2 < · · · < kn, and det(n|k), that depends only on

the coordinates xn+1, . . . , xN , is the determinant obtained from det |u1(x1) . . . uN(xN)| by

deleting the first n rows and the columns k1, k2, . . . , kn. With this |Ψ〉, the expression for

the unnormalized ρ̂An becomes,

ρ̂An = 1′An 1An ×
∑
k,l

|Uk〉 〈Ul| det|SB(k̃|l̃)|, where (8)

|Uk〉 = (n!)−
1/2|uk1(x1) . . . ukn(xn)|, (9)

〈Ul| = (n!)−
1/2|ul1(x′1) . . . uln(x′n)|, (10)

we have abbreviated the indicator function
∏n

i=1 ωA(xi) as 1An , and assumed real spin-

orbitals. SB is the (N ×N) domain overlap matrix (DOM) in B, defined as SBij = 〈ui|uj〉B,

and SB(k̃|l̃) the (N −n)× (N −n) array obtained from SB by selecting rows k̃ and columns
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l̃, complementary of k and l, respectively. Notice that the sector density operator is clearly

a mixed state formed from n-electron determinants extracted from the original N -electron

one.

The n−electron basis |Uk〉 is not orthonormal in A, since SA
kl = 〈Uk|Ul〉A = det|SA(k|l)|.

It is then convenient to orthonormalize it, for instance via a Löwdin transformation, |ψk〉 =

|Uk〉(SA)−1/2, such that 〈ψk|ψl〉A = δkl. The set of |ψk〉 functions constitutes an n-electron

basis from which the n-sector is built. Defining the matrix S̃B
kl = det|SB(k̃|l̃)|, Eq. 8 becomes

ρ̂An = 1′An 1An ×
∑
k,l

|ψk〉 Pkl〈ψl|, (11)

where Pkl = (SA
kl)

1/2S̃B
kl(S

A
kl)

1/2. The normalized sector density operator can thus be written

as

ρ̃An = 1′An 1An ×
∑
k,l

|ψk〉
Pkl∑
k Pkk

〈ψl|, (12)

with pA(n) =
∑

k Pkk. We can obviously diagonalize ρ̂An (or ρ̃An ) in the |ψk〉 basis. This

is equivalent to diagonalizing the P matrix above. Its eigenvalues are the entanglement

spectrum of the sector, pkn:

ρ̂An = 1′An 1An ×
∑
k

|φk〉 pkn 〈φk|. (13)

The pkn are indeed probabilities that add to the overall sector probability pA(n) (or to

one if the normalized ρ̃An operator is used, with eigenvalues now labelled as p̃k(n)). Each pkn

can be interpreted as the probability of finding the subsystem in state |φk〉. All the sector

RDMs can be immediately obtained from the expressions above. For instance, the 1RDM

of the n-electron sector is obtained from Eq. 12 by tracing out n − 1 electrons as in Eq. 5,

using Slater’s rules.
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5.1 Exploiting the Schmidt decomposition

When a system is divided into two subsystems A and B, important algebraic simplifications

based on the Schmidt decomposition appear, since it is possible to find a one-electron basis

which is simultaneously orthogonal in A, B, and R3. This is performed by diagonalizing the

SAij = 〈ui|uj〉A matrix by a unitary transformation V , V †SAV = diag(si) = s. The new

one-electron basis |uP 〉 = |u〉V is obviously orthonormal in R3, so that the transformed |Ψ〉

determinant does not change, and orthogonal both in A and B, 〈uPi |uPj 〉A = 1−〈uPi |uPj 〉B =

siδij. Eqs. 7 to 13 remain untouched when |Ψ〉 is rewritten in this |uP 〉 basis. An orthonormal

one-electron basis in A can immediately be constructed from |uP 〉 as |ũP 〉 = |uP 〉s−1/2.

Interestingly, the si parameters have also a statistical interpretation, being equal to the

probability of finding an electron in state |ψ̄i〉 in region A (1 − si in the case of region B).

The Löwdin one electron basis used in Eqs. 11 and 12 is a unitary transformation (in A) of

the present basis: |ũP 〉 = |ψ〉W , with W = (SA)1/2V s−1/2.

It is particularly important for chemical bonding purposes that the |uP 〉 basis is exactly

that proposed by R. Ponec for single determinants.17,18 Ponec’s orbitals, called domain nat-

ural orbitals (DNOs), have been successfully used to extract chemical information, and have

been also interpreted in statistical terms.31 It has also been shown that electrons in DNOs

behave as effective statistically independent particles in regions A and B, and that the elec-

tron distribution function can be obtained by direct multiplication of the probabilities (the

si parameters) of finding the electrons in these effective states.

In the DNO basis, the S̃B
kl is diagonal, since if any li is different from ki, SB(k̃|l̃) will

contain one or more zeros in the diagonal and det|SB(k̃|l̃)| will be zero. On the contrary,

when k̃ = l̃, det|SB(k̃|l̃)| will be equal to the product of N −n elements of the form (1− si),

with i = k̃1, . . . , k̃N−n , i.e. det|SB(k̃|l̃)| = Πi∈k̃(1 − si). The same applies to SA
kl, which

is given by SA
kl = det|SA(k|l)| = Πi∈ksi. This means that if we use Eq. 11 or 12, the P

matrix will be diagonal and equal to SA
kkS̃

B
kk. For a single-determinant wave function, ρ̂An

is then directly in diagonal form, with Pkk = Pk = det|SA(k|k)| × det|SB(k̃|k̃)|, and equal
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to a product of si and (1− si) factors as explained. In this way, for each k, pkn = Pk is the

product of N factors,

pkn =
N∏
i

pi, (14)

where pi = si if i ∈ k and pi = 1− si if i ∈ k̃. pk
n provides the contribution of |ψk〉 to pA(n),

which is finally obtained by adding all the possible arrangements of the n electrons in the

the |ψk〉 basis:
∑

k p
k
n = pA(n). With this,

ρ̂An = 1′An 1An ×
∑
k

|ψk〉 pk
n 〈ψk|, (15)

which is the well-known Schmidth decomposition of a Slater determinant.32

Moreover, since in the DNO basis SA
kl is diagonal and det|SA(k|k)| =

∏
i∈k si, each

n−electron determinant normalized in A, |ψk〉, can be directly obtained from the normalized

spinorbitals φi = ũPi . In terms of these φi’s, |ψk〉 is simply a standard determinant |ψk〉 =

(n!)−1/2|φk1(x1)φk2(x2) . . . φkn(xn)|.

Normalized DNOs are directly the entanglement orbitals of the system, contributing

to the entanglement entropy whenever their eigenvalues si ≤ 1, i.e when the φi orbital is

delocalized among the subsystems. Entanglement in the theory of open quantum systems

is thus a measure of chemical bonding, as standardly defined in QCT. In the entanglement

orbital or DNO basis all the sector density operators are already in diagonal form.

5.2 Sector natural orbitals

The sector RDMs are also easily obtained in the DNO basis. Since Eq. 15 is a sum of

single determinant contributions, the standard Löwdin expressions for the RDMs apply to

each term. For instance, the sector 1RDM ρA,1n (x;x′), that can be obtained from Eqs. 5 (if

m = 1), 14, and 15, is directly diagonal,
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ρA,1n (x;x′) = 1′A1 1A1 ×
N∑
j=1

φ?j(x
′)nA,1n,j φj(x), (16)

where nA,1n,j are the (not normalized) sector domain natural occupations, nA,1n,j = sj×pAj (n−1),

with pAj (n−1) representing the probability that n−1 electrons lie in A and N−1−n electrons

in B for a hypotetical (N − 1)−electron single determinant wave function built with all φi

spin-orbitals except φj. For instance, when N = 4 and n = 3, pA1 (2) = s2s3(1−s4)+s2s4(1−

s3) + s3s4(1− s2), pA2 (2) = s1s3(1− s4) + s1s4(1− s3) + s3s4(1− s1), etc.

The trace of the sector 1RDM is equal to n × pA(n), the contribution of sector n to

the domain electron population. The occupation number of DNO φi can also be shown

to be the overall probability that φi is found occupied in all the |ψl〉 determinants in the

sector multiplied by the probability that a φi electron be found in A. If ρ̃’s are used, then

normalized occupation numbers adding to n appear which are just ñA,1n,j = nA,1n,j /p
A(n). This

shows that DNOs are the sector natural orbitals for any sector (this ceases to be true in the

case that electron correlation is taken into account).

Quite naturally, the total domain 1RDM, ρA,1(x;x′) is again diagonal in the DNO

basis, and nA,1j , the global occupation number of φj is simply the sum (if not normal-

ized) or the weighted sum (if normalized) of the sector natural occupations. For instance,

nA,1j =
∑

n p
A(n) ñA,1n,j , the average occupation of the DNO in all sectors. This result shows

the consistency of the approach. Since a considerable literature on DNOs and chemical

bonding has gathered over the years,33,34 we now connect this literature with the concept of

entanglement. Moreover, we also notice that all the sector RDMs are particular cases of the

so-called coarsed-grained density matrices, introduced in chemical bonding theory to deal

with real space resonance structures.27
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5.3 Sector natural geminals

The DNO basis can also be exploited to construct the sector geminals. Regarding ρA,2n (x1,x2;x′1;x′2),

similar manipulations as those performed in the last subsection lead to

ρA,2n (x1,x2;x′1;x′2) =
1

2
A12A

′
12 ×∑′

j,k

φj(x1)φk(x2) (nA,2n,j,k) φ
?
j(x

′
1)φ?k(x

′
2), (17)

where A12 = 1 − p̂12 is an operator that antisymmetrizes with respect to variables in the

unstarred spin-orbitals, A′12 acts likewise on the starred spin-orbitals, and nA,2n,j,k = sjsk ×

pAjk(n−2). Now, pAjk(n−2) represents the probability of having n−2 electrons in A and N−n

electrons in B for a hypotetical (N−2)−electron single determinant wave function built with

all φi spin-orbitals except φj and φk. For instance, in the above example with N = 4 and

n = 2 we have pA12(1) = s3(1−s4)+s4(1−s3), pA13(1) = s2(1−s4)+s4(1−s2), etc. This shows

that the pairs of DNOs are the sector geminals much as the product of standard orbitals

are geminals for Hartree-Fock wavefunctions. The geminal occupation numbers are easily

interpreted as the probability of finding a given pair of DNOs in the determinants forming

the sector. The trace of the (not normalized) ρA,2n is n(n − 1) × pA(n), the contribution of

the sector to the average number of pairs in domain A. This becomes n(n− 1) if normalized

ρ̃A,2n are used. The arguments here contained are easily generalized to show that any sector

RDM is constructed from DNOs using standard rules. In this sense, the set of φ′is and si’s

contain all the information needed to construct sector densities in the single determinant

case.
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6 The multi-determinant case

Generalization to multi-determinant wave functions (MDWs) is easy. To extend Eq. 8, we

first expand the size of the basis of spin-orbitals ui to a size m > N . Then,

|Ψ〉 =
M∑
r=1

Cr(N !)−
1/2|Ψr〉 (18)

where |Ψr〉 = det|ur1 . . . urN |, and (ur1 . . . u
r
N) denotes a subset of the ui’s containing N ele-

ments. The indices of the N elements of the subset of ui’s that define |Ψr〉 will be denoted

as r1,. . . ,rN . Then, we can write

ρ̂An (xi≤n;x′i≤n) = 1′An 1An ×
M∑
r,s

CrC
?
s

[
ρ̂An
]
rs
, with (19)

[
ρ̂An
]
rs

=
∑
k,l

|U r
k〉 〈U s

l | det|SBrs(k̃|l̃)|, (20)

|U r
k〉 = (n!)−

1/2|urk1(x1) . . . urkn(xn)|, (21)

〈U s
l | = (n!)−

1/2|usl1(x
′
1) . . . usln(x′n)|. (22)

In the above equations, k and l are n−elements subsets of (r1 . . . rN) and (s1 . . . sN), respec-

tively, k̃ and l̃ their corresponding (N − n)−elements complementary subsets, and SBrs(k̃|l̃)

the DOM in B between the spin-orbitals not contained in |U r
k〉 and the spin-orbitals not

contained in 〈U r
l |.

The set of m ui’s can again be subjected to the unitary rotation V †SAV = diag(si) = s,

where SAij = 〈ui|uj〉A (i, j = 1, . . . ,m). This renders a new set of functions orthonormal in

R3 and orthogonal in A and B. We will assume that all the |Ψr〉’s have been rewritten in

this basis (this is costly for largeM ’s and changes the Cr coefficients as well as the expansion

size M , but helps in the discussion). The ui’s then actually satisfy SAij = 〈ui|uj〉A = siδij,

SBij = 〈ui|uj〉B = (1 − si)δij, and Sij = 〈ui|uj〉R3 = δij, i, j = 1, . . . ,m. This leads again
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to k̃ = l̃ for SBrs(k̃|l̃)| to be nonzero, and to det|SBrs(k̃|k̃)| being a product of the (1 − si)

terms already considered. However, this does not lead now to k = l, since (r1, . . . , rN), the

set of ui’s in |U r
k〉, may differ from (s1, . . . , sN), the set of ui’s in 〈U s

l |. Sector n will include

non-diagonal k 6= l terms differing at most in n spin orbitals. This means that the (unitarily

transformed) ui’s do no longer lead to diagonal sectors, and that the entanglement orbitals

must be obtained by diagonalizing ρ̂An in the |U r
k〉 basis.

This can be done as follows. Starting from the original expansion in Eq. 19, built with

non-transformed ui’s, a multi-electron basis |Vj〉 in sector n is built by ordering all the n-

electron determinants that can be formed from them spin-orbitals ui. Each |U r
k〉 determinant

in Eq. 19 corresponds to one element of this basis, |U r
k〉 ≡ |Vj(r,k)〉, this defining the map

j(r,k). We can now write the matrix of ρ̂An in the |Vj〉 basis as

ρ̂An = 1
′A
n 1An

∑
i,j

|Vi〉TB
ij 〈Vj|, (23)

where

TB
i(r,k),j(s,l) =

∑
rs

CrC
?
sdet|SBrs(k̃|l̃)|. (24)

The number of elements in the |Vj〉 basis is in
(
m
n

)
. Now the basis |V 〉 can be Löwdin

orthogonalized, as in our single determinant example, to construct the n-electron basis |ψj〉 =

|Vj〉(SA)−1/2, where SA is the domain overlap matrix of the original |V 〉 basis, and the

spectrum of the sector will be obtained by diagonalizing (SA)1/2TB(SA)1/2 which leads to to

the eigenbasis |φi〉.

The elements of this new basis are linear combinations of the original |ψi〉 ones, and the

sector density operator is written as ρ̂An = 1
′A
n 1An

∑
j |φj〉pjn〈φj|. The entanglement spectrum

of the sector is simply the set of pjn’s. Any of the eigenvalues pjn is interpreted as the

probability of finding the n electrons in sector n in the multielectron multi-determinant

state |φj〉. Of course,
∑

j p
j
n = pA(n). The several entanglement entropy measures are

immediately obtained from the pjn’s.
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6.1 Multi-determinant sector natural orbitals and geminals

A number of simplifications appear if the sector RDMs are built in the DNO-like basis (notice

that the CI coefficients Cr in Eq. 18 will be different if the |Ψr〉’s are built in this basis, See

the Supplementary Information). Now only r, s determinants differing in one (1RDM) or

two (2RDM) spinorbitals at most have to be considered.

In the 1RDM case, let us write ρA,1n (x;x′) =
∑

r,sC
?
rCsρ

A,1
n,rs(x;x′). Simple generalizations

lead to

ρA,1n,rr(x;x′) =
N∑
j=1

u?rj(x
′)urj(x)pArj(n− 1), (25)

where r1 to rN are the orbitals from which determinant |Ψr〉 is built. Similarly, assuming

that |Ψr〉 and |Ψs〉 differ in a single spin-orbital, urj 6= usj , ρA,1n,rs(x;x′) becomes

ρA,1n,rs(x;x′) = u?rj(x
′)usj(x)pArj(n− 1). (26)

In Eqs. 25 and 26, pArj(n − 1) represents the probability of having n − 1 electrons in A

and N − 1 − n electrons in B for a hypotetical (N − 1)−electron single determinant wave

function built from |Ψr〉 with all uri ’s except urj . Obviously, pArj(n − 1) = pAsj(n − 1) if the

single determinant is built by deleting the usj spin-orbital from |Ψs〉. From this the ρA,1

matrix is built and diagonalized in the ui one-electron basis. The sector natural orbitals

turn out to be linear combinations of the DNO-like functions. Each sector natural orbitals

are different.

In the 2RDM case we can equally write ρA,2n =
∑

r,sC
?
rCsρ

A,2
n,rs and find simple expressions

for ρA,2rs in the three possible r, s cases:

ρA,2n,rr =
1

2
A12A

′
12

∑′

j,k

urj(x1)urk(x2)u?rj(x
′
1)u?rk(x′2)pArjrk(n− 2) (27)

where pArjrk(n− 2) is the probability of finding n− 2 electrons in A and N − n electrons in

B for a SDW formed from Ψr (or Ψs) by deleting spin-orbitals urj and urk .
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When |Ψi〉 and |Ψs〉 differ in a single spin-orbital urj 6= usj , being all the other equal is

given by

ρA,2n,rs = A12A
′
12

∑
k 6=j

urj(x1)usk(x2)u?sj(x
′
1)u?sk(x′2)pArjrk(n− 2), (28)

where pArjrk(n − 2) is the probability of having n − 2 electrons in A and N − n electrons in

B for a SDW formed from |Ψr〉 by deleting the spin-orbital urj or from |Ψs〉 by deleting the

spin-orbital usj .

Finally, when |Ψr〉 and |Ψs〉 differ in two spin-orbitals urj 6= usj and urk 6= usk we have

ρA,2n,rs = A12A
′
12urj(x1)urk(x2)u?sj(x

′
1)u?sk(x′2)pArjrk(n− 2). (29)

As before, the ρA,2n matrix can now be written in the two-electron basis and diagonalized.

Geminals are again sector dependent.

7 Chemical bonding issues

As commented in the Introduction, QCT has shown how to reformulate many of the concepts

in the theory of the chemical bond in terms of orbital invariant quantities, constructed

from spatial density matrices. This has provided a rich arena in which new objects are

proposed and used: domain averaged Fermi holes (DAFH),17,18,28,29 natural adaptive orbitals

(NAdOs),30 maximum probability domains,25 etc. Over the years, the bonding concepts of

chemistry have found their way in QCT. In agreement with conventional wisdom, bonding

between two spatial regions is related to electron delocalization: standard covalency appears

when delocalization is basically symmetric. Polarity, leading in the limit to charge transfer

and ionic behavior, when the delocalization is asymmetric.19,20

It has been clear since the inception of QCT that the spatial regions considered in these

methods do not contain a fixed number of electrons.4 This led to the consideration of domain

expectation values (atomic expectation values in the QTAIM). For instance, the atomic net
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charge is defined in the QTAIM as qA = ZA−
∫
A
ρ1(r)dr, where ZA is the nuclear charge and

ρ1 is the electron density. Similarly, a measure of the covalent bond order that quantifies the

number of shared pairs of electrons existing between two domains A and B is provided by

the delocalization index DI(A,B) =
∫
A
dr1

∫
B
dr2 ρxc(r1, r2), with ρxc being the exchange-

correlation density.35,36

Thinner objects have also been defined, as when R. Ponec noticed that the average

atomic population nA could be decomposed into one-electron components by diagonalizing

the domain averaged charge-weighted Fermi hole.28,29

We have effectively shown here that Ponec’s DNOs are the eigenvectors of the total

domain 1RDM, ρA,1, for single determinant functions, so that the DNO label was perfectly

chosen. Since in this SDW case the DNOs diagonalize all the sector 1RDMs, Ponec’s domain

natural occupations are nothing but the weighted sum of the sector eigenvalues, measuring

the probability of occupation of each of the entanglement orbitals in the chosen domain.

A mostly relevant issue in this SDW case comes from examining the A,B DI. It has also

been shown37 that DI(A,B) = 2
∑

i n
A,1
i (1 − nA,1i ), so that each DNO provides an additive

contribution to the covalent bond order that is defined in terms of its degree of delocalization

between the A,B region. A purely A- or B-localized DNO, with nA,1 = 1, 0, respectively,

does not contribute to the DI. The contribution of a given DNO to the DI peaks at 1/2 when

it is fully delocalized, nA,1 = 1/2, so that if doubly occupied yields a contribution of 1 to the

bond order. In agreement with Tubman and Yang, bonding comes from delocalization in

chemical terms, or from entanglement of the spatial regions, in the open systems parlance.

The well-known fact that the DNOs of subsystem A are complementary to those of subsystem

B with the same occupation number is a simple consequence of the fact that the entanglement

spectrum of both subsystems must be equal. The nA,1 values can be used to reconstruct the

weight of each sector, the total atomic population, and the bonding strength of subsystem

A with B.

Electron correlation destroys the simple identification between the eigenvectors of the
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domain averaged Fermi hole and the domain natural orbitals. Actually, the meaning of

Ponec’s DNOs (which have been generalized and called first order natural adaptive orbitals,

1-NAdOs)30 has been examined.17 The 1-NAdOs occupations keep on adding to the average

domain electron population, nA, but need not be positive definite. Negative occupation or-

bitals provide a window into the role of correlation, but lack an immediate physical correlate.

The treatment developed here shows how to obtain sector domain natural orbitals as well

as overall DNOs in the fully correlated case. Their occupations also add to nA, but are now

positive definite.

Finally, we abound on the relation between the sector weights and the electron distribu-

tion functions. pA(n) provides the probability of finding n electrons in domain A (and that of

finding N−n electrons in B). It has been found that the distributions are much simpler than

expected in the case of atomic partitions, being close to binomial in many standard cases.

This implies that only a few electrons are effectively entangled, and that the rest do not

participate in the Hilbert space expansion that accompanies the interaction of regions A and

B. The entangled and unentangled sets of electrons are the standard delocalized/localized

or bonding/core sets used in chemistry. A note of caution is due. Since no Schmidt decom-

position exists for more than two subsystems,38 multi-domain EDFs, which provide insights

into multi-center bonding,39 are not easily embedded in the present formalism.

The use of sector expectation values for general operators, as briefly sketched with the

electron density case, is also possible. This is intimately related with work on coarse-grained

density matrices,27 but outside the scope of this introductory work. Work along this line is

currently being developed.

8 Computational implementation and toy examples

The naïve computational implementation of these ideas is formally simple, since every ob-

ject defined depends ultimately on the domain overlap matrix SAij = 〈ui|uj〉A of all the
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spin-orbitals found in the determinant(s) used to build the wave function. Due to the com-

binatorial nature of the number of elements in the |Uk〉 sector bases, and the possibly large

number of CI terms in a good quality correlated |Ψ〉, the scaling of this simple implemen-

tation makes computationally very demanding its application to anything but very simple

cases. A similar situation is faced when building EDFs for MDWs, although clever algo-

rithms16,25 improve the computational complexity. A way out, as TY showed is to rely on

quantum Monte Carlo calculations.

Fortunately, and regarding the chemical bonding purposes pursued in QCT, it will be

many times sufficient to deal with sector averaged quantities, and not with the full sector

machinery. Given the importance of natural expansions, we exemplify this with the sec-

tor averaged first order density matrix of a subsystem, together with its eigenvalues and

eigenvectors.

As shown, the sector averaged 1RDM, ρA,1(x;x′) =
∑

n p
A(n)ρA,1n (x;x′) can be simply

written as ρA,1(x;x′) = 1′A1 1A1 ρ
1(x;x′). To obtain its natural orbitals we simply write its

matrix in a given basis and diagonalize it. Let |ui〉 be the canonical orbital basis and

ρ̂1 =
∑

ij |ui〉ρij〈uj|. Then the matrix of ρA,1 in this basis is simply ρA = SAρSA. Since the

basis is not orthonormal in A, we need to solve a non-orthogonal eigenvalue problem, which is

equivalent to diagonalizing the (SA)1/2ρ(SA)1/2 matrix. Notice that in the SDW case ρ is the

unit matrix, and the natural orbitals of the A subsystem are obtained after diagonalizing SA,

as known. Since both SA and ρ are definite positive, the natural occupations nA,1j satisfy

0 ≤ nA,1j ≤ 1. In this sense, these DNOs admit a simpler chemical interpretation than

those defined by Ponec in the case of correlated wave functions, which can lead to negative

occupation numbers. We will refer to the present DNO, and not to Ponec’s in the rest of

this section.

We stress now that as dynamical electron correlation becomes more and more important

in the description of a chemical system, the identification of entanglement and bonding

dilutes. In a SDW, nA,1j identifies bonding. An entangled orbital means a delocalization
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channel. On the contrary, for a correlated MDW, a multitude of lowly populated DNO

simply indicates correlation contributions. A critical exam of a similar situation has already

been done.40

A few toy systems may serve to exemplify our results. We start with H2. Any real space

partition is equivalent, since the quantum atoms in a homodiatomic are determined by sym-

metry. At the spinless HF level the only σg orbital is directly the DNO, with nA,1 = 1 (or 0.5

if the spin-orbital is considered). This implies a single entangled contribution or delocaliza-

tion channel, coresponding to the traditional chemical bonding picture of dihydrogen. The

weights of the three sectors (n = 0, 1, 2 electrons) are binomial, and equal to 1/4, 1/2, 1/4,

respectively.16

A full configuration interaction (FCI) calculation performed with the GAMESS code41

using a TZV++(2p,2d,f) basis yields a (global) natural orbital decomposition with 5 dom-

inating natural orbitals. Their occupations n1 are equal to 1.965, 0.020, 6.1 × 10−3, 3.9 ×

10−3, 3.9× 10−3, that correspond to σg,1s, σu,1s, σg,2s, πg,2p, πu,2p components, respectively. If

we now diagonalize the 1RDM in the A region (both H atoms are equivalent), five compo-

nents appear again, with nA,1 = 0.990, 3.3×10−3, 2.3×10−3, 2.0×10−3, 2.0×10−3. These are

now more or less localized functions that may be identified with σg,1s, σg,2s, σg,2p, πg,2p, πu,2p

contributions, respectively.

As we can see, a dominant entanglement contribution appears, followed by a set of much

smaller contributions, which we identify with correlating terms. The σg,1s and π DNOs are

only slightly more localized in region A than their global counterparts (notice, in any case,

that strictly speaking, the DNOs exist only in A). The other two are much more localized

hybrids. It is interesting that we can interpret the σu,1s global natural orbital as having been

absorbed in the localization procedure to give rise to a slightly localized σg,1s DNO in domain

A and its equivalent counterpart in domain B. In this way the occupation number of the

leading DNO (0.990) is larger than half that of the leading global natural orbital (1.965/2 =

0.983). This is what we expect from chemical intuition, since correlation decreases slightly
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the covalency of the H2 link, which is equivalent to forcing domain localization. This is in

agreement with the modification of the sector weights, that change to 0.213, 0.574, 0.213 for

n = 0, 1, 2 electrons, respectively, showing that the probability of finding localized electrons

has increased (slightly).

Actually, if we stretch the molecule, the σg,1s global occupation decreases as the σu,1s

one increases. At the dissociation limit, only these two global natural orbitals remain, with

degenerate occupations equal to 1. In the DNO description their mixing leads to a 1s orbital

centered at A (or B), with occupation again equal to one. In the spinless description at

dissociation the two electrons have become uncoupled. This is no longer true if spin-DNOs

are used, since spin entanglement remains.

A less naïve case is provided by the tetrahedral [PtO4]
2+ cation, which recently raised

attention due to its alleged X oxidation state.42 We have performed Heat Batch CI (HCI)

calculations with the PySCF suite43 and the def2-qzvpd (O) and adzp (Pt) basis sets,44 and

analyzed the results using QTAIM atoms. The QTAIM net charge of the Pt atom is +2.838

e, with slightly negatively charged oxygens. An EDF analysis shows that the most probable

electron distribution is that with 76 electron in the Pt domain and 8 electrons in each of

the O basins (p = 0.0217), closely followed by those with an extra electron in one of the

O’s (p = 0.0211). The probability of all the O atoms displaying 10 electrons is negligible

(smaller than 10−5), and that of finding just one O2– around p = 0.006. This immediately

shows that a X formal oxidation number is far from reflecting the electron structure of the

system. A look at the correlated DNOs provides useful information. Occupation numbers

are shown in Table 1, and isosurfaces of some representants in Fig. 1.

All 1s to 5s, 2p to 4p, and 3d to 4d occupations are essentially equal to 2. The Pt

4f electrons are also completely localized, not engaged in bonding (or entanglement). The

5p occupations are very close to 2, and a look at their shape shows that the DNOs have

no appreciable ligand contribution. The deviation of their occupations with respect to 2 is

thus a correlation, not bonding effect. The first set of orbitals enganged in strong bonding
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5p, |φ| = 0.15 au 5d, |φ| = 0.15 au

6s, |φ| = 0.10 au 6p, |φ| = 0.10 au

5f, |φ| = 0.05 au 6d, |φ| = 0.15 au

Figure 1: Isosurfaces of relevant Pt DNOs (normalized in R3, shown in R3) in the [PtO4]
2+

complex.
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Table 1: Spinless domain occupation numbers, nA,1 for the Pt domain in the [PtO4]
2+ system,

computed as detailed in the text. Only DNOs with occupations differing from either 2 or 0
in more than 0.001e are shown. Most of the DNOs have a clear atomic character. Labels
with an asterisk distinguish the DNOs with large ligand contributions.

5p 5d-t2 5d-e 6s*
1.986 1.139 1.343 0.353
6p* 5f-t2* 6d-e* 6d-t2*

0.188 0.050 0.002 0.011

is the 5d manifold. As seen from the Table, their overall population (6.103 e) points to

a d6-like configuration. As expected from tetrahedral symmetry, the 5d-e components are

more localized in the Pt atom. The 6s-like orbital is heavily mixed with and delocalized over

the ligands. All the 6p, 5f-t2 and 6d orbitals have also small but sizeable occupations. The

participation of 6p-like and 5f-like functions is to be noticed. Overall they account for about

0.56 + 0.15 = 0.71 of the Pt electrons. This uncovers the multiconfigurational character of

the complex, and the importance of 6p,5f excitations in bonding. On the contrary, we should

consider the 6d participation as due to mainly dynamical correlation.

9 Conclusions and prospects

Quantum chemical topology (QCT) offers a theory of chemical bonding through orbital

invariant descriptors. This is achieved by partitioning the real space into regions identified

with atoms, bonds, lone pairs, etc. As an example, in the quantum theory of atoms in

molecules (QTAIM) the gradient field of the electron density is used to exhaustively partition

the space into atomic domains, called quantum atoms. These regions were soon recognized

as open quantum systems,4 with a fluctuating number of particles, for instance. However,

QCT has not been studied through the lens of the general theory of open quantum systems.

We have shown in this paper how this can be done.

Closed expressions for a subsystem’s density operator in real space have been derived

by tracing out the degrees of freedom in its complementary region, and the Schmidt de-
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composition (examined in chemical bonding by Tubman and Yang14 for instance) has been

shown to lead in the single determinant case to Ponec’s domain natural orbitals. Moreover,

the subsystem density operator can be written as a direct sum of fixed number of electrons

sectors, with weights that turn out to be exactly equal to those of the electron distribution

functions (EDFs).16 Since chemical bonding can be understood in terms of the statistical

cumulant moments of EDFs,39 a deep link is established between chemical concepts, like

bonding channels, and the mutual entanglement between the subsystems.

We have also shown that all expectation values can be written as weighted averages of

sector expectations, in agreement with previous analyses that used coarse-grained density

matrices.27 As an example, we have examined the global first order density matrix of a

subsystem and its eigensolution in a couple of toy systems. In the multi-determinant wave

function case, the domain natural orbitals defined through this open systems approach do

not coincide with those of Ponec’s.

Although no Schmidt decomposition for more than two complementary systems exists in

general, a multi-domain real space description is important in chemistry, where multi-center

bonding concepts appear. We think that work along that direction should be done in the

near future.
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1 Expansion of a multideterminant wavefunction in

terms of two orbital bases related by an unitary

transformation

We proof in this supplementary information how both single- and multi-determinant wave
functions, initially expressed in a canonical orbital basis ui (i = 1,m), 〈ui|uj〉R3 = δij,
can also be built in a new basis upi , related to the ui’s by an unitary transformation,
which is ortonormal in R3 and orthogonal in two complementary domains A ∪ B = R3.
Let SA the (m × m) Hermitian matrix defined by SA

ij = 〈ui|uj〉A or, in matrix form,
SA = 〈u|u〉A. Now, we define up = uU where U is the unitary matrix that diagonalizes
SA, SAU = U diagsA. Then

〈up|up〉A = U†〈u|u〉AU = U†SAU = diag(sA). (1)

Given that SB = 〈u|u〉B = diag(I)−SA, U also diagonalizes SB with diag(sB) = diag(I−
sA) being their eigenvalues. The basis up is thus the same no matter one diagonalizes
SA or SB, and it is simultaneously orthonormal in R3 and orthogonal in A and B. Now,
let Urj a (N × N) matrix (N ≤ m) formed by the rows r1 . . . rN = r and the columns
j1 . . . jN = j of U, and |Ψ〉 a N−electron wave function given by

|Ψ〉 =
M∑
r=1

Cr (N !)−
1/2 |ψr〉, (2)

where |ψr〉 = det|ur1(1)ur2(2) . . . urN (N)|. Using u = upU† and elementary properties of
the determinants, it trivial to show that

|ψr〉 =
∑
j

det(Urj) det|upj1(1) . . . upjN (N)|. (3)

In the above equation j runs over the
(
m
N

)
ordered sub-sets that can be extracted from

the basis up. Using Eq. 3 in Eq. 2 we have

|Ψ〉 =
∑
j

Dj (N !)−
1/2 det|upj1(1) . . . upjN (N)|. (4)

with

Dj =
M∑
r=1

Crdet(Urj). (5)

This completes the proof. An interesting point related to Eq. 3 is the following. In
general, Urj is not unitary, so that det(Urj) 6= 1. However, for a single-determinant
wave function m = N , j = r = (1, 2, . . . , N), and Urj coincides with U, which is unitary.
Consequently, in this case, det(Urj) = 1 and ψr = det|up1(1) . . . upN(N)|. This shows the
well-known invariance of an Slater determinant under an unitary transformation of all of
its spin-orbitals.
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