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The variational approach to conformational dynamics offers a systematic way to con-

struct kinetic models from molecular dynamics simulations, using an arbitrary set of

basis functions. We have recently proposed a basis set for peptide systems that only

depends on the sequence of amino acids in the system. This basis set is not data-

driven and can therefore be used to compare models for different MD simulations.

Here we introduce an orthonormality condition for this basis set as a requirement for

the variational models to remain directly interpretable. The orthonormality condi-

tion naturally leads to a way of detecting correlations between the sampled marginal

stationary probability distributions at each residue in the peptide sequence. We show

how these correlations emerge from either undersampled transitions or from inher-

ent dynamical dependencies between the residues. Our basis set relies on a tensor

structure obtained from residue-centered ansatz functions. We demonstrate that this

structure is sufficient to model both β-sheet and α-helix formation in peptides.
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I. INTRODUCTION

The biological functions of biomolecules, in particular of proteins, mainly arise from their

dynamical properties, that is of the time-dependent behaviour of their three-dimensional

structure. For example, phenomenons that arise from protein-ligand binding like allostericity

or induced fit provide evidence that the mere knowledge of a spatial shape of the molecule

of interest is not sufficient for understanding its behaviour. Therefore the study of the

conformational dynamics of a biomolecule is crucial for understanding the emergence of

function. Classical molecular dynamics (MD) simulations are a powerful tool for research

in this area, as they provide information on the structure and behaviour of the molecule

at a spatial and temporal resolution currently unmatched by any experimental techniques1.

However, due to the complexity and high-dimensionsality of the simulation data, analysis

techniques are required to extract meaningful low-dimensional information from the MD

trajectories.

Recently, a variational approach to conformational dynamics (VAC) has been proposed2,3

that aims at the construction of kinetic models from molecular dynamics simulations. The

underlying dynamics of such a simulation can be formalized by means of a transfer operator

which governs the time evolution of functions on the state space according to the dynamical

behaviour of the molecular system. The dominant eigenfunctions of such a transfer operator

can be interpreted as the principal kinetic modes of the system, i.e. as the main transition

processes between long-lived conformations of the molecule that can be observed in the

simulation data. The associated eigenvalues can be related to the time scales at which the

respective transition processes take place. Accordingly, the kinetic behaviour of a molecule

can be extracted from the dominant eigenfunctions and eigenvalues of the transfer operator.

The variational approach yields approximations of these objects with respect to a predefined

basis set of functions on state space.

In the last two decades, several methods have been independently developed that can be

formulated within the framework of the variational approach, and which can be distinguished

by the choice of basis functions used for the approximation of the eigenfunctions. Most

prominently, Markov state models (MSMs)4–11 use a basis set of characteristic functions

defined by a discrete partition of state space, resulting in the well-known approximation

of the transfer operator as a transition matrix12. Further examples are core sets8,13–15,

2



tICA16,17, set-free Markov state models18, variationally optimized diffusion maps19,20, and

sparse tensor approaches21,22. Additionally, the variational approach has been used for the

identification of transition states23. See also ref. 24 for an overview.

A drawback that these approaches share is the fact that the construction of basis functions

is data-driven, i.e. depends on the MD simulation at hand25. In order to be able to compare

models for different MD simulations, however, basis functions are required that only depend

on the molecular system rather than individual realizations of its dynamics. Moreover, these

data-driven approaches cannot be interpreted directly, but need to be subjected to further

analysis.

A possible rectification of these issues could be problem-adapted basis functions that only

depend on a certain class of molecules and that furthermore represent physically meaningful

transition processes within the conformational space. In ref 26, we developed such a set

of basis functions for the backbone dynamics of peptide systems. By making use of the

heuristics that the global dynamics of such a peptide can be well-approximated by mutually

independent dynamics within the individual residues, we defined these basis functions as

tensors of residue-centered functions. The latter were defined as the dominant eigenfunctions

that are associated with the isolated dynamics of the respective type of amino acid. In this

way, the set of basis functions only depends on the sequence of the peptide and moreover each

function can be straightforwardly interpreted as a combination of certain local transitions.

In ref. 26, we tested this basis set successfully on hexapeptides and were able to interpret

the estimated eigenfunctions by means of their expansion coefficients in this basis. However,

for larger systems such an interpretation ceased to be feasible due to the large number of

basis functions that turned out to contribute to each estimated eigenfunction, contrary to

our physical intuition. One of the objectives of this work is to give an explanation for this

behaviour and to suggest modifications of the basis set that improve the interpretability

of the results. Moreover, the from the data in ref 26 it was not clear, whether secondary

structure formation can be described within a tensor ansatz for the basis set. We will

therefore also address this question by discussing applications of our peptide basis set to

larger peptide systems in which the formation of α-helices and β-sheet structures can be

observed in the MD simulations.

We begin by reviewing the mathematical background of the transfer operator and the

variational approach as well as the construction of the basis functions from ref. 26 in sec-
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tion II. In section III A, we show how orthonormalizing the basis functions can ameliorate

the interpretability of the expansion coefficients in the estimates of the eigenfunctions. In

sections III B and III C, we furthermore show how working with an orthonormal basis set pro-

vides information on the approximation quality of the stationary distribution of the system

by the tensor ansatz. Finally, in section IV we discuss applications of the variational method

to the identification of metastable states in two larger peptides, the β-hairpin peptide and

a fragment of the human islet amyloid polypeptide (hIAPP).

II. THEORY

Consider a state space Ω containing all relevant degrees of freedom of the molecular sys-

tem of interest. Let x ∈ Ω and y ∈ Ω denote particular states of the system. The dynamical

behaviour of the molecular system can be represented by a Markov process (Xt)t∈T , T ⊂ R≥0

which is realized by an MD trajectory (xt)
T
t=0. On the assumption that the considered pro-

cess is time-homogeneous (i.e. no time-dependent external forces are applied), a transition

probability density p : Ω× Ω× T → [0, 1] can be defined via

p(x, y; τ) = P[Xτ = y | X0 = x] (1)

for all x, y ∈ Ω and τ ∈ T . The quantity p(x, y; τ) denotes the conditional probability

density of finding the system in y ∈ Ω at time t+ τ , given that it has been in state x ∈ Ω at

time t. Further assuming the process is ergodic, i.e. the state space cannot be decomposed

into several dynamically disconnected components, the Markovian process admits a unique

invariant or stationary probability measure µ. We assume that µ admits a probability

density function with respect to the Lebesgue measure, i.e. a function x 7→ µ(x) fulfilling

µ(A) =

∫
A

µ(x)dx (2)

for any measurable A ⊂ Ω. For thermostatted molecular systems, µ(x) is the Boltzmann

distribution. Hence µ(A) is the equilibrium probability of finding the system in A ⊂ Ω,

which is sometimes also denoted as µA or πA
2,10,27.

The transition density p can be used to define the transfer operator11,28 Tτ : L2(Ω, µ)→
L2(Ω, µ) via

Tτv(y) :=
1

µ(y)

∫
Ω

p(x, y; τ)µ(x)v(x)dx (3)
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which is defined on the weighted Hilbert space L2(Ω, µ) =
{
u : Ω→ R

∣∣ ∫
Ω
u2(x)µ(dx) <∞

}
of square integrable state space functions. L2(Ω, µ) has the inner product

〈v, w〉µ =

∫
Ω

v(x)w(x)µ(dx) =

∫
Ω

v(x)µ(x)w(x) dx. (4)

Suppose ρt denotes the probability density associated with Xt at time t. Let νt ∈ L2(Ω, µ)

be the corresponding µ-weighted density defined by the relation ρt(x) = νt(x)µ(x). This

quantity is also referred to as the cofunction associated with ρ. By construction of the

transfer operator,

νt = Ttν0 (5)

for every t ∈ T , i.e. the transfer operator transports initial (µ-weighted) probability densities

forward in time according to the underlying dynamics of the Markov process. The cofunction

of the stationary density is the characteristic function 1Ω(x) of the entire state space29,

ρ∞(x) = µ(x) = F1Ω(x)µ(x) and is thus invariant under the action of Tτ

1Ω(x) = Tτ1Ω(y) . (6)

Formulated differently, 1Ω(x) is an eigenfunction of the transfer operator associated with

the eigenvalue λ1(τ) = 1.

The transfer operator fulfills the Chapman-Kolmogorov equation

Tτ1+τ2 = Tτ1Tτ2 (7)

which is inherited from the equivalent property formulated for the transition density func-

tion.

For thermostatted molecular systems, one assumes that the Markov process is reversible

and that the condition of detailed balance

µ(x)p(x, y; τ) = µ(y)p(y, x; τ) (8)

holds for all x, y ∈ Ω2,3,11. The operator Tτ is self-adjoint precisely if the underlying Markov

process is reversible, i.e. in this case the identity

〈Tτν, ω〉µ = 〈ν, Tτω〉µ . (9)

holds for all ν, ω ∈ L2(Ω, µ). As a consequence, the transfer operator has only real-valued

eigenvalues, and its eigenfunctions form an orthonormal basis of L2(Ω, µ), where orthogo-

nality is defined with respect to eq. 4.
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Since the transfer operator is furthermore a bounded operator with ‖Tτ‖ = 1, its spectrum

is bounded by 1 such that for all eigenvalues λi(τ) ∈ [−1, 1]. Therefore, the characteristic

function 1Ω(x) is the eigenfunction associated with the largest and unique eigenvalue λ0(τ) =

1 with λj(τ) < λ0(τ) ∀j 6= 0. Let λ0(τ) = 1 > λ1(τ) > λ2 > . . . be the eigenvalues sorted

according to their absolute values and r0 = 1Ω, r1, r2, . . . be the corresponding eigenvectors.

Any function ν ∈ L2(Ω, µ) can then be expressed in terms of this basis, i.e.

ν(x) =
∞∑
j=0

〈rj, ν〉µ rj(x) . (10)

Applying the transfer operator n times yields

Tnτν(y) =
∞∑
j=0

〈rj, ν〉µ λnj (τ)rj

= 1Ω +
∞∑
j=1

〈rj, ν〉µ exp

(
−nτ
tj

)
rj (11)

where the so-called implied timescales5

tj = − τ

log(λj(τ))
(12)

have been introduced. If eq. 7 holds, the ti are independent of τ . Owing to λj(τ) < 1 ∀j 6= 0,

these timescales define exponential decay rates of the expansion coefficients in eq. 11, yielding

convergence of any function towards the stationary density, i.e.

lim
τ→∞
Tτν = 1Ω (13)

for all ν ∈ L2(Ω, µ). When interpreting the eigenvectors of the transfer operator as dynami-

cal processes of the molecular system, their associated timescales can be related to physical

timescales as well30, giving rise to the notion of metastability of states and associated slow

processes in between. Since the slow processes are particularly crucial to the investigation

of functionality in molecular systems, kinetic models of molecular systems aim at approxi-

mating the subspace D ⊂ L2(Ω, µ) spanned by the first m eigenfunctions that dominate the

sum in eq. 11

D = span(r0, . . . , rm). (14)

D is referred to as the dominant subspace. This is also the goal of the present contribution.
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A. Method of linear variation

Since neither the transfer operator Tτ nor the eigenvalues λj(τ) and eigenfunctions rj of

the transfer operator are analytically available for any large molecule, numerical methods are

required that aim at approximating these quantities from MD simulation data. A recent and

very successful method is the variational approach to conformational dynamics (VAC)2,3,27,

which is mathematically analogous to the Rayleigh-Ritz method used in quantum mechanics.

Since the transfer operator is bounded and self-adjoint, one can derive a variational

principle for this operator2,3: Let r̂k ∈ L2(Ω, µ) be a normalized function that is orthogonal

to the first k − 1 eigenfunctions rj of the transfer operator that are ordered with respect to

the absolute values of their corresponding eigenvalues λj(τ). Then

〈r̂k, Tτ r̂k〉µ = λ̂k(τ) ≤ λk(τ) (15)

and the equality holds if and only if r̂k = rk. Therefore the eigenfunctions can be ap-

proximated by means of finding functions r̂i that are orthonormal and that maximize the

left-hand side in eq. 15. This task can be achieved by the method of linear variation.

Define a set of basis functions B = {χ0, . . . , χn} ⊂ L2(Ω, µ) that span an n+1-dimensional

ansatz space

B = span(χ0, . . . , χn). (16)

The method of linear variation aims at finding approximations of the first n+1 eigenfunctions

r̂j ∈ B within this ansatz space, i.e.

r̂j =
n∑
i=0

aijχi (17)

where the coefficients aij, 0 ≤ i, j ≤ n are varied such that 〈r̂j, Tτ r̂j〉µ becomes maximal for

all 0 ≤ j ≤ n under the constraint of the set of estimated functions {r̂0, . . . , r̂n} remaining

orthonormal with respect to µ. This results in the generalized eigenvalue problem

C(τ)A = Λ̂(τ)SA (18)

where A = (aij)0≤i,j≤n contains the expansion coefficients and Λ̂(τ) = diag(λ̂0(τ), . . . , λ̂n(τ))

comprises the estimated eigenvalues. The correlation matrix C(τ) and the overlap matrix
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S are defined via

Cij(τ) = 〈χi, Tτχj〉µ (19)

Sij = 〈χi, χj〉µ . (20)

Hence, the optimal approximations of the first n eigenfunctions r̂j within the subspace V

as well as the corresponding estimates of the eigenvalues λ̂j(τ) are obtained by solving the

generalized eigenvalue problem in eq. 18.

Given a set of basis functions B = {χ0, . . . , χn}, the integrals in eqs. 19 and 20 have

to be calculated in order to apply the variational method via solving eq 18. Since the

transfer operator is usually not known analytically for non-trivial systems, an analytical

solution of eqs. 19 and 20 is not available. However, these integrals have the interpretation

of (time-lagged) correlations with respect to the given Markov process (Xt)t∈T via

Cij(τ) = cor(χi, χj; τ) (21)

= E(χi(Xt)χj(Xt+τ ))

=

∫
Ω

χi(x)Tτχj(x)µ(dx)

= 〈χi, Tτχj〉µ (22)

where τ = 0 simply yields the inner product of the basis functions, that is the elements of

the overlap matrix Sij. These correlations can be estimated from realizations of the process

such as an MD trajectory. Let (xt)
NT
t=0 be a time-discretized time series, where ∆ is the time

step of the time series and the total lenght of the time series is NT time steps. The lag time

is given as τ = nτ∆. Estimates of the above quantities are then given by

Ĉij(τ) = ĉor(χi, χj; τ) =
1

NT − nτ

NT−nτ∑
t=0

χi(xt)χj(xt+nτ ) (23)

and

Ŝij = ĉor(χi, χj; τ = 0) =
1

NT

NT∑
t=0

χi(xt)χj(xt). (24)

B. Coordinates and basis sets for peptide dynamics

The space B (eq. 16) spanned by the basis functions is not the same as the dominant

subspace D (eq. 14). To obtain an accurate model, D should be contained in B. To achieve

this,
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1. the basis functions should be defined on coordinates that can encompass all important

conformational changes within the peptide dynamics.

2. the basis functions should model the relevant dynamical processes of the system, i.e.

they should be as close to the actual eigenfunctions of the propagator as possible.

One would like to compare models of different systems directly. Thus,

3. the basis functions should be designed independently of the actual system of interest

such that they can be used for any kind of peptide sequence, i.e. they should not be

data-driven.

Requirement 2 is trivially achieved by choosing a large basis set. However, finite sampling

induces a statistical error in eq. 23 which increases with the basis set size. Thus,

4. the basis set size should be kept as small as possible.

In Ref. 27 we developed a basis set that accommodates these requirements. We briefly

summarize the construction of the peptide basis set and explain how it relates to the four

requirements. We denote the stationary density associated to a particular force field by µ(x)

and remind the reader that different force fields give rise to different stationary probability

densities31.

Ad 1. The slow dynamical processes of peptides and proteins can be well described by

the ϕ- and ψ-backbone torsion angles, and thus dynamic models are frequently constructed

on the backbone torsion angles26. The associated state space is

Ωbb = Ω1 × · · · × ΩN , (25)

where Ωr = S1 × S1 is the Ramachandran space of the rth residue, parametrized by the φ-

and ψ-backbone dihedral angles (here S1 denotes the circle). N is the number of residues

in the peptide. Let p : Ω → Ωbb be the associated projection. The underlying assumption

is that the projected Markov process p(Xt) is still Markovian and inherits all the properties

from the original process. If this is satisfied, then the transfer operator of p(Xt) will be

the projection of T along p and we may determine all dynamical properties of the original

process by investigating those of the projected process.

Thus, by abuse of notation, we consider the Markov process Xt to be Ωbb-valued and

ignore the intermediate projection step. Hence, Xt = (X
(1)
t , . . . , X

(N)
t ) with X

(r)
t being the
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projection of Xt onto Ωr. We will refer to the process X
(r)
t as the local Markov process at

residue r.

Ad 2. The state space Ωbb is still very high-dimensional. To systematically construct

basis functions on this state space, we approximate the stationary probability distribution

µ as a tensor product

µ ≈ µtensor = µ1 ⊗ · · · ⊗ µN . (26)

where µr : Ωr → [0, 1] is the marginal probability measure on Ωr defined via

µr(A) = µ(Ω1 × · · · × Ωr−1 × A× Ωr+1 × · · · × ΩN). (27)

Note that this measure is just the stationary measure of the local Markov process X
(r)
t at

residue r.

The above approximation is justified if and only if the random variables X
(r)
t are mutually

independent. This can be assumed because neighboring pairs of Ramachandran spaces Ωr

and Ωr+1 are separated by a rigid torsion angle, the peptide bond, which minimizes the

correlation of residues r and r ± 1. The approximation is frequently used in Markov state

models of peptide dynamics, in which the microstates are constructed by discretizing the

Ramachandran plane26. It implies

L2(Ωbb, µtensor) ∼= L2(Ω1, µ1)⊗ · · · ⊗ L2(ΩN , µN), (28)

thus the dominant eigenfunctions rk can be approximated by tensors of residue-centered

functions. However, the resulting space is still infinite-dimensional as the local L2-spaces

are. We therefore approximate the local dynamics at each residue r by a subspace spanned

by mr residue-centered functions Rr
l , which represent the mr slow dynamic modes within

this residue. The associated local Hilbert space is

Dr := span
(
Rr

0, . . . , R
r
mr

)
⊂ L2(Ωr, µr) , (29)

with l ∈ 0, . . .mr, and for most residues mr = 2. The local Hilbert space has a weighted

scalar product, where the weight is given by the marginal probability distribution µr. We

subsequently define the ansatz space B as

B := D1 ⊗ · · · ⊗DN . (30)
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Thus, if the stationary measure is well-approximated by a tensor product (eq. 26), it

suffices to know the residue-centered functions Rr
l of each residue r to construct a basis set

which fulfills requirement 2. The full basis set then consists of all possible combinations of

residue-centered functions, i.e.

B =
{
R1
l1
⊗ · · · ⊗RN

lN

∣∣ 0 ≤ lr ≤ mr

}
. (31)

Ad 3. In principle, one could estimate the residue-centered functions from a simulation

of the full peptide. In this case, the residue-centered functions would vary from system to

system, and one would obtain a data-driven basis set. We choose a different approach and

obtain the residue-centered functions from a set of reference simulations. The approach is

justified, because the residue centered functions Rr
lr

depend on the type of residue, but are

known to be largely independent from the remaining peptide sequence27,31. Thus, it should

be possible to replace the residue-centered Hilbert space Dr of a specific residue r by a

generic Hilbert space DX of the corresponding type of residue, i.e. Dr ≈ DX , where X is a

place-holder for the single-letter amino acid code of residue r. As an example, consider the

pentapeptide Ac-Ala-Val-Ala-Val-Ala-NHMe, where Ac denotes an acetyl group, and NHMe

denotes a methyl amine group. We replace the space spanned by the five residue-centered

Hilbert spaces Dr=1,...,5 by an appropriate combination of the generic amino-acid specific

Hilbert spaces DA and DV : D1 ⊗D2 ⊗D3 ⊗D4 ⊗D5 ≈ DA ⊗DV ⊗DA ⊗DV ⊗DA.

We obtain the generic amino-acid specific Hilbert space DX = span(RX
0 , . . . , R

X
mX

) by

constructing Markov state models of the corresponding capped amino acid Ac-X-NHMe.

Fig. 1 shows the dominant transfer operator eigenfunctions of alanine-dipeptide (Ac-A-

NHMe)26 that span DA = span(RA
0 , R

A
1 , R

A
2 ). RA

0 is the first right eigenvector of the MSM

transition matrix (approximates the first eigenvector of the associated transfer operator) and

corresponds to the characteristic function of the accessible conformational space 1Ωr . R
A
1 and

RA
2 represent kinetic exchange processes between regions with the negative sign (blue) and

regions with positive sign (red). That is, RA
1 represents a transition along the ϕ-torsion angle,

and RA
2 represents a transition along the ψ-torsion angle. The residue-centered functions

of each type of amino acid are pre-calculated. For all residues except proline, the generic

residue-centered Hilbert space DX is spanned by three functions as exemplified by alanine

above. In the case of proline, the φ-torsion angle is rigid, thus its generic residue-centered

Hilbert space DP is spanned by only two functions, i.e. DP = span(RP
0 , R

P
1 ) where RP

0 again
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corresponds to the characteristic function of the total accessible space and RP
1 represents

the ψ-torsion. The basis set for a given peptide is eventually obtained by combining the

residue-centered functions ordered according to the sequence of the peptide (eq. 31). In this

way we obtain a basis set that is independent of the peptide simulation.

Ad 4. With three dominant eigenfunction for most residues, the basis set grows as 3N ,

where N is the number of residues. This full basis set becomes computationally intractable

for even short peptides. However, the basis functions can be classified according to the

number of generic residue-centered functions RX
l in the tensor product, which differ from

RX
1 . The basis function χ0 = R1

0 ⊗ R2
0 · · · ⊗ RN

0 , which only consists of residue-centered

functions RX
0 , always needs to be included in the basis set, because it best approximates the

stationary process r0. In fact, χ0 = R1
0 ⊗ R2

0 · · · ⊗ RN
0 is the characteristic function of the

accessible space of the peptide as estimated from the tensor product of the local accessible

spaces. Thus, if the conformational ensemble of the peptide only contains conformations

which are part of this accessible space, r̂0 = χ0, and the corresponding vector of expansion

coefficients is a0 = (1, 0, . . . 0)>. The basis set can be systematically expanded by adding

basis functions in which one residue differs from RX
0 (single basis set), two residue differ

from RX
0 (double basis set), three residue differ from RX

0 (triple basis set) etc. The single

basis set grows linearly, and the double basis set grows quadratically with the number or

residues.

C. Discretization of state space

In practice, the local functions RX
l are obtained by constructing a Markov state model

from MD simulations of the respective capped amino acid Ac-X-NHMe. This procedure re-

quires a partition of Ramachandran space Ωr into (disjoint and non-overlapping) microstates.

We use the same partition of 36 × 36 = 1296 microstates for each amino acid and denote

the set of microstates by S = {s1, . . . s1296}. We calculate the MSM transition matrix T (τ)

on this discrete state space and approximate the dominant eigenfunctions of the underlying

transfer operator as its right eigenvectors

RX
l =

∑
si∈S

αXl (si) 1i (32)
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where 1i is the characteristic function of microstate si and αXl (si) is the ith component of

the respective eigenvector. Thus RX
l is a step function that is piecewise constant on each

microstate si ∈ S. This drastically simplifies the calculation of the tensor product in eq. 31.

Given a peptide conformation (MD snap shot) xt, the (φ, ψ)-coordinates of each residue are

projected onto the corresponding microstates, which yields a discretized trajectory xt ∈ NN .

The basis functions as defined in eq. 31 are then given as

R1
l1
⊗ · · · ⊗RN

lN
(xt) =

N∏
r=1

αXrlr (xt) (33)

where Xr is the residue type of residue r.

Straightforwardly, the elements of the correlation matrix and the overlap matrix can

be estimated by inserting the equation above into eq. 23 which in turn allows for the ap-

proximation of the dominant subspace D via solving the generalized eigenvalue problem in

eq. 18.

III. EXTENSION OF THE METHOD

We recomputed a variational model of the VGVAPG peptide using the basis set as dis-

cussed so far (Fig. 2.A). The model is analogous to the model reported in Fig. 6c and 6d

in ref. 26 . The scatter plot shows trajectory snapshots projected onto the dominant sub-

space of the model. We manually clustered the data points into metastable states, whose

structures are shown below the scatter plot. Note that since the publication of ref. 26 we

changed the index convention of the transfer operator and propagator eigenfunctions. Pre-

viously, the stationary process was denoted r1 and l1 respectively. Now we “start counting

at zero” and the stationary process is r0 and l0 respectively. Hence, the “first process”

in Fig. 2.A corrsponds to “process 2” in Fig. 6c in ref. 26 etc. The histograms below the

scatter plot show the absolute values of the expansion coefficients aij for j = 0, 1, 2, 3, and

are consistent with Fig. 6c in ref. 26. The stationary process r0 is represented by a single

basis set χ0 = RG
0 ⊗ RV

0 ⊗ RA
0 ⊗ RP

0 ⊗ RG
0 , which indicates that the stationary probability

density can be well approximated by a tensor product (eq. 26) and by extension that the

tensor approximation holds for this peptide. We additionally introduce an activity display

below each of the slow processes which shows to which degree each of the torsion angles

is affected by the slow process. For each residue, we show two squares representing the φ-

13



and ψ-torsion angle (left and right square). The color-code in each square was calculated

such that the color intensity is proportional to the sum of all expansion coefficients that

correspond to those basis functions which model the corresponding local exchange at the

respective residue. If only few basis functions contribute to given process the activity display

is somewhat redundant to directly looking up the interpretation of basis functions with large

expansion coefficients. However, the display becomes very useful if the basis set is large,

and if more than a hand full of basis functions contribute to a given process.

A. Renormalizing the basis set

A major benefit of constucting the basis set as a tensor of residue-centered functions is

that the results can be interpreted in a straightforward manner. Since each basis function χi

represents a probability exchange between well-defined local conformations, an eigenfunction

rj can be interpreted as a superposition of these exchange processes (see eq. 17). The inter-

pretation is particularly simple if the superposition is dominated by a few large expansion

coefficients aij. For example, the first slow process r1 is dominated by the basis functions

χ5 = RG
0 ⊗RV

0 ⊗RA
1 ⊗RP

0 ⊗RG
0 and χ26 = RG

0 ⊗RV
2 ⊗RA

1 ⊗RP
0 ⊗RG

0 , corresponding to a

φ-torsion in A4 coupled to a ψ-torsion in V3. In theory, the expansion coefficient vectors in

eq. 18 should hence suffice to obtain a structural interpretation of the dominant eigenfunc-

tions. This interpretation however assumes that the basis functions are orthonormal. As a

consequence, we add a fifth requirement to the list in section II B:

5. the basis set should be orthonormal.

Orthonormality is defined with respect to the inner product as defined in eq. 4. That is,

it is weighted by the stationary probability distribution of the current molecular system.

This means that the inner product changes with each molecular system and with each

approximation to the dynamics of the system.

Let us survey the stationary probability distributions that have been introduced so far.

The stationary probability distribution of the system is defined in eq. 2, and approximations

are introduced in eq 26

µ ≈ µtensor = µ1 ⊗ · · · ⊗ µN ,

where µr : Ωr → [0, 1] is the marginal probability distribution on the Ramachandran space
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of residue r defined in eq. 27. By “stationary probability distribution of the system” we

mean the Boltzmann distribution assocatiated to the force-field used in the simulation. It is

well understood that this probability distribution will differ from force field to force field and

that each of these force-field-asscociated distributions is only an approximation to the true

stationary probability distribution of the molecular system. Additionally, for finite sampling

there is always a deviation between the stationary probability distribution as estimated from

the MD trajectory µ̂ and the stationary probability distribution associated to the force field

µ. However, for now we will assume that µ̂ = µ. Effects due to finite sampling will be

discussed in section III B.

The method of linear variation guarantees that the estimated eigenvectors r̂i are orthonor-

mal with respect to µ̂ = µ, i.e. 〈r̂i, r̂j〉µ̂=µ = δij. The generic basis set B = {χ0, . . . , χn}
discussed so far will typically not be orthonormal with respect to this scalar product,

i.e. 〈χi, χj〉µ̂=µ 6= δij, because the mariginal stationary density of a residue within a peptide

chain differs from the stationary density of the corresponding capped amino acid used to

constuct the residue-centered functions for the basis set.

In the variational model with the generic basis set for VGVAPG (fig. 2.A and 3A (red

bars)) one can see in the third process that the generic basis set is not fully orthonormal

with respect to µ̂ = µ. In the model, the stationary process r̂0 is represented by a single

basis function: r̂0 = χ0. Thus, if the basis set was orthonormal, χ0 should not contribute

to any other process. However in the third process, clearly a03 6= 0. Similar to this, other

spurious expansion coefficients might arise to ensure that the dominant eigenfunctions are

orthonormal with respect to µ̂ = µ. Interpreting these additional expansion coefficients

as conformational exchange processes would be incorrect. We therefore recommend to or-

thonormalize the basis set with respect to the marginal probability densities of the peptide

residues prior to the construction of the variational model. After renormalizing the basis set,

the expansion coefficient for χ0 vanishes (fig. 3A (blue bars)). Other expansion coefficients

in VGVAPG were not altered by the renormalization.

Note that the generic model is nonetheless a valid model of the peptide dynamics, and

that the dominant eigenvectors can be submitted to the usual analyses, such as extraction

of metastable states by a PCCA+ analysis. The generic model only lacks the additional

benefit that the expansion coefficients can be interpreted directly. This is also demonstrated

by the fact that both models, generic basis set and orthonormalized basis set, yield identical

15



implied timescale plots (fig. 3B).

How is the basis set orthonormalized? We constructed the basis set as a tensor product

(eq. 31). As a consequence, we can achieve exact orthonormalization with respect to µtensor,

but only approximate orthonormalization with respect to µ̂ = µ (eq. 26). By construction,

the generic basis functions are orthonormal with respect to a generic probability measure

µgeneric := µgeneric
1 ⊗ · · · ⊗ µgeneric

N (34)

where µgeneric
r is the stationary probability distribution of the capped amino acid Ac-X-NHMe

corresponding to residue r. That is, µgeneric is the tensor product of the equilibrium proba-

bility densities µgeneric
r of the individual residues as obtained from the reference simulations

of the capped amino acids.

µtensor deviates from µgeneric if µr 6= µgeneric
r for any residue r, i.e. if the probability density

of a residues r in the peptide chain differs from the probability density in the reference

simulation of the corresponding capped amino acid. It is hence straightforward to achieve

orthonormality with respect to µtensor by ensuring that the residue centered basis functions

{Rr
1 . . . R

r
lr
} of each residue r are orthonormal with respect to the corresponding marginal

probability density µr. Because of the tensor product structure of the basis functions, the

scalar product is equal to a product of residue-centered scalar products

〈
R1
k1
⊗ · · · ⊗RN

kN
, R1

l1
⊗ · · · ⊗RN

lN

〉
µ1⊗···⊗µN

=
N∏
r=1

〈
Rr
kr , R

r
lr

〉
µr

(35)

with 〈
Rr
lr , R

r
kr

〉
µr

=

∫
Ωr

Rr
lr(x)Rr

kr(x)µr(dx). (36)

Using the discretization in eq. 32, eq. 36 reads

〈
Rr
lr , R

r
kr

〉
µr

=

〈∑
sr∈Pr

αlr(sr)1sr ,
∑
sr∈Pr

αkr(sr)1sr

〉
µr

=
∑
si∈S

αlr(si)αkr(si)µr(si). (37)

µr(si) is estimated from the simulation of the peptide, and based on eq. 37 the residue-

centered functions are orthonormalized using the Gram-Schmidt method.

16



B. Validity of the tensor ansatz

Dynamic processes which require the concerted movements of two residues l and s are

represented within the peptide basis by either superpositioning the corresponding singly

active basis functions with expansion coefficients a and b (e.g. r̂i = a(R1
0 ⊗ . . . Rl

1⊗Rs
0 · · · ⊗

RN
0 )+b(R1

0⊗. . . Rl
0⊗Rs

2 · · ·⊗RN
0 )+. . . ); or by including the corresponding doubly active basis

function in the superposition with expansion coefficient c (e.g. r̂i = c(R1
0 ⊗ . . . Rl

1⊗Rs
2 · · · ⊗

RN
0 ) + . . . ). However, peptide dynamics in which the local stationary probability densities

of two residues l and s are mutually dependent cannot be represented within the peptide

basis set. This is the case if the probability of some A ⊂ Dr depends on the conformation

of residue s and vice versa. Then the tensor ansatz for the probability distribution fails

µ 6= µ1 ⊗ . . . µl ⊗ µs · · · ⊗ µN , and should, in principle, be replaced by the corresponding

joint distribution of the two local subspaces µ = µ1 ⊗ . . . µl,s · · · ⊗ µN .

After the basis set has been orthonormalized with respect to µtensor, any remaining de-

viation from a true orthonormal basis set with respect to µ̂ = µ is due to a deviation of

the tensor approximation µtensor (eq. 26) from the full probability distribution of the system

µ̂ = µ. A telltale sign for a deviation from the tensor approximation is if the stationary

process is not exclusively represented by the first basis function, i.e. if r̂0 6= χ0 or equiva-

lently ai0 > 0 for i > 0. The variational model of VGVAPG does not exhibit this warning

sign (Fig. 3A, blue lines). However, the variational model of the β-hairpin shows several

expansion coefficients ai0 > 0 for the stationary process after renormalization (Fig. 5.A).

The residual between µtensor and µ̂ = µ represents the mutual dependence between the

residue-centered processes. We can test for this by analyzing the overlap matrix S. An

orthonormal basis set gives rise to an overlap matrix S which is equal to the identity matrix

I. The elements of the overlap matrix S are calculated via eq. 24, and because the MD

trajectory (xt) samples the full probability density of the system µ̂ = µ rather than its

tensor approximation µtensor, the elements of the overlap matrix S represent scalar products

〈χi, χj〉µ with respect to µ̂ = µ. Thus, if after orthonormalizing the basis set with respect

to µtensor the overlap matrix S deviates from I, there must be a residual between µtensor and

µ̂ = µ. To trace back this residual to specific mutually dependent local Markov processes,

we analyze the diagonal elements of the overlap matrix that deviate from 1 by more than

an order of magnitude, i.e. 〈χi, χi〉µ < 0.1 or 〈χi, χi〉µ > 10.
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Fig. 3C shows the diagonal elements of the overlap matrix of VGVAPG (double basis

set, orthonormalized) sorted by size. We find only minor deviations from the target value

1. However, a single basis functions gives rise to a very small value close to zero, which

is indicated by the blue-shaded area in the figure. The function in question is a double

basis function encoding φ-exchange at the third residue (valine) and ψ-exchange at the

forth position (alanine). This suggests that the marginal probability distributions at these

positions are mutually dependent, i.e. µ3⊗µ4 6= µ3,4. In the next section we provide evidence

that this is indeed the case.

Figure 6A shows the diagonal elements of the overlap matrix of a β-hairpin peptide

(double basis set, orthonormalized) sorted by size. A majority of basis functions are found

to be normalized with respect to µ̂ = µ but a small subset of functions can be identified for

which the squared norm deviates from 1 by more than an order of magnitude (highlighted by

the blue-shaded area in the figure). This indicates that some of the local Markov processes

defined by the dynamics of the β-hairpin peptide are mutually dependent. This brings up

the question: what causes these mutual dependencies?

C. Accounting for undersampled transitions

Up to now, we have assumed that the probability measure estimated from the simulation

is identical to the probability measure associated to the force field, i.e. that µ̂ = µ. However,

due to finite sampling the estimated probability distribution µ̂ always slightly deviates from

the probability distribution of the force field µ. Since the matrix elements of the overlap

matrix are estimated from the MD trajectory (eq. 24), an analysis of the overlap matrix can

only test whether µ̂ deviates from the tensor structure. The sampled probability measure

can deviated from the tensor structure, either because the actual probability measure of

the force field µ deviates from the tensor structure, or because finite sampling induces an

apparent mutual dependence in µ̂.

Figure 4A,B shows an example of a basis function from the VGVAPG peptide for which

the diagonal element of the overlap matrix is smaller than 0.1. The basis function in fig. 4A,B

is the doubly active function RV
1 ⊗RG

1 ⊗RV
2 ⊗RA

2 ⊗RP
1 ⊗RG

1 . It represents the correlated

transition along the φ-torsion angles of residues V3 and A4; or equivalently: the correlated

kinetic exchange between the Lα regions and the α/β regions of the two Ramachandran
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spaces. Figure 4B shows RV
2 and RA

2 separately. Figure 4A shows RV
2 ⊗RA

2 on the combined

state space Ω3 ×Ω4 of residues 3 and 4. We sorted the underlying 1296 microstates of each

residue by region (ALα or Aαβ), which gives rise to the quadrant structure. The sign structure

of the function shows that it represents probability exchange between the conformations in

which both residues are in the Lα conformation (negative signs in the upper right quadrant

A3
Lα
× A4

Lα
) and the remaining state space (nonnegative signs in all other quadrants).

The fact that the corresponding diagonal element of S deviates from 1 implies that,

within the local space Ω3 × Ω4, the sampled joint measure µ̂3,4 deviates from the tensor

measure µ̂3 ⊗ µ̂4. Fig. 4.C shows the relative error of these local measures

∆rel(A) :=
µ̂3,4(A)− µ̂3 ⊗ µ̂4(A)

µ3,4(A)
(38)

for measurable A ⊂ Ω3×Ω4, where we define sets of the form A3
i ×A4

j with i, j ∈ {α, β, Lα}.
Negative values of ∆rel(A) mean that the simulation visits the set A less frequently than

would be expected from the tensor measure µ̂3 ⊗ µ̂4. This is the case for the conformation

A3
Lα
× A4

Lα
and to a lesser extent for A3

α × A4
Lα

In fact, the region A4
Lα

is visited by less

than 1% of all simulation data points. If this 1% percent fraction of the MD data set is not

sufficient to fully sample the marginal distribtion µ3 in the neighboring residue, an apparent

mutual dependence between Ω3 and Ω4 arises. This is indeed the case. The upper panel in

fig. 4.D shows the marginal distribution µ̂3 estimated from the full MD data set, whereas the

lower panel shows the conditional marginal distribution µ̂Lα3 estimated from the 1% percent

fraction of the MD data set where residue 4 populates A4
Lα

. The region A3
Lα

is almost never

visited within this conditional fraction of the MD data set, and this generates a mutual

dependence in µ̂3,4. Since residues 3 and 4 are valine and alanine, there is no reason why the

conformation A3
Lα
×A4

Lα
should be sterically prohibited. We thus conclude that the mutual

dependence is caused by insufficient sampling rather than by an actual mutual dependence

in the underlying force field.

In figure 6B-E, an analogous situation as above is shown for the β-hairpin peptide. The

β-hairpin peptide is a 14-residue peptide with the sequence RGKITVNGKTYEGR. The

basis function in fig. 6B,C is the doubly active function RR
1 ⊗RG

1 ⊗RK
1 ⊗RI

1 ⊗RT
1 ⊗RV

1 ⊗
RN

1 ⊗ RG
1 ⊗ RK

2 ⊗ RT
1 ⊗ RY

2 ⊗ RE
1 ⊗ RG

1 ⊗ RR
1 . As above, this function gives rise to a

diagonal element of the overlap matrix that is smaller than 0.1. In figure 6D the relative

error between the joint measure µ9,11 and the tensor measure µ9 ⊗ µ11 is depicted. Similar
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to the situation for the VGVAPG peptide, both measures deviate significantly within both

A9
α × A11

Lα
and A9

Lα
× A11

Lα
. In both cases, µ9,11 is dominated by µ9 ⊗ µ11. Accordingly, the

deviation between the marginal probability distribution in the upper panel of figure 6E and

the conditional probability distribution µLα9 in the lower panel of figure 6E is predominantly

present in the α- and Lα-region of residue 9. Again, this deviation can be explained by

insufficient sampling as the conditional distribution has been generated by less than 1% of

the frames.

Apparent mutual dependencies will generate misleading expansion coefficients for the

corresponding basis functions. We therefore suggest to construct a reduced orthonormal

basis set by removing basis functions for which the diagonal element of S differs by more

than an order of magnitude from 1 from the basis set. The effect of the reduced orthonormal

basis set on the histogram of the expansion coefficients is shown in fig. 2B and fig. 3 for

VGVAPG, and in fig. 5A for the β-hairpin peptide. In fact, the histograms and consequently

the intepretation changes slightly if undersampled basis functions are removed from the basis

set. Alternatively, one could use an iterative approach in which undersampled transitions

are identified by an analysis of the overlap matrix, and additional simulations are started

from the undersampled regions, until apparent mutual dependencies due to limited sampling

can be separated from actual mutual dependencies in the underlying force field.

IV. SECONDARY STRUCTURE FORMATION

It is not a priori clear that our basis set which is based on residue-centered local func-

tions can model a concerted conformational rearrangements such as secondary structure

formation. We test this be constructing variational models for the β-hairpin peptide RGK-

ITVNGKTYEGR and a fifteen-residue fragment of the human islet amylin polypeptide,

which from a wide variety of conformations including an α-helix. In both cases, we use

an orthonormalized reduced double basis set. Both models pass the implied timescale test

(figs. 5.C and 9.B), indicating that our basis set indeed yields well-converged models of

secondary structure formation.
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A. β-Hairpin Peptide

Fig. 7B shows the expansion coefficients of the variational model associated with the

stationary process and the three dominant conformational exchange processes. Process r1

is mostly represented by a single basis function which can be mapped to a transition in the

φ-torsion angle of resdiue E12. The basis function corresponding ot the remaining expansion

coefficients affect the φ-torsion angle in N7 and Y11. This is summarized in an activity display

below the histogram of expansion coefficients. The colour intensity is proportional to the

sum of expansion coefficients of the basis functions that model a conformational transition

at this position. Since two local transition processes (along the ϕ- and ψ-axis, respectively)

are distinguished, we show two squares for each residue of which the left one represents

ϕ- and the right one represents ψ-exchange. Process r2 is affects the φ torsion angles for

residues N7 and E12, and the ψ-torsion angles of T5, V6, and K9. Process r3 affects the full

Ramachandran space of residues N7, T10, and Y11, as well as the ψ-torsion angles of I4, and

V6.

In figure 7A, the projection of the β-hairpin trajectory onto the dominant subspace of the

first three processes is shown. As expected from previous theoretical and empirical results,

the projected trajectory resides within a 3-simplex with its vertices being interpreted as the

metastable conformations32. We therefore identify four clusters that should represent the

long-lived conformations of the system. A more thorough characterization of these clusters

is given in fig. 8 in terms of hydrogen bonds and secondary structures, as determined by

the DSSP algorithm33. We find these structures to be in excellent agreement with previous

findings using the core set method15. In fact, the assignement of trajectory frames to clusters

C2, C3, and C4 is almost identical in the core-set model and variational model. These three

cluster represent various β-hairpin conformations that mainly differ in the position and size

of the central loop region. The variational model additionally identifies cluster C1, a fairly

loose β-hairpin that is less stabilized by hydrogen bonds compared to the other structures. C1

has a low population of only 3 % of the trajectory frames. The core-set method discourages

clusters with low population, which might explain why the cluster is only identified by the

variational model.

The patterns of dynamically active residues in the estimates of the eigenfunctions can be

linked to the structural transitions between the metastable conformations. As these mainly
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comprise positional shifts of the β-hairpin, the primarily active regions within the sequence

are those that undergo transitions between loop and β-bridge conformations. Hence, we find

the active residues in the eigenfunctions to be part of transitional regions of the molecule, i.e.

regions that are found to undergo conformational transitions between the metastable struc-

tures. Without additional information on the conformation of the non-active residues, the

patterns of dynamically active residues are however not enough to long-lived conformations

and the transitions between them.

B. hIAPP Fragment

Figure 9 shows the variational Markov model for the hIAPP fragment HSSNNFGAILSSTNV.

This molecule is particularly difficult to model with conventional MSMs, because it explores

such a wide range of different conformations. This is also reflected in the histogram of

expansion coefficients, which - in contrast to the β-hairpin peptide - show that a large

number of basis functions contribute to each of the slow processes in the hIAPP fragment.

Nonetheless, each process can be localized onto torsional angle transitions in only a few

residues. In the three slow processes, residues S3 and N4 move concertedly with neighboring

residues and with various residues from the central segment AILSS.

Analogous to the model for the β-hairpin peptide, the MD trajectory forms a 3-simplex

within the coordinates of the dominant eigenfunctions and its vertices are interpreted as the

metastable conformations of the system. As opposed to the β-hairpin system, however, the

center of the simplex comprises a highly ordered α-helical structure (Cluster 0 in fig 9A) that

moreover corresponds to the highest poplated conformation in the simulation data. These

findings suggest a kinetic model where the central conformation (Cluster 0) occupies the

lowest free energy level of the conformational space and the dominant processes represent

transitions of this conformation into the surrounding clusters.

The stationary process r0 is not represented exclusively by the first basis functions. This

implies that the tensor approximation is not as cleanly fulfilled as in the β-hairpin peptide.

Nonetheless, the well-converged implied timescales (fig 9A)) and the clear separation of the

conformations in the dominant eigenspaces show that the variational model is an accurate

model of the conformational transitions from the α-helical structure to various other folded

structure.
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V. COMPUTATIONAL DETAILS

A. MD simulations

a. hIAPP fragment. We performed all-atom MD simulations of the fragment HSSNN-

FGAILSSTNV (residues 18-32) of human islet amyloid polypeptide (hIAPP). The peptide

was acetylated at the N-terminus and methylated at the C-terminus. Starting structures

where obtained from an NMR structure of hIAPP in an membrane environment (PDB ID:

2L86)34. The simulations were performed with the AMBER ff99SB-ILDN35 force field in

explicit water (TIP3P36 water model), using the GROMACS simulation package37 (versions

4.4.5 and 5.0.2). The NVT ensemble was applied, where the V-Rescale thermostat38 was

used to restrain the temperature to 300 K. Cubic boxes, with a minimum distance between

solute and box walls of 1 nm, were used. After an initial equilibration of 100 ps, ten struc-

tures were selected randomly from the trajectory and used as starting conformations for

independent simulation runs, yielding a total simulation time of 13.5 µs. The atom po-

sitions of the solute were saved every 1 ps. We used the leap-frog integrator and applied

periodic boundary conditions in all directions. The LINCS algorithm39 was used to constrain

all bonds to hydrogen atoms (lincs iter = 1, lincs order = 4), allowing for a integration time

step of 2 fs. Lennard-Jones interactions were cut off at 1 nm. The Particle-Mesh Ewald

(PME) algorithm40 was applied to treat electrostatic interactions, with a real space cutoff

of 1 nm, a grid spacing of 0.15 nm, and an interpolation order of 4.

b. Hairpin peptide The all-atom MD simulations of the β-hairpin peptide RGK-

ITVNGKTYEGR have been reported previously15. Briefly, the peptide was simulated

for 7.4 µs in explicit water (TIP3P water model36) at a temperature of 300 K and constant

volume (NVT ensemble). We used charged termini, protonated the arginine and lysine

residues, and deprotonated the glutamic acid residue, and added 3 chlorine anions to obtain

an uncharged simulation box.

B. Variational peptide dynamics

The φ and ψ torsion angle trajectories of each residue were extracted using the GRO-

MACS command g rama. The variational models were constructed using an in-house devel-

oped software package which is freely available at GitHub41. The residue-centered functions
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Rr
l (φ, ψ) (eq. 29) for the AMBER ff99SB-ILDN35 were constructed from simulations which

have been reported in Ref. 26. For this we discretized the φ and the ψ-torsion angles into

36 bins and constructed a Markov state model on the resulting grid of 1296 microstates27.

The residue-centered functions are also freely available at GitHub41.

VI. SUMMARY AND DISCUSSION

A Markov model analysis (conventional or variational) yields two important pieces of

information: long-lived conformations including the timescale of the transitions between

them, and conformational degrees of freedom which mediate the transitions between the

long-lived conformations. In conventional MSM analysis, one first identifies long-lived con-

formations via clustering in the dominant subspace, then interprets the eigenfunctions as

transitions between them10, and finally one identifies the conformational degrees of freedom

which dominate these transitions. That is, these two analyses depend on each other, and any

error in the dominant subspace analysis (e.g. choice of clustering parameters) will carry over

to the identification of relevant conformational degrees of freedom. In variational Markov

models, these two steps can be decoupled if the chosen basis functions represent a mean-

ingful physical transition. Then, one can directly interpret the histograms of the expansion

coefficients in terms of these physical transition without the intermediate step of clustering

in the dominant eigenspace (see activity displays in figs. 2, 7.C, and 9.C ). Independent of

this, one can additionally identify long-lived conformations by clustering in the dominant

eigenspace.

In deriving a physically meaningful basis set for peptide dynamics in ref. 27, we have

made three main assumptions: The dominant eigenfunctions (i) are well approximated by

functions of the flexible backbone torsion angles, and (ii) can be represented by tensors of

residue-centered functions; (iii) the residue-centered functions can be approximated by the

dominant eigenfunctions of the corresponding capped amino acid. Since the full basis set

comprising all tensors of residue-centered basis functions would be far too large even for

medium-sized peptides, we have added a fourth assumption: (iv) The dominant eigenfunc-

tions of the transfer operator are well approximated by those tensors of residue-centered

functions that model concerted conformational exchange at not more than two residues si-

multaneously. In other words, the dominant eigenfunctions are close to the subspace spanned
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by the doubly-active basis functions. Here, we improve and expand this generic peptide ba-

sis set in two important aspects: (v) we ensure orthonormality of the basis set, and (vi) we

account for undersampled transitions.

Orthonormality. The built-in constraint of the VAC forces the approximated eigenfunc-

tions to be orthonormal with respect to a scalar product which is weighted by the sampled

stationary distribution µ̂. This results in the emergence of physically meaningless expansion

coefficients that compensate the lack of orthonormality in the generic basis set with respect

to this system-specific scalar product. The basis set can be straightforwardly orthonor-

malized with respect to the tensor approximation of the system-specific stationary density

µ̂tensor = µ̂1 ⊗ · · · ⊗ µ̂N by orthormalizing the residue-centered basis functions (Ri
0, R

i
1, R

i
2)

with respect to µ̂i. This strategy mildly alters the expansion coefficient pattern, mainly by

reducing the contribution of the constant basis function χ0 to the estimates of the higher

eigenfunctions ri for i > 0. Since this observation concurs with our physical intuition, these

results may be considered a slight improvement in terms of interpretability of the expan-

sion coefficient pattern. Notably, both the implied timescales and the identified metastable

conformations are not affected by the orthonormalization, therefore we conclude that the

estimates of the eigenfunctions within the ansatz space remain virtually unaffected by this

transformation of the basis set, and clustering in the dominant eigenspace is possible both

for the generic and the orthonormalized basis set.

Accounting for undersampled transitions. We can only ensure orthonormality with

respect to µ̂tensor. Any remaining deviation from orthonormality directly depends on the

approximation quality of µ̂ by the tensor measure. By analyzing the overlap matrix, we

found that, in all considered systems, a small share of the basis functions exhibit a sizeable

deviation from orthonormality with respect to µ̂. These functions are doubly active basis

functions that model concerted probability exchange at two residues in the peptide sequence.

Therefore these basis functions signal that the underlying joint distribution of the affected

residues must deviate from the tensor product of the individual marginal distributions. Such

a deviation can be explained either by an actual mutual dependence of the two residues, or

by insufficient sampling of the joint distribution by the MD simulation data. If two residues

are mutually dependent, the tensor measure that correspond to the affected pair of residues

should be replaced by the joint measure of both residues, and tensors of the two residue-

centered basis functions should be replaced by joint functions. However, we found that in our
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examples the observed deviations from the tensor product structure are most likely explained

by insufficient sampling, as the relevant conditional distributions have been generated by

only a very small share of the frames in the simulation data. We chose to remove the affected

basis functions from the basis set. This approach is analogous to removing disconnected

microstates from the set of microstates in MSM analysis. We find that by reducing the basis

set in this manner, the implied timescales and the identified metastable conformations are

not affected. However, the histogram of the expansion coefficients changes.

We tested whether secondary structure formation can be resolved with our basis set,

by applying the reduced orthonormal basis sets on the β-hairpin peptide as well as on a

fragment of the human islet amyloid polypeptide (hIAPP), which forms a variety of struc-

tures including an α-helix. Regarding the β-hairpin peptide, we were able to reproduce

the large and medium-sized metastable conformations that have previously been identified

using the core set method15 with remarkable accuracy. The variational model identifies one

additional metastable state with low population that could not be detected by the core set

method. Since the conformational dynamics of the β-hairpin peptide primarily comprises

several slightly different β-sheet structures, we conclude that the VAC in combination with

the peptide basis set is well suited for the detection of these secondary structures. An ob-

vious question is whether the idea of inferring structural information from the expansion

coefficients of the variational models can be realized in the above examples. In the case

of the β-hairpin peptide, this is partially possible, in the sense that the patterns of dy-

namically active residues in the estimates of the eigenfunctions can be linked to the loci of

the structural transitions between the corresponding metastable conformations. However,

this connection is too unspecific to manually predict structural information solely from the

expansion coefficients.

For the hIAPP fragment, we also obtained a very detailed dynamic model using reduced

orthonormal basis sets basis set. The dynamical network of metastable conformations con-

sists of a central dominant α-helical structure which transitions into several conformations

with lower population. These results show that our basis set can be used to detect and model

the formation of α-helices. However, the hIAPP is much more flexible than the β-hairpin

peptide and the residues seem to move in a more concerted fashion. Thus, interpreting the

histogram of expansion coefficients was not possible for hIAPP.

In summary, the reduced orthonormal peptide basis set is well suited to model the no-
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toriously complex dynamics of unfolded peptides. We believe that it can be used to model

the dynamics of long intrisically disordered peptides and in particular the emergence of

secondary structure elements in amyloid formation or during folding upon binding of the

intrinsically disordered peptides to protein. Additionally, two possible ways to extend our

method arise from the current study. The analysis of the overlap matrix identifies under-

sampled transitions. Our current strategy is to remove the corresponding basis functions

from the data set. Alternatively, one could use this as starting point for an adaptive sam-

pling strategy in which the thus identified transitions are resampled. The second extension

concerns the identification of collective variables. A number of methods have been proposed

recently in which collective variables are proposed based on an analysis of the dominant

eigenspace of the system42–44. Our activity displays identify those torsion angles which are

affected by a given dominant eigenfunction and can thus be regarded as a set of collective

variables. We are curious to see whether the torsional collective variables identified by our

basis set can be used to enhance the sampling and whether they can be combined with path

reweighting methods45,46.
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25Klus, S.; Nüske, F.; Koltai, P.; Wu, H.; Kevrekidis, I.; Schütte, C.; Noé, F. J. Nonlinear
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FIG. 1. Residue-centered functions of alanine, obtained from a Markov state model of the ter-

minally capped amino acid based on ad discretization of the Ramachandran space by a regular

36× 36-grid.
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FIG. 2. Variational model of VGVAPG with generic and reduced peptide basis set. Top: Projection

of the trajectory in the dominant subspace and representative molecular structures of each of the

identified clusters. Bottom: Expansion coefficients of the four dominant eigenfunctions. Below

each histogram the residues are highlighted at which the probability exchange associated with the

large expansion coefficients is located.
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for the VGVAPG peptide at 2 ns lag time using the generic basis set (red), the full orthonormal

basis set (blue) and the reduced orthonormal basis set (green), all of which comprise doubly active

basis functions. The gray bar highlights the position of a basis function that is excluded from the

reduced basis set. B: Implied time scales associated with the first three processes estimated for the

VGVAPG peptide. C: Sorted squared norm values of the orthonormal basis set for the VGVAPG

peptide. The blue shaded area indicates the basis function with squared norm value less than 0.1.
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FIG. 4. A, B: Orthonormalized residue-centered functions mapping probability exchange along

the ϕ-axis of residues 3 (valine) and 4 (alanine) of VGVAPG and the doubly active basis function

that comprises these local functions projected onto their joint state space Ω3 ×Ω4 (B). ArLα ⊂ Ωr

and Arαβ ⊂ Ωr refer to the areas of Ramachandran space of residue r containing the Lα minimum

and the α- and β-minima, respectively. C: Relative difference ∆rel(µ3,4, µ3 ⊗ µ4) of probabilities

measured by the joint distribution µ3,4 and the tensor distribution µ3 ⊗ µ4. D: Illustrations of

the stationary marginal probability measure µ3 on Ω3 (top) as well as the stationary conditional

probability measure µLα3 that quantifies the probabilities of torsion angles on Ω3 given that residue

4 populates the Lα minimum (bottom).
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FIG. 5. A,B: Absolute values of the expansion coefficients corresponding to each basis function

in the estimate of the first (A) and second (B) eigenfunctions of the underlying transfer operator

that associates with the dynamics of the β-hairpin peptide, estimated at a lag time of 30 ns. C:

Implied time scale plots of of the second, third and fourth eigenfunctions computed for the three

different basis sets.
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FIG. 6. A: Sorted squared norm values of the orthonormalized doubly active basis set generated

for simulations of the β-hairpin peptide. The blue shaded area indicates basis functions with

squared norm values less than 0.1. B, C: Orthonormalized local functions mapping probability

exchange along the ϕ-axis of residues 9 (lysin) and 11 (tyrosine) of the β-hairpin peptide (C)

and the doubly active basis function that comprises these local functions projected onto their

joint state space Ω9 × Ω11 (B). ArLα ⊂ Ωr and Arαβ ⊂ Ωr refer to the areas of Ramachandran

space of residue r containing the Lα minimum and the α- and β-minima, respectively. D: Relative

difference ∆rel(µ9,11, µ9⊗µ11) of probabilities measured by the joint distribution µ3,4 and the tensor

distribution µ9 ⊗ µ11, respectively. E: Illustrations of the stationary marginal probability measure

µ9 on Ω9 (top) as well as the stationary conditional probability measure µLα9 that quantifies the

probabilities of torsion angles on Ω9 given that residue 11 populates the Lα minimum (bottom).
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FIG. 7. A: Projection of the β-hairpin trajectory in the dominant subspace and representative

molecular structures of each of the identified clusters. B: Expansion coefficients of the estimates

of the three processes as well as of the ground state. Below the residues are highlighted at which

the probability exchange associated with the large expansion coefficients is located.
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FIG. 8. Structural characterization of the identified clusters of the β-hairpin peptide in the dom-

inant subspace. The left hand side shows the location of the most stable hydrogen bonds within

each cluster. On the right hand side a characterizataion of the secondary structures via DSSP

assignment is shown.
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FIG. 10. Table of content figure

39


