Changes of electrical conductance associated with the stretching or compression of a single-molecule junction sheds light on force-induced enhancement of molecular transport resonance,11 electron transfer reactions,12 spin transitions of an organometallic Fe(II) complex,13 stereoelectronic effects14 and quantum interference features.15 Alterations of the molecule-metal contact configuration16–19 upon junction stretching or compression are another important class of phenomena which translates into mechanoresistive behaviour. Enhanced overlap of \(\sigma \)-orbitals with the metallic electrodes in a compressed junction results, for instance, in higher conductance in thienophen-terminated molecular wires,20 or a rheostat-like behaviour in long oligoenes,21 demonstrating the importance of weak interactions at the nanoscale. Such interactions are however ill-defined in nature, and to date, the measured conductance changes upon junction size modulation are only moderate. Here we present a study of molecular wires with improved mechanoresistive behaviour, based on a methyl thioether and thienyl S-atom bidentate contact configuration. The former acts as primary contact and grants strong mechanical and electrical coupling, while the latter can interact less strongly with a metallic electrode through the S-atom lone pair and provide the additional electronic coupling to enhance conductance in the compressed junction (Figure 1b). Thiophenones are known to make contact to Au electrodes,22 but the interaction is reported as being weaker than traditional contact groups,23 thus making it an ideal “supporting” molecular contact to the stronger methyl thioether. We synthesised the compounds presented in Figure 1a (synthetic details and characterisation in the SI), focussing on the bridged bithiophenes 1·2 to reduce the issues arising from their reduced 5-fold symmetry which results in a large spread of conductance values.24

We characterised the electromechanical behaviour of these compounds by employing a modified17,18 STM-BJ technique.25 In a typical experiment, a piezoelectric actuator drives a Au tip into a Au substrate to form a

1 The supporting information (SI) is available on chemrxiv.org
- Synthetic procedures and characterisation data.
- Further details on the STM-BJ experiments, equipment used, measurement procedure and data analysis algorithms.
- Further theoretical calculations.

2 these authors contributed equally to this work
* Corresponding authors: shiggins@liverpool.ac.uk & c.lambert@lancaster.ac.uk
contact having conductance >5 G₀ (G₀ is the quantum of conductance, ≈77.48 μS). The fresh Au-Au junction is then abruptly stretched by 1 nm, and a modulation is applied to the piezo signal for 100 ms. The junction is then further stretched and modulated several times, to ensure the formation of a single-molecule junction, and its subsequent clean rupture, with an overall stretching of 8 nm. The tip is then driven towards the substrate until the contact once again has a conductance >5 G₀, and the process is then repeated thousands of times. We then used an algorithm to slice the traces between abrupt stretches and discard the traces with no evidence of junction formation and those where the single-molecule junction did not survive the whole modulation process. On average across the experiment presented here, 38% of the traces are kept by the algorithm, and these are subsequently compiled in density maps. More details about the measurements and data analysis can be found in the methods section and the SI. We started our investigation on compound 1 by applying a 3 Å square-wave modulation to the piezo actuator, which abruptly changes the electrode separation and holds the position for 12.5 ms to allow junction relaxation. The amplitude of 3 Å was chosen as being very close to the S-S distance in the (methylthio)thiophene moiety (Figure 1b).

As can be observed in Figure 2, the square-wave modulation applied to the electrode separation results in large and defined changes in the conductance of 1 (Figure 2c). Conductance modulation is reduced when the amplitude of the square wave applied to the piezo is decreased from 3 Å to 2 Å but does not change significantly when the amplitude is increased to 4 Å (See SI for density maps). For comparison, the biphenyl-based compound 3 showed a very small conductance change upon modulation (Figure 2d), which might be due to increased electrode-electrode direct tunnelling or the already reported increased interactions of the electrodes with the phenyl π-system as these junctions are compressed (lateral coupling). The striking difference in behaviour between these two simple biaryl compounds suggests that the thienyl moiety is responsible for the large mechanoresistive phenomenon. To better characterise this behaviour, we turned our attention to compounds 2 and 4, which would also test the versatility of 2-(methylthio)thiophene as a switching contact moiety. In compound 2 the carbonyl substituent has an electron withdrawing effect, and we reasoned this would result in reduced thienyl S-electrode coupling, thereby decreasing the switching magnitude. Compound 4 is a longer oligothiophene, and its purpose is to test whether mechanosensitive behaviour is retained in longer molecular wires. By using the same 3 Å square-wave modulation presented earlier we observed conductance changes of significantly reduced magnitude in 2 as expected (Figure 3a), and well-defined conductance variations in 4 (Figure 3b).

The overall results confirm that the thienyl moiety as responsible for the observed behaviour, with 1 being the compound providing the largest conductance variation upon modulation of the electrode position, as evidenced by analysing the modulation profile (Figure 3c). We therefore exploited this unprecedented high conductance modulation to test the effect of more incremental compression/elongation cycles, and thereby assess the...
potentiometric behaviour of such single-molecule junctions. Under triangular and sinusoidal modulations, the conductance of 1 consistently follows the signal applied to the piezo actuator, as can be observed in Figure 4a. From the triangular ramp the average dependence of the conductance on electrode separation (the observed slope) was calculated as \(e^{0.78/\text{Å}} \), in good agreement with the data obtained with the square wave modulation, which predicts a dependence of \(e^{0.81/\text{Å}} \). We also performed high-frequency modulation experiments (10 kHz, Figure 4b), and compound 1 showed regular changes in conductance correlated with the signal imposed to the piezo actuator, with no apparent fatigue for up to 1000 modulations (additional details in the SI). It should be noted that a 10 kHz frequency is at our instrument limit (200 kSa/s data acquisition system, resulting in 20 points per modulation cycle) and it is therefore possible that even higher switching frequencies can be attained.

To better understand the phenomena leading to conductance modulation, we used density functional theory (DFT) to compute the conductance versus electrode separation for all the molecules (see SI for details). The quantum transport code Gollum36 was used to calculate the transmission coefficient \(T(E) \) for electrons of energy \(E \) passing from the source to the drain electrode via the molecule. If \(T(E) \) varies slowly on the scale of \(k_B T \) at room temperature \(T \), then \(G = G_0 T(E_F) \), where \(E_F \) is the Fermi energy of the gold electrodes. Using compound 4 as example (Figure 5a), we predict that at small tip-tip distances, the gold electrodes interact with both thienyl and thioether sulfurs, resulting in high molecule-electrode coupling and a high transmission coefficient within the gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) resonances (Figure 5c). As the electrode separation is increased, the coupling to the thiophene moiety is reduced and therefore the value of transmission coefficient decreases.

To predict the effect on the conductance \(G = G_0 T(E_F) \), a value for \(E_F \) is needed. In Figure 5c-d, the HOMO and LUMO levels correspond to the resonances in the transmission plots \(T(E) \) located immediately below and above \(E = E_F \) respectively. The precise values of the HOMO and LUMO levels relative to \(E_F \) (and therefore the exact zero of the horizontal axis) depend on environmental conditions and on the unknown shape of the electrodes. However, since the molecules are neither oxidised nor reduced, \(E_F \) lies within the energy gap between the HOMO and the LUMO, and the qualitative change in the conductance with tip-tip distance is determined by the behaviour of \(T(E) \) within the gap. In compound 4, the additional thiophene-Au interactions described earlier result in large variations of the mid-gap value of \(T(E) \) as the electrode position is modulated, and therefore the conductance is also expected to exhibit large variations. In compound 3, which lacks a thiophene moiety, the value of \(T(E) \) within the gap does not change significantly, and the conductance is predicted to be almost independent of the electrode separation. The process was repeated for compounds 1 and 2 (details in the SI) and, in agreement with our experiments, compressing the electrodes leads to strong interactions between the electrodes and the thiophene moieties, causing significant variations of the transmission coefficient over a wide range of energies within the HOMO-LUMO gap. Overall the amplitude of transmission coefficient values correlates well with the experimental data, with compound 1 having the largest
variations in $T(E)$ as the electrode separation is modulated, and compound 3 showing little or no effect. In conclusion, we designed and characterised a series of single-molecule mechanoresistive junctions, based on a bidentate contact moiety that exploits the weak interactions of thienyl sulfurs with Au electrodes. The junctions displayed high sensitivity to the applied mechanical modulation and can operate at kHz speed showing no sign of fatigue for >1000 cycles. The functional moiety is a (methylthio)thiophene, which is directly responsible for the observed behaviour by providing multiple anchoring points (the thienyl and thioether sulfurs) for the metallic electrodes. Our study presents a novel strategy for the introduction of electromechanical functionality in molecular wires and highlights the importance of weak interactions at the electrode interface. Furthermore, as (methylthio)thiophenes and thiophenethiols are widely used as molecular wire termini in molecular electronics, our results shed more light on their unusual electromechanical properties and provide additional insights for the interpretation of their single-molecule conductance trajectories during a break-junction experiment.

Methods

Preparation of compounds 1-4: Compound 1 was synthesised by methylating commercial 4H-cyclopenta[2,1-b:3,4-b]dithiophene with methyl iodide and potassium hydroxide, followed by selective bromination with NBS, halogen-lithium exchange with n-butyllithium and quench with dimethyl sulfoxide. Compound 2 was prepared from commercial 2,2'-bithiophene by tetrabromination with elemental bromine, followed by halogen-lithium exchange with n-butyllithium and quench with dimethyl sulfoxide to yield 3,3',5,5'-dithiomethyl-2,2'-bithiophene. Halogen-lithium exchange with n-butyllithium, followed by low-temperature quench with dimethylcarbamoyl chloride gave 2. Compound 3 was prepared by halogen-lithium exchange of 4,4'-diiodobiphenyl with n-butyllithium, followed by quench with dimethyl sulfoxide. Compound 4 was prepared by double direct lithiation of 2,2':5,2'-terthiophene with n-butyllithium, followed by quench with dimethyl sulfoxide. Detailed procedures and characterisation data can be found in the SI.

Scanning Tunnelling Microscope Break Junction: molecular junctions are formed by repeatedly driving a Au tip into an Au substrate and then pulling it apart in a solution of the desired molecular wire (mesitylene, 1 mM). A constant bias (200 mV) is applied between the tip and the substrate during the measurements, which are performed at room temperature. The tip is retracted in a stepwise manner, creating a nanogap which is held for 100 ms while its size is modulated (see Figure 2a for the signal applied to the piezoelectric actuator). The tip is then retracted until junction rupture and driven into the substrate again. The process is continuously repeated. 1000 cycles are performed on the bare Au substrate prior to the measurements, to perform a mechanical annealing of the tip and ensure absence of contaminants. After the introduction of the molecular wire, 2000-3000 scans are collected and then analysed using automated algorithms. Details on the instrumentation used and data analysis can be found in the SI.

DFT calculations: the optimized geometry and ground state Hamiltonian and overlap matrix elements of each structure was self-consistently obtained using the SIESTA implementation of density functional theory (DFT). SIESTA employs norm-conserving pseudo-potentials to account for the core electrons and linear combinations of atomic orbitals to construct the valence states. The generalized gradient approximation (GGA) of the exchange and correlation functional is used with the Perdew-Burke-Ernzerhof parameterization (PBE) a double-ζ polarized (DZP) basis set, a real-space grid defined with an equivalent energy cut-off of 250 Ry. The geometry optimization for each structure is performed to the forces smaller than 10 mV/Å.

Transport calculations: The mean-field Hamiltonian obtained from the converged DFT calculation was combined with Gollum implementation of the non-equilibrium Green’s function method to calculate the phase-coherent, elastic scattering properties of each system consist of left gold (source) and right gold (drain) leads and the scattering region. The transmission coefficient $T(E)$ for electrons of energy E (passing from the source to the drain) is calculated via the relation: $T(E) = \text{Trace}(\Gamma_{L}(E)G^{R}(E)\Gamma_{R}(E)G^{R\dagger}(E))$. In this expression, $\Gamma_{L,R}(E) = i \left(\sum_{\alpha,L} \langle E - \varepsilon_{\alpha} - \sum_{\alpha,L} \right)$ describe the level broadening due to the coupling between left (L) and right (R) electrodes and the central scattering region, $\sum_{L,R}(E)$ are the retarded self-energies associated with this coupling and $G^{R} = (ES - H - \sum_{\alpha,L} \alpha\varepsilon_{\alpha})^{-1}$ is the retarded Green’s function, where H is the Hamiltonian and S is the overlap matrix. Using obtained transmission coefficient $T(E)$, the conductance could be calculated by Landauer formula $(G = G_{0} \int dt T(E)(-\partial f/\partial E))$ where $G_{0} = 2e^{2}/h$ is conductance quantum and $f = 1/[1 + \exp(E - E_{F})/k_{B}T]$, where E_{F} is the Fermi energy. If $T(E)$ varies slowly of the scale of $k_{B}T$ at room temperature T, then $G = G_{0}T(E_{F})$.

Acknowledgements

This work was supported by UK EPSRC (grants EP/M005046/1, EP/M029522/1, EP/M014169/1, EP/P027156/1, EP/N03337X/1, EP/N017188/1) and the ECH2020 FET Open project 767187 “QuIET”. H.S. and S.S. acknowledge the Leverhulme Trust (Leverhulme Early Career Fellowships no. ECF-2017-186 and ECF-2018-375) for funding.

Author Contributions

A.V., S.J.H. and R.J.N. conceived the project and designed the experiments. N.F, A.V. and M.M. synthesised the compounds used in this study. A.V. developed the STM-BJ instrument and performed the measurements. A.V., S.J.H. and R.J.N. analysed the experimental data. N.A. and S.S. performed the DFT calculations. S.S., H.S. and C.J.L. developed the theoretical explanation. A.V., S.S. and
C.J.L. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Data Availability
NMR spectra (Bruker format) for compounds 1–4 and raw STM-BJ data can be found in the data catalogue in Liverpool at https://datacat.liverpool.ac.uk/id/eprint/549 and at DOI: 10.17638/datacat.liverpool.ac.uk/549.

References