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Radical hydrofunctionalization occurs with ease using metal-
hydride atom transfer (MHAT) catalysis to couple alkenes and 
competent radicalophilic electrophiles. Traditional two-elec-
tron electrophiles have remained unreactive. Herein we report 
the addition of electronically-unbiased olefins into imines and 
aldehydes. Iron-catalysis allows addition of alkyl-substituted 
olefins into imines through the intermediacy of free-radicals, 
whereas a combination of catalytic Co(Salt-Bu,t-Bu) and chro-
mium salts enable a branch-selective coupling of olefins and al-
dehydes through the formation of a putative alkyl chromium in-
termediate. 

  Branch-selective reactions of alkyl-substituted ole-
fins via carbocationic1 or radical intermediates2 benefits 
from an abundance of methods, but the analogous transfor-
mation into branched-carbanion equivalents remains under-
developed (Figure 1). A common way to transform an olefin 
into a carbanion equivalent is via hydrometallation of a dou-
ble bond. However, such branch-selective hydrometallation 
of alkenes is generally limited to styrenes, allenes, and 
dienes3—all electronically biased systems that stabilize a de-
veloping carbon-metal bond.4 In the absence of electronic 
bias, steric constraints dominate: canonical metal hydrides 
favor linear selectivity and linear hydrometallation is pre-
dominately observed.5 To obtain branch-selectivity with 
electronically-unbiased alkenes, we have investigated M—
H hydrogen atom transfer (MHAT) catalysis and subsequent 
capture of the nascent intermediates by a second metal com-
plex.6,7,8 For example, we recently established that nickel 
complexes intercept Co(Salt-Bu,t-Bu)-catalyzed MHAT cycles 
in a direct organocobalt to organonickel transmetallation.7,7 
Similar alkyl transmetallations have been reported in non-
catalytic systems between alkyl—Co(dmgBF2)2Py2 and in-
organic nickel,9 and proposed for bioorganometallic10 and 
catalytic processes.11 This alkyl transfer does not appear lim-
ited to nickel: vitamin B12-mimetics (such as Co(salen) de-
rivatives) can undergo alkyl transfer to palladium,12 rho-
dium,13 other cobalt,14 platinum,15 gold,16 chromium,17 and 
zinc18 salts and organometallics species. Yet despite the ap-
parent generality of this transformation, there is a paucity of 
preparative cross-coupling methods which leverage this re-
activity. 

 
Figure 1: Transformation of olefins into carbanion equivalents by 
a radical/ polar crossover.  

The capacity to form cobalt organometallics via MHAT fol-
lowed by cage-collapse7,19,20,21 prompted us to explore 
transmetallation partners that might lead to otherwise inac-
cessible branched products. Here we show that olefins can 
be added to imines and aldehydes to form sp3-sp3 bonds. 
The former reaction with an activated electrophile occurs 
under standard MHAT catalysis, whereas the latter reaction 
requires interception of MHAT intermediates with chro-
mium salts (Figure 1e). This transformation expands the cur-
rent scope of olefins as carbanion surrogates22 which has 
heretofore required the use of electronically-activated ole-
fins, such as styrene, allenyl, or dienes. Alkyl-substituted 
olefins, in contrast, react with carbonyls at the least-substi-
tuted position through a Prins mechanism,23 or undergo iron-
catalyzed hydromagnesiation reactions to form linear nucle-
ophiles.24,25,26 

 We initially investigated the Markovnikov addition of 
alkenes into carbonyl derivatives by utilizing the intermedi-
acy of the free radicals and noticed that productive reactions
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Figure 2. Alkyl radicals generated by MHAT add to chiral sulfinimines. d.r. of two major diastereomers reported. astereochemistry at the a-carbon 
is (S). bstereochemistry in the a-carbon is (R). cMn(dpm)3 instead of Fe(acac)3 was used. dcontains 15% unrearranged pinene product and its diastereomer. 
 
were only obtained with standard radicalophiles, such as rad-
ical-stabilizing imines. Glyoxylimines are precedented as 
radical acceptors,27 and chiral sulfinyl auxiliaries can be used 
to impart stereocontrol. Although the competitive reduction 
of these electrophiles by the metal hydrides or the stoichio-
metric silane was observed, this could be minimized by us-
ing a slight excess of the olefin and Fe+3 salts as the cata-
lyst.28 Several feedstock alkenes served as competent nucle-
ophilic components and delivered unnatural amino acids de-
rivatives with good to excellent diastereoselectivities. (Fig-
ure 2). The early transition state of radical reactions allows 
facile formation of sterically hindered unnatural α-amino ac-
ids bearing β-quaternary carbons, and reactive groups like 
free-hydroxyls (13) or two-electron electrophiles such as es-
ters, epoxides, or aldehydes (8, 15, and 17) are tolerated. 
Complex feedstock terpenes can engage the sulfinylimines 
to deliver adducts 12, 14, and 15, and even glycans deliver 
amino esters with good diastereocontrol (16). Comparison 
of the optical rotation obtained from our reaction to that of 
t-butyl glycine derivatives shows that sulfinimes with the 
(S)-configuration affords the (S)-amine whereas the (R)-sul-
finime affords the (R)- amine.28 Better diastereoselectivity is 
obtained with the more hindered mesitylene or tri-isopropyl 
arene-derived sulfinamide. Given the ease with which these 
compounds are made (i.e. no prefunctionalization is neces-
sary for radical formation) we anticipate that this method 
will find application in the synthesis of unnatural amino ac-
ids.29   

Addition of the free radical to aldehydes, however,  
proved challenging (see Table 1), as may be expected due to 
the higher instability of an O-centered radical relative to a 
C-centered radical, which is reflected by the more facile C–
C bond scission than C–C bond formation.30 Strategies to 

drive this energetically disfavorable addition include seques-
tering the unstable O-centered radical as an alkoxide (which 
cannot undergo homolytic β-scission) in an intramolecular 
setting31 or accessing excited-states via photochemistry.32 
However, neither strategy may be used for intermolecular  

Table 1. Conversion of C-centered radicals to 2-electron nu-
cleophiles. 

 

Entry Deviations from above Yield 
(%)a 

1 Fe(dpm)3, Fe(acac)3, Co(acac)2 or Mn(dpm)3 
instead of Co(Salt-Bu,t-Bu) < 10% 

2 CrCl2 instead of CrCl3 trace 
3 with Zno or Mno 11% 
4 Co(salen)Cl and no [O] 45%c 
5 no [O] − 
6 0.2 equiv. of CrCl3 instead of 1 equiv. 22% 
7 0.2 equiv. of CrCl3 and TMSCl (1 equiv.) − 
8 in DMF instead of THF/CH3CN − 
9 without CH3CN 35% 

10 under air 46% 
11 with 1 equiv. of H2O − 
12 No Co(Salt-Bu,t-Bu) − 
13 No CrCl3 −d 

ayield determined by GC/FID using a calibrated internal standard; b isolated 
yield with 20 mol % of Co(salen)Cl and CrCl3(THF)3; c1 equiv. of NaBF4 
added; dsome isomerization and hydrogenation was observed; d.r. 1:1 in all 
cases.  
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Figure 3. Conversion of alkenes into carbanion surrogates with branched-selectivity. d.r. at the formed bond is close to 1:1 unless otherwise 
noted. See Supporting Information for the d.r. of the isolated compounds. a20 mol% of [Co] and 20 mol% of [F+] were used.  

addition with alkyl-substituted olefins.33 In light of the prec-
edence for alkyl-cobalt complexes to transmetallate other 
metal species and the apparent facility with which organo-
cobalt species can form from olefins,7,19 we wondered if a 
two-electron nucleophile equivalent could arise from unac-
tivated olefins via sequential one-electron reductions via in-
terception of organocobalt with chromium species.  

 We were drawn to chromium chemistry for several rea-
sons: 1) organochromium reagents are known to add into 
carbonyls in a 1,2-fashion 2) Cr+2 salts are proposed to inter-
cept alkyl-radicals to form organochromium species with bi-
molecular rate constants on the order of 107 M-1s-1,34 3) al-
kyl-cobalamines and -cobaloximes can also be intercepted 
by Cr+2,17,35,36 and 4) chromium salts are inexpensive and of 
low toxicity in the +2 and +3 oxidation states.37 Furthermore, 
the weak Brønsted acidity of organochromium complexes 

allows for a high functional group tolerance and for their use 
in late-stage functionalization for complex molecule synthe-
sis.38 

 Initially, attempts to merge MHAT catalysis and chro-
mium chemistry met with poor results. β-diketonate com-
plexes of Co and Mn were not productive, although iron salts 
afforded the product in low yield (Table 1, Entry 1).39 We 
discovered, however, that use of Co(Salt-Bu,t-Bu) and equimo-
lar amounts of 1-fluoro-2,4,6-trimethylpyridinium tetra-
fluoroborate in the presence of phenylsilane and CrCl3 could 
couple the terminal olefin in 19 to 3-trifluoromethyl benzal-
dehyde in good yields. Given that Cr+2 is typically the active 
species in the addition of alkyl halides into carbonyls, we 
initially explored the reaction using CrCl2 or CrCl3 alongside 
an external metal reductant only to discover that these con-
ditions lead to less product formed than the amount of [Co] 
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pre-catalyst added (Entries 2 and 3). One explanation is that 
the external reductants impede the Co-cycle by unproductive 
reduction of Co+3 intermediates.40 Our optimized conditions 
appear to circumvent this problem by reductive formation of 
Cr+2 in situ (see below). Although it is possible to perform 
this reaction with the pre-oxidized Co(Salt-Bu,t-Bu)Cl, use of 
Co+2 and an external oxidant generally afforded higher 
yields (Entry 4), thereby allowing use of the more conven-
ient +3 and +2 oxidation states of Cr and Co, respectively. 
Control experiments indicate that both metals are necessary 
for product formation (Entries 12-13).41 

 Evaluation of the scope (Figure 3) revealed that both ar-
omatic and alkyl aldehydes are competent electrophiles, and 
a wide range of electronic variation is tolerated. In general, 
electron withdrawn substrates afford higher yields than elec-
tron-rich electrophiles, yet even vanillin-derived aldehydes 
such as 33 and 34 react in high yield. Various heteroaromatic 
aldehydes may be employed (37 - 39), as well as terpene-
derived substrates (41). Esters (45), tosylates (44), and chlo-
rides (46) are orthogonal electrophiles, but competitive re-
duction of bromides, and iodides was observed. A switch in 
solvent from THF to DME allows 1,2-disubstituted olefins 
to be engaged (54 - 57), although trisubstituted olefins are 
not yet competent. Modest diastereocontrol is imparted by a 
chiral directing group (49),42 and sterically bulky substrates 
(35, 43, 50 and 52).43  

Figure 4. Delayed addition and stoichiometric reactions 
suggest transmetallation of alkyl-Co+3 to alkyl-Cr+3. 

 
areactions ran with 20 mol% of [Co] and 20 mol% of [O].  

 Although we currently do not have a complete mecha-
nistic understanding, several observations are worth noting. 
First, the yield of the product formed does not vary as a func-
tion of delayed Cr+3 addition, which is consistent with inter-
mediate formation of an organocobalt species that is en-
gaged by the Cr, and inconsistent with an alternative hypoth-
esis of Cr capture by a freely-diffusing C-centered radical;44 
analogy can be drawn to our previously reported Ni/Co hy-
droarylation7 and the mechanistic studies of Espenson and 
coworkers.35 Stoichiometric experiments support a 
transmetallation and suggest reaction with Cr+2 rather than 
the Cr+3 species. In these experiments, a sec-alkyl cobalt was 
formed in situ by displacement of 2-bromopropane by 
CoI(Salt-Bu, t-Bu); addition of CrCl3 and aldehyde 20 yields no 
product, whereas CrCl2 produces 11% of adduct 58.45 We 
suspect reduction of Cr+3 to Cr+2 occurs via the stoichio-
metric silane reductant necessary for the MHAT catalytic 
cycle.46,47 By analogy to the proposal of Espenson and 
coworkers in similar systems,35 a possible mechanism for the 
alkyl transfer could involve electron transfer from a Cr+2 to 
an alkyl–Co+3 intermediate to form an unstable alkyl–Co+2 
species which is known to homolyze to afford an alkyl radi-
cal that could escape the solvent cage and capture a second 
Cr+2 species, a kinetically facile process (k = 107 M-1s-

1).34,48,49 

 In summary, we have discovered divergent reactivity 
available to alkenes that enables branch-selective (Markov-
nikov) addition to radicalophilic and non-radicalophilic 
electrophiles. First, carbon-centered radicals generated by 
MHAT are competent to add to chiral sulfinimines, which 
stabilize the incipient N-centered radical, and impart stere-
ocontrol. The products of these reactions are valuable, un-
natural amino acid derivatives. Second and complemen-
tarily, although these same radicals do not productively add 
into aldehydes, the addition of Cr+3 salts allows coupling to 
occur. This latter method circumvents the poor reactivity of 
free radicals towards carbonyl intermediates while maintain-
ing the Markovnikov reactivity and chemoselectivity of 
MHAT. Overall, this work enables cross-coupling of abun-
dant chemical feedstocks (aldehydes and olefins) without the 
need for pre-functionalization. Mechanistic experiments and 
analogy to the literature is consistent with alkyl–Co+3 
transmetallation to alkyl–Cr+3, mediated by Cr+2. This sec-
ond example7,7 of catalytic MHAT organocobalt transmetal-
lation calls attention to the potentially general use of these 
alkyl-cobalt complexes as catalytically-generated organo-
metallic species capable of transferring their alkyl ligands to 
various other transition metals (including Ni and Cr) for pre-
viously inaccessible branch-selective bond-forming pro-
cesses from olefins. This reactivity complements catalyti-
cally-generated organocuprate species which can also en-
gage in hydrometallation/ transmetallation, but do so with 
linear selectivity.50 
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the ACS Publications website. 
Detailed experimental procedures, compound characteriza-
tion and spectral data. 
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