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Abstract

A theoretical analysis is performed on the nonlinear ordinary differential equa-

tions that govern the dynamics of a reaction mechanism of zymogen activation.

The reaction consists of a primary non-observable zymogen activation reaction

that it is coupled to an indicator (observable) reaction. The product of the

first reaction is the enzyme of the indicator reaction, and both reactions are

governed by the Michaelis–Menten reaction mechanism. Using singular per-

turbation methods, we derive asymptotic solutions that are valid under the

quasi-steady-state and reactant-stationary assumptions. In particular, we ob-

tain closed form solutions that are analogous to the Schnell–Mendoza equation

for Michaelis–Menten type reactions. These closed-form solutions approximate

the evolution of the observable reaction and provide the mathematical link neces-

sary to measure the enzyme activity of the non-observable reaction. Conditions

for the validity of the asymptotic solutions are also derived, and we demonstrate

that these asymptotic expressions are applicable under reactant-stationary ki-

netics.
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zymogen activation

1. Introduction

Many enzyme catalyzed reactions that occur in physiological processes re-

quire an activation step in which a precursor of a zymogen (inactive enzyme

precursor or pro-enzyme) is converted to an active enzyme. This process, known

generally as zymogen activation [1], is typically the first step in a cascade of cou-

pled enzyme catalyzed reactions [2]. The activation step of the zymogen is itself

an enzyme catalyzed reaction, and the inactive enzyme precursor is activated by

a functional enzyme. The active enzyme can be generated by enzyme-catalyzed

proteolosis or enzyme activation by phosphorylation [3]. For example, the di-

gestive enzyme trypsin, which is the activate form of trypsinogen, is activated

by the enzyme enterokinase; trypsin can then bind with trypsinogen to con-

vert remaining trypsinogen into trypsin [2]. Likewise, plasminogen is activated

by streptokinase to form plasmin (an enzyme), which then degrades fibrin (a

substrate) to break down clots in blood coagulation [4]. Denoting the active en-

zyme, zymogen, activated enzyme, and intermediate complex of the activation

reaction as E1, E
i
2, E2, and C1 respectively, the preliminary zymogen activation

step coupled with its secondary enzyme-catalyzed reaction can be expressed

with the following reaction mechanism:

E1 + Ei2

k1




k−1

C1

k2

→ E1 + E2. (1)

Regardless of the reactants, the zymogen activation step simply produces E2.

The secondary reaction occurs when E2 and substrate S bind to synthesize the

final product P :

E2 + S

k3




k−3

C2

k4

→ P + E2 . (2)
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In the above chemical pathways, k1, k−1, k3, k−3 are rate constants, and k2, k4

are catalytic constants.

As mentioned previously, the reaction mechanism of zymogen activation (1)–

(2) occurs naturally in coagulation cascades [5]. As a distinct example, the

activation of protein C (PC) by thrombin (T ) follows a reaction consistent with

(1):

T + PC

k1




k−1

TPC

k2

→ T +APC (3)

where “APC” denotes the activated form of PC. Assuming S is specific to

APC and does not bind with T , the secondary observable reaction follows the

form of (2):

APC + S

k3




k−3

SAPC

k4

→ APC + P . (4)

Another interesting aspect of coupled enzyme catalyzed reactions with a

zymogen activation step (1)–(2) is the quantification of the catalytic conversion5

of zymogen in vitro. Formally, the quantification of enzyme activity through

measurements obtained from an in vitro assay is mathematically known as an

inverse problem. If the activation step (1) is not detectable experimentally (i.e.,

non-observable), then the secondary reaction step (2) is selected to be an easily

observable reaction. This is done with the goal of measuring the enzyme activity10

of the non-observable reaction through analysis of progress curves generated by

the observable reaction. In this case, the secondary reaction step (2) is known

as the indicator reaction. Traditionally, coupled enzyme assays are designed so

that the product of the non-observable reaction is a substrate for the secondary

enzyme in the indicator reaction (see [6] for specific applications). While this15

type of assay is well-studied [7, 8, 9, 10], in vitro assays that consist of a zymogen

activation step have not been analyzed with the same degree of interest.
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The kinetics of the non-observable zymogen activation step is measured by

decoupling the analysis of progress curves by adding excessive concentrations

E1. The assumption is then made that the first reaction (the activation step)20

is pseudo-first order (PFO) [5]. However, it has been demonstrated that an

excessive concentration of E1 is not sufficient to guarantee the validity of PFO

model. Instead, it is necessary that initial concentration of zymogen for (1) be

much less than the Michaelis constant of the primary reaction [11]. Thus, from

an experimental point of view, it is difficult to ensure the validity of the PFO25

model when the Michaelis constant is unknown.

Since PFO models are difficult to validate when the Michaelis constant is

unknown, it is more convenient to rely on the quasi-steady-state (QSS) models

when quantifying enzyme activity in vitro. If appropriate experimental condi-

tions are employed, then the MM reaction mechanism (5),

E + S

k




k−

C

kcat

→ P + E, (5)

will obey QSS kinetics, and the rate of substrate depletion for the reaction is

described by the MM equation

ṡ = −
V

KM + s
s, (6)

where s is the concentration of S, KM ≡ (k−+kcat)/k is the Michaelis constant,

and V ≡ kcate0 is the limiting rate of the reaction (5). Note that the zymogen30

activation step in (1)–(2) is a single-enzyme, single-substrate reaction. Once

the QSS model is established, the inverse problem is carried out in two stages.

First, experimental data is produced in the form of a progress curve for either

s or p (we have used lower case letters to denote the concentrations of S and

P respectively). Second, the experimental data is then used to estimate both35

KM and V by optimally fitting the model (6) through the utilization of either a

deterministic (i.e., such as Levenburg-Marquardt) or a stochastic (Markov Chain

Monte Carlo) algorithm. In general, one seeks to estimate kinetic constants with
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an expression that contains the fewest number of parameters: this is why the

MM equation is more attractive than the complete set of mass action equations.40

The MM equation is known as a reduced model ; it is reduced in the sense that

it contains fewer variables (s versus s and c) and fewer parameters (KM and V

versus k, k− and kcat).

The inverse problem presents a unique challenge for both experimentalists

and theorists in coupled enzyme assays like (1)-(2). First, the parameters that45

govern the enzyme activity of the non-observable reaction must somehow be

determined from the indicator reaction, since progress curves from a typical in

vitro laboratory experiment can only be generated for the indicator reaction.

Second, a reduced model for the model mechanism of zymogen activation (1)–

(2) must be developed. The reduced model should: (1) decrease the number of50

variables, and (2) lessen the number of parameters needed to describe the time

course of the reaction mechanism (1)–(2).

1.1. Goals of this paper

The primary goal of this paper is the derivation of a reduced model that

can be utilized to quantify the enzyme activity for an experimental assay of the55

model mechanism of zymogen activation (1)–(2). Central to the derivation will

be the application of slow manifold projection. This is challenging for coupled

reactions, since the time to completion of the indicator reaction can occur be-

fore, after, or at approximately the same time as the non-observable reaction.

Furthermore, it is unlikely that the relative speeds and completion time of the60

non-observable reaction will be known. Thus, there is a need derive a reduced

model that is general enough so that its validity is certain regardless of which re-

action is faster. Finally, we will seek a model that admits a closed form solution.

This will eliminate the need to generate explicit progress curves for substrate

depletion of the primary reaction since the time course of substrate (i.e., Ei2) is65

unknown in coupled enzyme assays.
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1.2. Structure of this paper

As mentioned previously, the theoretical reduction analysis of zymogen acti-

vation reactions has been limited to PFO models [12, 1, 13, 4, 2]. Such models

have limited validity in time course experiments [11], and the aim of this work70

is first and foremost to take a necessary “first step” in the nonlinear analysis

of such reactions. First, we will introduce proper scaling techniques that can

be employed in a general methodology to more complicated reactions. In Sec-

tion 3 we will show how to estimate timescales based on these scaling methods,

and we will formulate a reduced model from the analysis of these timescales75

(Section 4). The reduced model admits closed-form solutions in the form of a

Schnell–Mendoza equation [14], and conditions for the validity of the model will

be established. In addition, we will exploit the geometry of the mathematical

structure [15, 16] in extreme situations when the speeds of the reactions are

significantly disparate. This will allow us to “simplify” the reduced model and80

obtain asymptotic solutions that are essentially less complicated (in form) than

both the general reduced model and the system of mass action equations. Fi-

nally, in Section 7, we conclude with a brief discussion of the results and their

relevance in possible future work involving the inverse problem.

2. Derivation of the governing equations for the reaction mechanism85

of zymogen activation (1)–(2)

We first consider the mass action formulation of the zymogen activation

reaction mechanism (1)–(2). In reaction (1), the zymogen Ei2 is effectively a

substrate. To distinguish mathematically between substrates and enzymes in

(1)–(2), we will change notation by replacing Ei2 with S1 in (1), and S with S2
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in (2). Applying the law of mass action yields seven rate equations

ė1 = −k1e1s1 + (k−1 + k2)c1, (7a)

ṡ1 = −k1e1s1 + k−1c1, (7b)

ċ1 = k1e1s1 − (k−1 + k2)c1, (7c)

ė2 = k2c1 − k3e2s2 + (k−3 + k4)c2, (7d)

ṡ2 = −k3e2s2 + k−3c2, (7e)

ċ2 = k3e2s2 − (k−3 + k4)c2, (7f)

ṗ = k4c2, (7g)

where lowercase letters represent concentrations of the corresponding upper-

case species. Typically, laboratory enzyme assays present the following initial

conditions

(e1, s1, c1, e2, s2, c2, p) |t=0 =
(
e01, s

0
1, 0, 0, s

0
2, 0, 0

)
. (8)

We will subsequently refer to (8) as experimental initial conditions. By ex-

amining the system of rate equations (7), the reaction mechanism of zymogen

activation (1)–(2) obeys three conservation laws:

e1 (t) + c1 (t) = e01, (9a)

s1 (t) + c1 (t) + c2 (t) + e2 (t) = s01, (9b)

s2 (t) + c2 (t) + p (t) = s02. (9c)

The solution trajectory to (7) must lie on the intersection of the hyperplanes

defined in (9). This implies the presence of conserved quantities which can be

used to reduce the dimension of the problem. Using (9a) and (9b) to decouple

the enzyme concentrations, the redundancies in the system (7) are eliminated
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to yield

ṡ1 = −k1
(
e01 − c1

)
s1 + k−1c1, (10a)

ċ1 = k1
(
e01 − c1

)
s1 − (k−1 + k2) c1, (10b)

ṡ2 = −k3(s01 − s1 − c1 − c2)s2 + k−3c2, (10c)

ċ2 = k3(s01 − s1 − c1 − c2)s2 − (k−3 + k4)c2, , (10d)

where e1(t), e2(t) and p(t) are readily calculated once s1(t), c1(t), s2(t) and90

c2(t) are known.

3. Rate expressions for the non-observable enzyme catalyzed reaction

The rate equations (10a)–(10b) are uncoupled from (10c)–(10d), and have

the same structure to those of the single-substrate, single-enzyme reaction that

follows the MM mechanism. Therefore, it is possible to derive rate equations to95

model the reaction mechanism of zymogen activation (1)–(2), and estimate its

kinetic parameters using the general theory of the reactant-stationary assump-

tion (RSA, [17]).

3.1. Review of the single substrate, single enzyme MM reaction

It has long been established from the analysis of single-enzyme, single-100

substrate reactions that there there can be a rapid buildup of c1 during an

initial fast transient of the non-observable reaction. After the rapid buildup, c1

is assumed to be in a QSS, and the rate of depletion of c1 approximately equals

its rate of formation:

ċ1 ≈ 0 for t > tc1 . (11)

The timescale tc1 is the time associated with the initial transient buildup of c1,105

and is independent of the initial concentration of E1:

tc1 =
1

k1(KM1
+ s01)

. (12)

In the above equation, KM1
= (k−1 + k2)/k1 is the Michaelis constant for the

zymogen activation step (1). The quasi-steady-state assumption (QSSA, 11),
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in combination with (10a)–(10b), leads to the derivation of the well-known rate

expressions

c1 =
e01

KM1
+ s1

s1 (13a)

ṡ1 = − V1
KM1 + s1

s1. (13b)

In (13b), V1 ≡ k2e
0
1 is the limiting rate of the zymogen reaction. Note that

the mass action equations (10a)–(10b) are reduced to a differential-algebraic

equation systems with a single differential equation for s1 in (13a)–(13b).

Since equations (13a) and (13b) are only valid after the initial fast transient,110

tc1 , it is necessary to define a boundary condition for s1 at t = tc1 . We will

assume that there is a negligible decrease in s1 during the initial buildup of c1.

This is equivalent to the initial experimental condition for the initial rate or

time course experiments. The assumption that the depletion of s1 is negligible

over the fast transient is known as the RSA. Formally, the RSA is115

s1(t < tc1) ≈ s01. (14)

The RSA provides an initial condition for (10a) under the variable transfor-

mation t̂ 7→ t − tc1 . The mathematical expression (13b) is the MM equation,

and the system (13a)–(13b) governs the dynamics of the substrate s1 and com-

plex c1 of the non-observable reaction under the QSS and RSA. The explicit

closed-form solution of (13b), with the initial condition (14), is known as the120

Schnell–Mendoza equation [14], and is written in terms of the Lambert-W func-

tion:

s1
(
t̂
)

KM1

= W
[
σ1 exp(σ1 − η1t̂)

]
, σ1 =

s01

KM1

, η1 =
V1

KM1

. (15)

Asymptotically, Schnell and Mendoza [14] have provided a piecewise solution

for the MM reaction in terms of a fast transient solution for s1 (16a) and a QSS

solution for s1 (16b):

s1 ' s01, t ≤ tc1 (16a)

s1 ' KM1
W
[
σ1 exp(σ1 − η1t̂)

]
, t > tc1 . (16b)
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In addition, from the earlier work of Segel [18], we have the corresponding

approximation for c1:

c1 ' c̄1 [1− exp(−t/tc1)] with c̄1 =
e01

KM1
+ s01

s01, t < tc1 , (17a)

c1 '
e01

KM1
+ s1

s1, t ≥ tc1 . (17b)

Collectively, equations (16a)–(17b) constitute an asymptotic solution that serves

as an accurate approximation to the full time course of (10) when the appropri-

ate qualifiers (i.e, the RSA and the QSSA) are obeyed.125

The time it takes for the majority of the substrate s1 to deplete is given by

ts1 . Although there are several methods for estimating the significant timescales

of chemical reactions [19], we employ the heuristic method proposed by Segel [18],

and approximate the depletion time to be effectively the total depletion of s1

(the total depletion is s01) divided by the maximum rate of substrate of depletion130

after tc1 :

ts1 =
∆s1

max
0≤t
|ṡ1|

=
KM1

+ s01

V1
. (18)

Generally speaking, ts1 is a reasonable measure of how long it takes for a sig-

nificant amount of s1 to deplete, although its precise interpretation depends on

the magnitude of σ1.

3.2. Geometrical picture of the enzyme catalyzed reaction, and conditions for135

the validity of asymptotic solutions of the rate equations

While the asymptotic solutions are useful in that they can be employed to

make certain predictions about the behavior of the reaction, asymptotic theory

fails to yield a visual or geometric understanding of the dynamical behavior of

the zymogen activation reaction mechanism (1)–(2). To paint a complete pic-140

ture of the mathematical structure behind the reaction mechanism, we turn to

dynamical systems theory, and analyze this problem from phase space. From

this perspective, after the initial buildup of c1, the phase space trajectory of the
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non-observable reaction (10a)–(10b) hugs a slow manifold, Mε, and is asymp-

totic toMε in the approach to equilibrium. The time it takes for the trajectory145

to reach the slow manifold is approximately tc1 , and the time it takes for the

trajectory to equilibrium is approximately ts1 . The condition for the validity

of the asymptotic solution resides in how well the c1-nullcline approximates the

slow manifold, and also how straight the phase space trajectory is in its ap-

proach to the slow manifold during the initial fast transient. The former of150

these conditions is known as the QSSA, and the latter is of course the geomet-

rical interpretation of the RSA. We note that if the trajectory is close to Mε,

then the complex C1 is assumed to be in a QSS and the difference between the

rate of C2 depletion is approximately equal to the rate C2 formation.

It was originally proposed that (16a)–(16b) was valid if tc1 � ts1 . However,155

although timescale separation is necessary, the validity of (16a)–(16b) is actually

determined by the validity of the RSA. To determine the criteria for the validity

of the RSA, Segel [20] proposed that if one assumes little change in s1 during

the approach to the slow manifold (an almost straight phase space trajectory

towards the slow manifold), then it should hold that160

max
t≥0
|ṡ1| · tc1 � s01. (19)

Since |ṡ1| ≤ k1s01e01, the strict inequality given in (19) translates to

e01

KM1
+ s01

≡ ε� 1. (20)

Through scaling analysis, Segel [18] went on to show that the RSA determines

single-handedly the validity of the asymptotic solutions2 (16) and (17). In-

troducing the dimensionless variables ŝ1 = s1/s
0
1 and ĉ1 = c1/c̄1, Segel and

Slemrod [20] demonstrated that, with respect to the dimensionless timescale

2Segel did not refer to the condition ε� 1 as the RSA [see 17, for more details].
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τ = t/tc1 , equations (10a)-(10a) scale as

dŝ1

dτ
= ε

−ŝ1 +
σ1

σ1 + 1
ĉ1ŝ1 +

κ1(1 + κ1)−1

σ1 + 1
ĉ1

 , (21a)

dĉ1

dτ
= ŝ1 −

σ1
σ1 + 1

ĉ1ŝ1 −
1

σ1 + 1
ĉ1, (21b)

where κ1 = k−1/k2. Moreover, (10a)-(10a) become

dŝ1

dT
= (κ1 + 1)(σ1 + 1)

−ŝ1 +
σ1

σ1 + 1
ĉ1ŝ1 +

κ1(1 + κ1)−1

σ1 + 1
ĉ1

 , (22a)

ε
dĉ1

dT
= (κ1 + 1)(σ1 + 1)

ŝ1 − σ1
σ1 + 1

ĉ1ŝ1 −
1

σ1 + 1
ĉ1

 , (22b)

when the time is scaled with respect to the depletion timescale T = t/ts1 . Thus,

it is apparent from the dimensionless equations (21a)-(22b) that if ε� 1, then

not only will the RSA hold, but the QSSA also holds. In fact the RSA (i.e.,

ε � 1) is more restrictive than separation of timescales. After some algebraic165

calculations, the separation of timescales (tc1/ts1 � 1) is equivalently expressed

as
e01

KM1
+ s01

�
(

1 +
KS1

K1

)(
1 +

s01
KM1

)
, (23)

where KS1
= k−1/k1, and K1 = k2/k1. For the RSA to be valid, the condition

e01
KM1

�
(

1 +
s01
KM1

)
, (24)

must be satisfied; this is more stringent than condition (23), and hence dictates

the conditions under which equation (13b) or (15) can be applied. For this170

reason, the MM expressions are considered valid under the RSA (see Figures 1a

and 1b) rather than the QSSA [21].

3.3. Scaling analysis of the indicator reaction

The scaling analysis of the indicator reaction requires knowledge of fast and

slow timescales as well as knowledge of reasonable upper and lower bounds of175

s2 and c2. We will start by trying to estimate a depletion timescale for the
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(a)

(b)

Figure 1: Geometrical picture of the single-substrate, single-enzyme non-observable reac-

tion (1) representing the zymogen activation step. (a) Phase space dynamics with e01 =

10, k1 = 1, k2 = 1 and k−1 = 1. (b) Phase space dynamics with e01 = 1, s01 = 78, k1 = 1, k2 = 5

and k−1 = 1. As ε → 0, the accumulation of c1 is more rapid, and the c1-nullcline (dashed

red curve) becomes a better approximation to the slow manifold,Mε, which is the thick black

curve. The slow manifold curve is a graphical representation of the steady-state kinetic rate

equation. The thin black curves are trajectories (numerical solutions of the mass action equa-

tions (10)) starting from different initial conditions, and represent the fast-transient kinetics

of the reaction.

indicator reaction. An accurate depletion timescale should give us a reasonable

estimation of the completion time for the indicator reaction. In the case of the

reaction mechanism of zymogen activation (1)–(2), the completion of the indi-
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cator reaction can be faster, as fast, or slower than the non-observable reaction.180

For the non-observable reaction, the depletion timescale is expressed in terms

of s01, e01, and KM1
:

ts1 =
KM1

+ s01

V1
. (25)

The quantity e01 is the total amount of available enzyme for the non-observable

reaction. The construction of a homologous depletion timescale for the indicator

reaction is problematic since the total amount of available enzyme eA2 ,185

eA2 (t) = s01 − s1 − c1, (26)

is a time-dependent quantity. If we start by assuming the QSSA is valid, then

the mass action equations reduce to

c2 '
eA2 (t)

KM2 + s2
s2, (27a)

s2 ' −
V2(t)

KM2
+ s2

s2, (27b)

where V2(t) ≡ k4e
A
2 (t). The general solution to (27b) is given in terms of a

Lambert-W function:

s2 = KM2
W

σ2eσ2 −
∫ t

0

V2(s) ds/KM2

 . (28)

The term “s” in (28) has been employed as a dummy variable, and σ2 ≡ s02/KM2 .

We will employ a mean-field approach to derive a depletion timescale for the

indicator reaction. Let us first assume that we know the depletion timescale for190

the indicator reaction; we will denote this timescale as Ts2 . The mean available

enzyme over the time course of the indicator reaction is given by

〈eA2 〉 =
1

Ts2

∫ Ts2

0

eA2 (t) dt. (29)

If the completion of the indicator reaction occurs long before the completion

of the non-observable reaction, then we expect 〈eA2 〉 � s01. In contrast, if the

14



completion of the indicator reaction occurs long after the completion of the non-195

observable reaction, then we expect 〈eA2 〉 ≈ s01. In any case, we can define the

depletion timescale as

Ts2 =
KM2

+ s02

k4〈eA2 〉
, (30)

which should yield a reasonable estimate for the slow timescale if the depletion

of s2 is influenced by a slow manifold. Note that KM2
≡ (k−3 + k4)/k3 is the

Michaelis constant of the indicator reaction.200

Next, we want to scale the mass action equations that model the indicator

reaction with respect to the quantities T = t/t̂, s02 and max(eA2 ), where max(eA2 )

is the maximum amount of eA2 over the course of the indicator reaction:

max(eA2 ) ≡ max
t≤Ts2

(s01 − s1 − c1). (31)

Utilizing max(eA2 ) as an upper bound on the available enzyme dictates a natural

scaling of c2:205

c2 ≤
max(eA2 )

KM2
+ s02

s02 ≡ ĉ2. (32)

The remaining upper bounds provide us with the following ensemble of dimen-

sionless variables,

s̄2s
0
2 = s2, c̄2ĉ2 = c2, ēA2 max(eA2 ) = eA2 , Tt̂ = t, (33)

where t̂ denotes an arbitrary timescale. Substitution of (33) into the mass action

equation yields

ds̄2

dT
=

max(eA2 )

〈eA2 〉
t̂

Ts2
(1 + κ2)(1 + σ2)

( σ2

1 + σ2
c̄2 − ēA2

)
s̄2 +

α

1 + σ2
c̄2

 ,
(34a)

λ
dc̄2

dT
=

max(eA2 )

〈eA2 〉
t̂

Ts2
(1 + κ2)(1 + σ2)

(ēA2 − σ2

1 + σ2
c̄2

)
s̄2 −

1

1 + σ2
c̄2

 .
(34b)

In the above expressions, the dimensionless quantities σ2, κ2 and α are:

σ2 ≡ s02/KM2
, κ2 ≡ k−3/k4, α ≡ κ2/(1 + κ2). (35)
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The parameter λ is defined as

λ ≡
max(eA2 )

KM2 + s02
, (36)

and is unique in that if it is sufficiently small, then it mathematically charac-210

terizes the indicator reaction as a singularly perturbed differential equation for

which model reduction is possible through means of projecting onto the slow

manifold.

4. Asymptotic analysis of the reaction mechanism (1)–(2)

Now that we have a good idea as to how the mass action equations of the in-

dicator reaction scale, we want to try and find closed-form asymptotic solutions

to the mass action equations or, at the very least, try and reduce the dimension

of the mass action differential equations. The exact form of the scaled mass

action equations will depend on the slow timescales of both the observable and

non-observable indicator reactions. Thus, given that the respective depletion

timescales of the indicator and non-observable reactions are Ts2 and ts1 , we will

analyze

ds̄2

dT
=

max(eA2 )

〈eA2 〉
(1 + κ2)(1 + σ2)

δS

( σ2

σ2 + 1
c̄2 − ēA2

)
s̄2 +

α

σ2 + 1
c̄2

 , (37a)

λ
dc̄2
dT

=
max(eA2 )

〈eA2 〉
(1 + κ2)(1 + σ2)

δS

(ēA2 − σ2

σ2 + 1
c̄2

)
s̄2 −

1

σ2 + 1
c̄2

 , (37b)

where δS is the ratio of the substrate depletion timescales, δS ≡ Ts2/ts1 , and215

T = t/ts1 . Based on the scaling given in (37a) and (37b, we will derive an

estimate for Ts2 as well as solutions for three particular cases: Case 1: the

indicator reaction is faster than the non-observable reaction (δS � 1). Case 2:

the indicator reaction is roughly the same speed as the non-observable reaction

(δS ≈ 1). Case 3: the indicator reaction is much slower than the non-observable220

reaction (δS � 1).
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4.1. Case 1: The indicator reaction is faster than the non-observable reaction

(δS � 1)

If the indicator reaction is fast, then the completion of the non-observable

reaction will occur long after the completion of the indicator reaction, and the

slow timescale is ts1 . To start the analysis, we will rescale the mass action

equations that govern the non-observable reaction with respect to T̂ = t/Ts2 :

dŝ1

dT̂
= δS(1 + κ1)(1 + σ1)

−ŝ1 +
σ1

σ1 + 1
ĉ1ŝ1 +

κ1(1 + κ1)−1

σ1 + 1
ĉ1

 , (38a)

ε
dĉ1

dT̂
= δS(1 + κ1)(1 + σ1)

ŝ1 − σ1
σ1 + 1

ĉ1ŝ1 −
1

σ1 + 1
ĉ1

 . (38b)

By inspection of (38a), if δS � 1, then s1 will be a slow variable over the Ts2

timescale, and thus we will expect s1 to be essentially constant over the time

course of the indicator reaction. In addition, let us assume that Ts2 � tc1 , in

which case c1 will be on the order of its maximum value on the Ts2 timescale.

Combining these observations leads to the approximation

s1 ' s01, t ≤ Ts2 (39a)

c1 ' εs01, t ≤ Ts2 (39b)

for the non-observable reaction over the timescale Ts2 . Equations (39a) and

(39b) suggest that eA2 � s01 over the Ts2 timescale. Furthermore, since the225

changes in s1 and c1 are comparatively minimal when tc1 ≤ t ≤ Ts2 , the pro-

duction of eA2 is effectively constant over the Ts2 timescale:

ėA2 ≈ εk2s01 ≡ $. (40)

Integration of (40) yields the following approximation of eA2 on the Ts2 timescale

eA2 ≈
∫ t

0

$ du = $t, (41)

where “u” in (41) has been utilized to denote a dummy variable. The ap-230

proximate average value 〈eA2 〉 on Ts2 is easily obtained through straightforward
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integration

〈eA2 〉 =
$

Ts2

∫ Ts2

0

t dt =
1

2
Ts2$, (42)

and insertion of (42) into (30) yields an estimate for Ts2 :

Ts2 =

√√√√2(KM2
+ s02)

k4$
≡ T ∗

s2 . (43)

We can write (43) in a slightly more convenient form by defining the limiting

depletion timescale t∗s2 as235

t∗s2 ≡
KM2 + s02

V2
, (44)

which allows us to express T ?s2 as

T ∗
s2 =

√
2ts1t

∗
s2 . (45)

Note that V2 = k4s
0
1 is defined as the limiting rate of the indicator reaction.

T ∗
s2 should provide an accurate estimate for total completion time of the

indicator reaction as long as the non-observable reaction is comparatively slow.

For a generic (and linear) dynamical system of the form240

ẋ = −ax, x(0) = x0, (46)

the depletion or characteristic timescale is 1/a. Analogously, we will look for

a timescale that is indicative of the time it takes for the initial quantity (i.e.,

x0 in the context of (46)) to deplete to an amount that is less than or equal to

x0/e. Following suit from the linear theory, we will consider the timescale T ∗
s2

to be a sufficient depletion timescale as long as245

s2(T ∗
s2) ≤ s02/e ≈ 0.37s02. (47)

Numerical solutions of the mass action equations confirm the validity of the

timescale T ∗
s2 when the indicator reaction is much faster than the non-observable

reaction provided tc1 � T ∗
s2 (see Figures 2a and 2b).

Next, we develop an asymptotic solution to the mass action equations that

will be valid when T ∗
s2 is an accurate depletion timescale, and the concentrations250
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Figure 2: The accuracy of the timescale T ∗s2 when the indicator reaction (2) is fast (δS � 1).

The solid black curves are numerical solutions to the mass action equations of the complete

reaction (10). The dashed line marks the timescale T ∗s2 and the dotted line represents the

quantity 1/e. (a) The constants (without units) used in the numerical simulation are: e01 =

1, s01 = 100, k1 = 1, k2 = 1 and k−1 = 1. s02 = 10, k3 = 10, k4 = 100 and k−3 = 10. (b)

The constants (without units) used in the numerical simulation are: e01 = 1, s01 = 100, k1 =

1, k2 = 1 and k−1 = 1. s02 = 100, k3 = 10, k4 = 100 and k−3 = 10. In both cases, we see that

the timescale T ∗s2 yields an accurate approximation to the completion time of the indicator

reaction. Time has been mapped to the t∞ scale: t∞(t) = 1− 1/ ln(t+ e).

s1 and c1 remain on the order of their maximum values for the duration of the
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indicator reaction. To begin, let us assume that s02 is large enough so that

max
t≤T∗

s2

(eA2 )� s02, (48)

in which case we can assume λ� 1. Then, from Tikhonov’s theorem, we obtain

c2 '
eA2

KM2
+ s2

s2 (49)

as a leading order approximation. Insertion of this approximation into the mass255

action equation for s2 yields

ṡ2 ' −
k4e

A
2

KM2 + s2
s2. (50)

Finally, substitution of eA2 ≈ $t into (50) gives us

ṡ2 ' −
k4$t

KM2
+ s2

s2 (51)

as our final asymptotic approximation to the differential equations governing

the temporal depletion of s2. Equation (51) has a closed-form solution in the

form of the Schnell–Mendoza equation260

s2 = KM2
W

σ2 exp

(
σ2 −

k4$t
2

2KM2

) , (52)

and provides an accurate approximation to the mass action model (see Fig-

ures 3a and 3b).

4.2. Case 2: The indicator reaction is roughly the same speed as the non-

observable reaction (δ ≈ 1)

If the non-observable reaction and the indicator reaction both complete at265

roughly the same time, then it is appropriate to use either ts1 or Ts2 as the deple-

tion timescale for the complete reaction. Of course, given our earlier definition

of the timescale Ts2

Ts2 =
KM2 + s02

k4〈eA2 〉
, (53)
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Figure 3: The leading order asymptotic solution (52) of the substrate concentration for the

indicator reaction matches the numerical solution when the indicator reaction is faster than

the non-observable reaction (δS � 1). The solid black curves are numerical solutions to the

mass action equations of the complete reaction (7) and the broken red curves are numerical

solutions to the asymptotic differential equation (51). (a) The constants (without units) used

in the numerical simulation are: e01 = 1, s01 = 100, k1 = 1, k2 = 1 and k−1 = 1. s02 = 10,

k3 = 10, k4 = 100 and k−3 = 10. (b) The constants (without units) used in the numerical

simulation are: e01 = 1, s01 = 100, k1 = 1, k2 = 1 and k−1 = 1. s02 = 100, k3 = 10, k4 = 100

and k−3 = 10. Time has been mapped to the t∞ scale: t∞(t) = 1− 1/ ln(t+ e).

we can formulate a nonlinear algebraic equation that will allow us to compute

an estimate for the depletion timescale when the reactions are equivalent in270
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speed. First,

〈eA2 〉 =
1

Ts2

∫ Ts2

0

(s01 − s1 − c1) dt, (54)

and thus we see that Ts2 should satisfy

∫ Ts2

0

(s01 − s1 − c1) dt =
KM2 + s02

k4
. (55)

Second, under the RSA, the concentration c1 is expressible (algebraically) in

terms of s1. Therefore, the integrand given in (55) can be expressed as3

∫ Ts2

0

(s01 − s1 − c1) dt ≈
∫ Ts2

0

(KM1 + s1)∆s1 − e01s1
KM1 + s1

dt, (56)

where ∆s1 = s01 − s1. Third, the definite integral on the right hand side of (56)275

is straightforward to compute analytically; evaluating it will yield a nonlinear

equation in terms of the variable Ts2 , and the solution to (55) can be approxi-

mated numerically. Using the average 〈eA2 〉 provides an accurate estimate of the

depletion timescale (see Figure 4).

From a practical point of view, the utility in numerically estimating Ts2 is

rather minimal. The objective here will be to construct a criteria from which

a reduced model can be extracted from the mass action equations that will be

valid without any a priori knowledge of the intrinsic timescales of the indicator

reaction (or the non-observable reaction). To achieve this, let us first revisit the

generic scaling introduced in the previous section:

ds̄2

dT
=

max(eA2 )

〈eA2 〉
(1 + κ2)(1 + σ2)

δS

( σ2

1 + σ2
c̄2 − ēA2

)
s̄2 +

α

1 + σ2
c̄2

 , (57a)

λ
dc̄2

dT
=

max(eA2 )

〈eA2 〉
(1 + κ2)(1 + σ2)

δS

(ēA2 − σ2

1 + σ2
c̄2

)
s̄2 −

1

1 + σ2
c̄2

 . (57b)

Bearing in mind the assumption δS ≈ 1, it is sufficient (but not necessary) to280

bound λ in order to assemble a dynamical model that can be reduced (asymp-

totically) through slow manifold projection. The upper bound on λ, which we

3The production of eA2 over the tc1 timescale is negligible under the RSA.
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Figure 4: The averaging method for the estimation of the depletion timescale Ts2 for the

indicator substrate is still valid when the non-observable and indicator reactions occur at

roughly the same speed (δS ≈ 1). The solid black curve is the numerically-computed depletion

curve of s2 (10c) and the dotted/dashed black curve is the numerically-integrated depletion

curve of s1 (10a). In this numerical simulation k3 = 1, k4 = 1, k−3 = 10, s02 = 70, and

k1 = 10, k2 = 15, k−1 = 1, e01 = 1 and s01 = 70. Both substrates have been scaled as s2/s02

and s1/s01. Time has been mapped to the t∞ scale: t∞(t) = 1− 1/ ln(t+ e).

denote as λmax, is given by

λ ≤ λmax ≡
s01

KM2 + s02
. (58)

The parameter λmax is the natural small parameter when the indicator is very

slow. Furthermore, if the non-observable reaction completes very quickly rel-285

ative to the non-observable reaction, and δS � 1, then the average available

enzyme should be on the order of s01:

〈eA2 〉 =
1

Ts2

∫ Ts2

0

eA2 dt ≈ s01. (59)

Thus, if s02 � s01, then the approximation

ṡ2 ' −
k4e

A
2

KM2
+ s2

s2 (60)

will be valid if λmax � 1. Furthermore, (60) admits a closed-form solution using

separation of variables that consists of composite Lambert-W functions (we do290
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not present this expression here, although we remark that it is straightforward

to obtain through careful integration). If the RSA is valid, then

ṡ2 ' −
( (KM1 + s1)∆s1 − e01s1

KM1
+ s1

)( k4

KM2
+ s2

)
s2 (61)

is the final form of our reduced differential equation for ṡ2 when the reactions

are comparable in speed.

4.3. Case 3: The indicator reaction is much slower than the non-observable295

reaction (δS � 1)

We now consider the case when δS � 1. As mentioned in the previous

subsection, a very slow indicator reaction suggests that s2 will be slow over the

timescale ts1 . Consequently, we can approximate s2 as

s2 = s02, t < ts1 . (62)

Furthermore, because the non-observable reaction has effectively completed300

when t = ts1 , we can approximate ∆s1 ≈ s01 when t ≥ ts1 . This yields

ṡ2 ' −
k4s

0
1

KM2
+ s2

s2, t ≥ ts1 , (63)

which should be valid if λmax

λmax ≡
s01

KM2
+ s02

(64)

is small. Equation (63) can be integrated directly to yield a Schnell–Mendoza

equation for s2:

s2 = KM2
W [σ2 exp(σ2 − η2(t))] , t ≥ ts1 . (65)

The validity of the approximate solution (62) can be established by the305

mathematical formulation of the RSA for the indicator reaction. If s2 ≈ s02 over

the interval [0, ts1 ], then

max
t≤ts1

|ṡ2| · ts1 � s02. (66)
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The inequality given in (66) translates to

δS � (σ2 + 1)(κ2 + 1), (67)

with max ṡ2 = k3s
0
1s

0
2. Thus, we have a RSA that is applicable to slow indicator

reactions:310

V1

V2
�

KM1

KM2

(1 + σ1)(1 + κ2). (68)

Equation (68) establishes a region of validity for the solution to the mass action

equations during the initial build-up of c2 when t ≤ ts1 . Interestingly, (68)

is analogous to the term used to measure the strength of fully competitive

enzyme reactions with alternative substrates [22, 23]. Numerical simulations

(see Figure 5) confirm the validity of t∗s2 and (63).
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Figure 5: Validity of the timescale t∗s2 and the reduced ordinary differential equation given by

(63) for the substrate depletion of the indicator reaction when the indicator reaction is much

slower than the non-observable reaction (δS � 1). The solid black curve is the numerical

solution to the mass action equations (7) and the solid red curve corresponds to the numerical

solution to (63) extended to t ≥ 0. In this numerical simulation k3 = 0.1, k4 = 1, k−3 =

10, s02 = 10000, and k1 = 25, k2 = 100, k−1 = 1, e01 = 1 and s01 = 100. The respective

values of λmax and δS are ≈ 0.009 and ≈ 0.01. Time has been mapped to the t∞ scale:

t∞(t) = 1− 1/ ln(t+ e).
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5. Applicability of the QSSA for slow indicator reactions

In the context of coupled reactions, timescales are categorized as fast if

they are short in comparison to the depletion timescale (ts1) of the primary

reaction. So far, we have not discussed the transient timescale of the indicator

reaction. This timescale is a “fast” timescale for the indicator reaction that it is320

analogous to tc1 , the transient timescale of the indicator reaction. This timescale

appears when initial conditions start on the c2-nullcline (i.e., in QSS), then the

system may be exhibit a fast transient (analogous to tc1) over which the phase

plane trajectory swiftly travels towards the c2-nullcline, especially if the QSSA

holds over the timescale of interest. However, the QSSA is not necessarily valid325

with respect to the ts1 timescale, and it is possible to derive a timescale that

must be short in comparison to both ts1 and Ts2 in order to apply QSSA over

the time course of the non-observable reaction when the indicator reaction is

substantially slower. Carefully rescaling the mass action equation for c2 with

respect to T = t/ts1 yields330

λ
dc̄2

dT
=

max(eA2 )

〈eA2 〉
(1 + κ2)(1 + σ2)

δS

(ēA2 − σ2

1 + σ2
c̄2

)
s̄2 −

1

1 + σ2
c̄2

 . (69)

If the indicator reaction is slow, and δS � 1, then it is necessary that the

inequality

λ ·
〈eA2 〉

max(eA2 )
·

1

(1 + κ2)(1 + σ2)
· δS =

tc2

ts1
� 1, tc2 ≡

1

k3(KM2 + s02)
(70)

holds in order to impose the QSSA on the ts1 timescale. The timescale tc2 has no

obvious physical interpretation in the context of experimental initial conditions:

it simply arises naturally as a result of the scaling analysis.335

To gain an understanding of the behavior of the indicator reaction over tc2 ,
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we rescale time with respect to T ∗ = t/tc2 :

ds̄2

dT ∗ = λ

( σ2

1 + σ2
c̄2 − ēA2

)
s̄2 +

α

1 + σ2
c̄2

 , (71a)

dc̄2

dT ∗ =

(
ēA2 −

σ2

1 + σ2
c̄2

)
s̄2 −

1

1 + σ2
c̄2. (71b)

We see from the scaled equations (71) that tc2 defines a stagnation timescale

when experimental initial conditions are prescribed and λ� 1. If the timescale

tc2 is short, then the indicator reaction is essentially stationary over tc2 . This

is because s2 scales as a slow variable over tc2 , and the phase space trajectory

should stay near the c2-nullcline over short timescales. Thus, if tc2 is small (i.e.,340

tc2 � min{ts2 , ts1}), then this timescale translates to a scale over which the

indicator reaction exhibits a “slow response”. In fact, any timescale “t∗” that

satisfies t∗ � min{ts1 , Ts2} qualifies as a stagnation timescale.

In addition to the exposition of tc2 as a stagnation timescale (when λ� 1),

the separation of tc2 and ts1 also retains a biophysical interpretation. After the345

initial fast transient of the non-observable reaction, the production rate of eA2 is

roughly

ėA2 '
V1

KM1
+ s01

s01 ≡ max(ėA2 ). (72)

If we demand that the total production of available enzyme be negligible over

tc2 , then it is sufficient to require

max(ėA2 ) · tc2 � s01. (73)

The inequality, (73), is equivalent to tc2/ts1 � 1, and we see that the QSSA350

can be imposed when production of eA2 is asymptotically negligible over tc2 .

Moreover, the relationship between λ, tc2 and Ts2 is now evident:

tc2

Ts2
< λ. (74)

The strict inequality in (74) follows from the fact that

tc2

Ts2
=

λ̄

(1 + σ2)(1 + κ2)
, (75)
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where λ̄ is given by

λ̄ ≡
〈eA2 〉

KM2
+ s02

. (76)

Furthermore, since 〈eA2 〉 ≤ max(eA2 ), we see that355

λ̄ ≤ λ, (77)

from which (74) follows. We note that the parameter λmax is easily derived

using Segel’s heuristic approach [18]:

max |ṡ2| · tc2 � s02 → λmax � 1. (78)

Since it is clear that

λ̄ ≤ λ ≤ λmax, (79)

it follows that the RSA (i.e., λmax � 1) ensures separation of relevant timescales.

Consequently, the RSA for the indicator reaction is a universal qualifier for the360

validity of the reduced model with respect to the timescale Ts2 .

6. Estimation of lag times

Under the QSSA, enzyme catalyzed reactions usually express a lag time.

The lag time is normally defined as the time is takes for the rate of product

generation to reach its maximum (steady-state) value. This coincides with the365

time it takes for c2 to reach its maximum value; it is straightforward to calculate

under the limiting circumstances.

6.1. Estimation of the lag time for fast indicator reactions

Let us start by considering the case when the indicator reaction is very fast;

we will assume s2 is given by370

s2 = KM2
W
[
σ2e

σ2−νt2/2KM2

]
. (80)

If σ2 � 1, then (80) is approximately

s2 ' s02eσ2−νt2/2KM2 . (81)
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Next, notice that under the QSSA we have

c2 ' −
1

k4

ds2

dt
, t ≥ 0. (82)

Differentiating both sides of (82), we see that ċ2 vanishes when s̈2 vanishes:

dc2

dt
' −

1

k4

d2s2

dt2
. (83)

Inserting (81) into the right hand side of (83), and setting the left hand side to

zero yields375

t =

√√√√KM2

V2
· ts1 ≡ t∗c2 . (84)

For the case of the fast indicator reaction, the timescale t∗c2 is identically the lag

time when σ2 � 1 (see Figure 6).
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Figure 6: Validity of the timescale t∗c2 . The curve represents the numerical solution to the

mass action equations (10) (thick black line) with s01 = 100, e01 = 1, k1 = 1, k2 = 1, k−1 =

1, s02 = 1, k3 = 1, k−3 = 1 and k4 = 100. The dashed line corresponds to t∗c2 and is the time

it takes for c2 to reach its maximum value. The total concentration c2 has been scaled by

c2/cmax
2 .

6.2. Estimation of the lag time for slow indicator reactions

For slow indicator reactions will can employ the RSA

max
t≤ts1

|ṡ2| · ts1 � s02, (85)
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which allows us to linearize the mass action equation for c2:380

ċ2 = k3(eA2 − c2)s02 − (k−3 + k4)c2, t ≤ ts1 . (86)

Furthermore we will assume that max(c2) is λmaxs02 when the indicator reaction

is slow. In this case, the timescale ts1 will serve as a good approximation to

the lag time when σ1 very large. However, when σ1 is small, the asymptotic

solution to the MM equation reduces to

s1 = KM1
W
[
σ1e

σ1 − η1t
]
' s01eσ1−η1t. (87)

It follows from (87) that the timescale ts1 is characteristic when σ1 is small; this385

means roughly 1/3 of s01 still needs to be converted to product when t = ts1 .

Consequently, we need an estimate for the time it takes for the non-observable

reaction to complete when σ1 is small. To do this we set

s01e
σ1 − η1t = ε, ε ≡ tc1/ts1 , (88)

and solve for t. This yields

t = −ts1 ln ε ≡ t∗s1 , (89)

and is a much better estimate of the lag time when σ1 is small. A similar analysis390

can be carried out when σ1 is of order unity, but we will not dive into the details

of this calculation here. Numerical results confirm the accuracy of the lag time

estimates ts1 and t∗s1 when the indicator reaction is slow (see Figures 7a– 7b).

7. Discussion395

The primary contributions of this paper are the estimation of scaling vari-

ables and timescale for a reaction mechanism of zymogen activation (1)–(2). The

identification of specific parameters through scaling has yielded necessary and

sufficient conditions for the QSSA and RSA, whereas previous nonlinear studies

of the coagulation cascade with zymogen activation reactions have employed the400
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Figure 7: The validity of ts1 and t∗s1 . The former is the approximate lag time when σ1 is large

(dashed line in panel (a)) and the latter is the lag time when σ1 is small (dashed line of panel

(b)). The solid black curves are the numerical solutions to the mass action equations (7)) of

the complete reaction. (a) The constants (without units) used in the numerical simulation are:

e01 = 1, s01 = 100, k1 = 100, k2 = 10 and k−1 = 1. s02 = 5000, k3 = 1, k4 = 1 and k−3 = 10.

(b) The constants (without units) used in the numerical simulation are: e01 = 1, s01 = 1, k1 =

1, k2 = 100 and k−1 = 1. s02 = 1000, k3 = 1, k4 = 1 and k−3 = 10. Time has been mapped to

the t∞ scale: t∞(t) = 1− 1/ ln(t+ e).

QSSA without justification [24]. Moreover, previous analyses [12, 1, 13, 4, 2]

have only employed PFO kinetic models, and do not provide insight as to how

to properly estimate kinetic timescales via nonlinear methods, even though re-

action mechanism of zymogen activation is inherently nonlinear. This work
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outlines a clear procedure for estimating depletion timescales, and serves as a405

template for the analysis of more complicated reactions. We give a brief sum-

mary of the results of the analysis in what follows.

Scaling analysis of the mass action equations that model the kinetics of

a reaction mechanism of zymogen activation (1)–(2) has revealed two small

parameters:

λmax =
s01

KM2
+ s02

� 1,

ε =
e01

KM1
+ s01

� 1.

The QSSA is valid over the respective depletion timescales of the indicator and

non-observable reactions when both λmax and ε are sufficiently small.

In addition, simple asymptotic solutions to the mass action equations were

derived that are valid when the indicator reaction is very fast (or very slow)

in comparison to the non-observable reaction. If the indicator reaction is fast,

then the time course of the indicator substrate s2 is accurately approximated

by

s2 = KM2W

σ2 exp

(
σ2 −

k4$t
2

2KM2

) ,
where W denotes the Lambert-W function. In contrast, if the indicator reaction

is very slow, then the time course of s2 can be approximated by

s2 = KM2
W

σ2 exp

(
σ2 −

V2t

KM2

) .
Note that the above two expressions are analogous to the Schnell–Mendoza410

equation [14].

It should be pointed out that the condition λmax � 1, which can be ensured

by requiring an excess of the initial amount of substrate s2 (i.e., requiring that

s02 be large enough so that s01 � s02), is sufficient but not necessary for the

validity of the reduced model presented in (61). In general, it is desirable that415

s02 be much larger than the maximum of amount of eA2 over the timescale of
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the indicator reaction. If the indicator reaction is fast, then the maximum

amount of available enzyme will be small; thus, the requirement that s01 � s02

is unnecessary if max(eA2 ) � KM2
(see Figure 7). Of course, the integrity of

the reduced model does not diminish if s01 � s02.

0.0 0.1 0.2 0.3 0.4
Scaled time, t

0.0

0.2

0.4

0.6

0.8

1.0
s 2

/s
0 2

Figure 8: The condition that λ� 1 is necessary for slow manifold projection, Mλ, while the

condition λmax � 1 is merely sufficient. The solid black curve is the numerical solution to

the mass action equations (10) and the broken red curve is to the numerical solution to (61).

In this simulation k3 = 1, k4 = 100, k−3 = 10, s02 = 1, and k1 = 1, k2 = 1, k−1 = 1, e01 = 1 and

s01 = 100. s01/s
0
2 = 100 and λmax ≈ 1. However, max eA2 ≈ 1.543 and therefore λ ≈ 0.014� 1.

Time has been mapped to the t∞ scale: t∞(t) = 1− 1/ ln(t+ e).

420

Finally, three reduced models have been derived that can be utilized in

the analysis of the inverse problem. Our analysis seems to suggest that a fast

indicator reaction is the most favorable case for parameter estimation. If the

indicator reaction has sufficient speed, then theoretically these two expressions,

s2 = KM2W

σ2 exp

(
σ2 −

V2V1t
2

2KM2
(s01 +KM1

)

)
and

ṡ2 = −
( (KM1

+ s1)∆s1 − e01s1
KM1

+ s1

)( k4

KM2
+ s2

s2

)
,

can be utilized simultaneously to estimate the four unknown parameters: V1, V2,

KM1 , and KM2 . However, the complete understanding of the inverse problem is
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beyond the scope of this paper, and we hope to investigate the parameter esti-

mation for the reaction mechanism of zymogen activation (1)–(2) in subsequent

future work.425
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