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In studying a dynamical process of the chemical reaction, it is decisive to get appropriate infor-
mation from an electronic current density. To this end, we divide one-body electronic density into
a couple of densities, that is, an electronic sharing density and an electronic contraction density.
Since the one-body electronic current density defined directly through the microscopic electronic
wave function gives null value under the Born-Oppenheimer molecular dynamics, we propose to em-
ploy the Maxwell’s displacement current density defined by means of the one-body electronic density
obtained under the same approximation. Applying the electronic sharing and the electronic con-
traction current densities to a hydrogen molecule, we show these densities give important physical
quantities for analyzing a dynamical process of the covalent bond.

I. INTRODUCTION

One of the basic problems in the contemporary chemi-
cal reaction theory is to explore and to properly describe
how a complex molecular system composed of many elec-
trons and nuclei splits into many parts, and how some of
these parts recombine with each other under various ex-
ternal situations. For this aim, there have been many
works based on the Born-Oppenheimer approximation
(BOA) [1] or Ehrenfest’s theorem to establish an appro-
priate description on a relation between macroscopic and
microscopic dynamics, classical and quantum dynamics,
and light particle fast motion and heavy particle slow
motion, and so forth [2–11]. In recent studies on these
subjects, electronic motion caused by nuclear motion in
molecules has been studied [12–20], and it is gener-
ally being accepted such an important view point that a
chemical bond process and a bond dissociation process
are induced not by all electrons of a system but only
by a part them. In order to understand the chemical
reaction mechanism, therefore, it is decisive to explore
the electronic motion taking place in association with a
reactants-to-product process, and to examine the elec-
tronic current density which tells us a direction of elec-
tron flow and a number of participating electrons in the
process. Aiming at studying the electronic current den-
sity, one has to exploit the physical quantities with vector
character. Since the physical quantities used in the above
mentioned works have scalar character, it is not suitable
to employ them for studying the electronic current den-
sity. Here, it is meaningful to refer to some works [21, 22],
which explored not on the vector type electronic current
density generated by the adiabatic nuclear motion, but
on that generated by the non-adiabatic effects.
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The aim of this paper is to introduce a new quantity
called an electronic sharing current density (ESCD) and
to show its usefulness in studying the chemical reaction
mechanism. In order to define ESCD, one needs the one-
body electronic current density (OECD) which is usually
given by the probability current density as

j(r, t) =
1

2i

(
ψ∗(r, t)∇ψ(r, t)− ψ(r, t)∇ψ∗(r, t)

)
, (1)

in unit of the atomic unit (a.u.) [23]. Here ψ(r, t) denotes
an electronic wave function of the system. When the
electronic motion is described by the Born-Oppenheimer
molecular dynamics (BOMD) [24], there holds j(r, t) = 0
because of real-valuedness of the electronic wave func-
tion ψ(r, t). Since the same difficulty also arises in an
electronic motion accompanying a quantum nuclear mo-
tion within BOA [25–27], there have been many stud-
ies to overcome this difficulty [28–36]. Although there
are some works [28, 33] which try to describe a flow of
the electronic density within BOMD, physical quantities
adopted in these works do not correctly express OECD
because they are not able to describe such an electronic
current that flows out from the one-body electronic den-
sity (OED) at every point of a space.

In this paper, we treat time-dependence of OED in
a way consistent with the basic assumption of BOMD,
instead of describing the electronic current density in
terms of the microscopic wave function. That is, the
time dependence of OED pertaining to the chemical bond
and bond dissociation processes between atoms within a
molecular system is described by classical relative mo-
tions between nuclei. Namely, we define OECD by apply-
ing a continuity relation of the classical electrodynamics
to OED, whose time dependence comes through a set of
nuclear coordinates. OECD thus introduced describes a
classical or macroscopic electronic motion accompanying
the classical nuclear motion which expresses the chemi-
cal bond and the bond dissociation processes among the
atoms in the molecular system. OECD is then divided
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into two terms. One is composed of a set of overlap dis-
tributions [37] between atomic orbitals belonging to dif-
ferent atoms, and is called ESCD, whereas the other con-
sists of those belonging to the same atom, and is called
an electronic contraction current density (ECCD).

Showing a usefulness of a pair of new quantities dis-
cussed just the above, we focus on the electronic mo-
tion in the covalent bond formation process in the hydro-
gen molecule. Many studies on the covalent bond have
been done by using simple systems H+

2 and/or H2 within
BOA [37–46], and there have been discussed that 1) elec-
tronic delocalization and 2) orbital contraction plays de-
cisive roles in the bond formation process [37, 45]. By
applying two new quantities to the covalent bond for-
mation process in the hydrogen molecule, we show how
well the electronic motion accompanying the (classical)
nuclear motion is described by the present macroscopic
description. It is also shown that there occurs an increase
of an electronic energy in the individual hydrogen atoms
in compensation with an increase of depth in the poten-
tial between two hydrogen nuclei, which favors the cova-
lent bond in forming the hydrogen molecule. Although
the microscopic quantum effects of the electronic current
density beyond the adiabatic treatment are not consid-
ered in the present paper, we discuss them in a future
publication.

This paper is organized as follows: Dividing OED
into a sharing and a contraction parts, and using the
Maxwell’s displacement current density, we discuss a the-
oretical basis for analyzing the chemical reaction in Sect.
II. In order to explore how the covalent bond is formed,
in Sect. III, we also divide the electronic Hamiltonian
into many parts which play respective roles in forming
the covalent bond. The computational details and nu-
merical results of our treatment applied for H2 system
are discussed in Sect. IV and summary is given in Sect.
V.

II. ELECTRONIC CURRENT DENSITY
EXPRESSED BY MAXWELL’S DISPLACEMENT

CURRENT DENSITY

We consider the system whose number of nuclei and
electrons are Nn and Ne, respectively. In BOMD, the
equations of motion for nuclei and electrons are expressed
as [24]

Ĥe({R(t)})ϕe({r}; {R(t)}) = Ee({R(t)})ϕe({r}; {R(t)}),
(2)

MIR̈I = −∇IEe({R(t)}), (3)

where, {r} and {R(t)} collectively express a set of elec-

tronic and nuclear position coordinates. Ĥe({R(t)})
is an electronic Hamiltonian, and Ee({R(t)}) and
ϕe({r}; {R(t)}) are an eigen energy and an eigen state
of the electronic Hamiltonian, and a dot symbol · de-
notes a time derivative. MI , RI and ∇I express a mass,

a position coordinate and its gradient of the I-th nu-
cleus. In the restricted Hartree-Fock (RHF) approxima-
tion [47], the eigen state is expressed in terms of a sin-
gle Slater determinant wave function composed by a set
of spin orbitals {φi(ri; {R(t)})

∣∣α〉, φi(ri; {R(t)})
∣∣β〉; i =

1, · · · , Ne/2} where φi(ri; {R(t)}) and
∣∣α, β〉 denote a set

of spacial orbitals and of spin functions, respectively.
In order to define OECD within BOMD, one may

rewrite the right-hand side of Eq. (3) as [48],

−∇IEe({R(t)}) =− ZI
∫
dr

RI(t)− r

|RI(t)− r|3
ρe(r; {R(t)})

+ZI

∫
dR

RI(t)−R

|RI(t)−R|3
ρn(R; {R(t)}), (4)

where

ρe(r; {R(t)}) = Ne

∫
dr2 · · · drNe |ϕe({r}; {R(t)})|2

= 2

Ne/2∑
i=1

|φi(r; {R(t)})|2, (5)

ρn(R; {R(t)}) =

Nn∑
I=1

ZIδ(R−RI(t)). (6)

In Eqs. (5) and (6), r and R mean position coordinates
of a single electron and a single nucleus, and ZI denotes
an atomic number of the I-th nucleus. Although two
integrals in the right-hand side of Eq. (4) express electric
fields at {R(t)} generated by the electronic and nuclear
charge distributions, it should be emphasized that each
of them is derived from different theoretical frameworks.
Namely, the electronic charge distribution ρe(r; {R(t)})
is determined by the quantum mechanics, whereas the
nuclear charge distribution ρn(R; {R(t)}) is given by the
Nn point charges ZI located at the position determined
by the classical Newtonian equation in Eq. (3).

In order to derive the continuity equation for OED, let
us introduce an electric field Fe(x; {R(t)})) by means of
the first term in the right-hand side of Eq. (4) as

Fe(x; {R(t)})) = −
∫
dr

x− r

|x− r|3
ρe(r; {R(t)}), (7)

where x denotes a spacial parameter. Equation (7) sat-
isfies the following electrostatic relations

∇x·Fe(x; {R(t)}) = −4πρe(x; {R(t)}), (8)

∇x × Fe(x; {R(t)}) = 0. (9)

Taking a time derivative of Eq. (8), one gets a continuity
equation

∂

∂t
ρe(x; {R(t)})+∇x ·

(
1

4π

∂

∂t
Fe(x; {R(t)})

)
= 0. (10)

From the above equation, OECD is defined as

je(x; {R(t)}, {Ṙ(t)}) =
1

4π

∂

∂t
Fe(x; {R(t)}), (11)
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where {Ṙ(t)} denotes a set of velocity vectors of all nu-
clei. Equation (11) is the Maxwell’s displacement cur-
rent density in the classical electrodynamics [49]. Within

BOMD, each vector component jei(x; {R(t)}, {Ṙ(t)})
with i = x, y, z is given as

jei(x; {R(t)}, {Ṙ(t)}) =
1

4π

Nn∑
I=1

ṘI ·∇IFei(x; {R(t)}),

(12)
where Fei(x; {R(t)}) means i = x, y, z-component of the
electric field in Eq. (7). As is clear from Eq. (12),
the displacement current density depends not only on
the nuclear position coordinates but also on the nuclear
velocities. Therefore, when the velocities of all nuclei are
null vectors, the displacement current density in Eq. (12)
is also the case. Here, it should be noticed that Eq. (12)
is compatible with the basic assumption of BOMD where
the time development of the electronic state is postulated
to accompany the nuclear motion.

To explore the dynamical process of forming the cova-
lent bond, let us divide OED into a couple of densities
as

ρe(r; {R(t)}) =

Nn∑
I,J=1

AO∑
µ(I)

AO∑
ν(J)

ρµ(I)ν(J)({R(t)})

×χµ(I)(r)χν(J)(r)

= ρse(r; {R(t)}) + ρce(r; {R(t)}), (13)

where

ρse(r; {R(t)}) =

Nn∑
I 6=J

AO∑
µ(I)

AO∑
ν(J)

ρµ(I)ν(J)({R(t)})

×χµ(I)(r)χν(J)(r),

(14)

ρce(r; {R(t)}) =

Nn∑
I=1

ρcIe (r; {R(t)}), (15)

with

ρcIe (r; {R(t)}) =

AO∑
µ(I),ν(I)

ρµ(I)ν(I)({R(t)})

×χµ(I)(r)χν(I)(r). (16)

Here, χµ(I)(r) is an atomic orbital (AO) of the I-th nu-
cleus located at the position RI(t) in a state charac-
terized by the quantum number µ(I), and a summation
symbol on µ(I) means a sum over the AOs at RI(t). The
single-electron wave function φi(r; {R(t)}) determined
by RHF equation is expanded by the AO as

φi(r; {R(t)}) =

Nn∑
I=1

AO∑
µ(I)

ciµ(I)({R(t)})χµ(I)(r). (17)

Substituting Eq. (17) into Eq. (5), one may get Eq. (13)
where ρµ(I)ν(J)({R(t)}) is a bond order matrix [37] given

by

ρµ(I)ν(J)({R(t)}) = 2

Ne/2∑
i=1

ciµ(I)({R(t)})ciν(J)({R(t)}).

(18)

A partial electronic density ρse(r; {R(t)}) describes a
delocalized density distributed over the multiple atoms
in a molecule, which is recognized by a conditional sum-
mation with I 6= J in Eq. (14), and is hereafter called
an electronic sharing density (ESD). On the other hand,
ρcIe (r; {R(t)}) describes a localized density distributed
around the nucleus I, and its summation over I given as
ρce(r; {R(t)}) in Eq. (15) is called an electronic contrac-
tion density (ECD). Here, it should be noted from Eq.
(13) that neither of these densities satisfies the continuity
equation. By means of Eq. (13), OECD in Eq. (11) is
expressed as

je(x; {R(t)}, {Ṙ(t)}) =

jse(x; {R(t)}, {Ṙ(t)}) + jce(x; {R(t)}, {Ṙ(t)}),(19)

where

jie(x; {R(t)}, {Ṙ(t)}) =
1

4π

∂

∂t
Fie(x; {R(t)})

=
−1

4π

∫
dr

x− r

|x− r|3
∂

∂t
ρie(r; {R(t)}); i = s, c.

(20)

From Eq. (20), it is clear that jie(x; {R(t)}, {Ṙ(t)}) ex-
presses an electronic current density for ρie(r; {R(t)}).
Thus, we hereafter call jse(x; {R(t)}, {Ṙ(t)}) and

jce(x; {R(t)}, {Ṙ(t)}) ESCD and ECCD, respectively.
Using ESCD and ECCD, we examine the dynamical
process of forming the covalent bond in the hydrogen
molecule.

III. ENERGY ANALYSIS OF COVALENT BOND

From the discussions in the previous section, it may be
clear that ESD plays a role to form the covalent bond,
whereas ECD tries to retain an individuality of each
atom. Here, it should be borne in mind that the elec-
tronic Hamiltonian has been divided into various parts
in order to study how the covalent bond is formed dy-
namically [37, 41, 45]. Since one may get many impor-
tant information on the covalent bond by exploring what
role is played by each part of the electronic Hamiltonian
when the covalent bond is formed, let us first introduce
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an atomic internal energy defined as

Econt({R(t)}) = T conte ({R(t)}) + V conten ({R(t)}), (21)

T conte ({R(t)}) =

Nn∑
I=1

AO∑
µ(I)ν(I)

teµ(I)ν(I)ρµ(I)ν(I)({R(t)}),

(22)

V conten ({R(t)}) =

Nn∑
I=1

AO∑
µ(I)ν(I)

vIenµ(I)ν(I)ρµ(I)ν(I)({R(t)}),

(23)

which measures how much energy is used to preserve an
individuality of each atom. In Eqs. (22) and (23), the
following notations are used,

teµ(I)ν(I) =

∫
drχµ(I)(r)

−1

2
∆rχν(I)(r), (24)

vIenµ(I)ν(I) =

∫
drχµ(I)(r)

−1

|r−RI(t)|
χν(I)(r). (25)

By using the atomic internal energy Econt({R(t)}), the
adiabatic potential Ee({R(t)}) for nuclear motion de-
fined in Eq. (3) is divided into

Ee({R(t)}) = Econt({R(t)}) + T share ({R(t)})
+V sharen ({R(t)}) +

〈
V̂ee
〉
({R(t)}) + Vnn({R(t)}), (26)

where

T share ({R(t)}) =
〈
T̂e
〉
({R(t)})− T conte ({R(t)}), (27)

V sharen ({R(t)}) =
〈
V̂en
〉
({R(t)})− V conten ({R(t)}), (28)

with〈
Ô
〉
({R}) ≡

∫
dr1 · · · drNeϕ∗e({r}; {R})Ôϕe({r}; {R}),

(29)

Ô = T̂e, V̂en, V̂ee,

T̂e =

Ne∑
i=1

−1

2
∆ri , V̂en({R}) =

Ne∑
i=1

Nn∑
I=1

−ZI∣∣ri −RI

∣∣ ,
V̂ee =

1

2

Ne∑
i6=j

1∣∣ri − rj
∣∣ , Vnn({R}) =

1

2

Nn∑
I 6=J

ZIZJ∣∣RI −RJ

∣∣ .
(30)

Here, it should be mentioned that T share ({R(t)}) and
V sharen ({R(t)}) play a role to characterize electrons shared
by multiple atoms. The rest terms in Eq. (26) describe
the repulsive Coulomb interactions between arbitrary two
electrons

〈
V̂ee
〉
({R(t)}) and between arbitrary two nuclei

Vnn({R(t)}) which resist the covalent bond.

IV. NUMERICAL RESULTS

The nuclear motion in the hydrogen molecule is deter-
mined by solving Eq. (3) under the following initial con-
dition: At the initial time, two nuclei (two protons) are
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FIG. 1. Time dependence of relative distance R2z(t)−R1z(t)

(red line) and its velocity Ṙ2z(t)− Ṙ1z(t) (green line). Units
are fs for time, Bohr for relative distance (left vertical axis)
and Bohr/fs for relative velocity (right vertical axis).

set on the z axis at ±2.5 Bohr separated by 5 Bohr. Two
nuclei are boosted with relative velocity 0.2 Hartree/fs
along the z axis.

We calculate the forces acting on the nuclei in Eq. (3)
by means of RHF method with the STO-3G basis set, and
integrated it over 12.95 fs by using the fifth-order Gear
method with a time step 0.05 fs. We solve RHF equation
by using the GAMESS package [50]. The maximum error
in the total energy

Etot =

Nn∑
I=1

1

2
MIṘ

2
I + Ee({R(t)}), (31)

during the integration is 2.2×10−6 Hartree which makes
us be sure that the error are sufficiently small.

Using thus obtained classical nuclear position, ve-
locity and quantum electronic states, we calcu-
late je(x; {R(t)}, {Ṙ(t)}), jse(x; {R(t)}, {Ṙ(t)}) and

jce(x; {R(t)}, {Ṙ(t)}).

A. Classical Nuclear Trajectory

The time dependence of a relative distance as well as
that of its velocity between two nuclei in the hydrogen
molecule calculated under BOMD are shown in Fig. 1.
Since the relative distance is symmetric whereas its ve-
locity is asymmetric with respect to a vertical axis at
t = 6.45 fs as illustrated in Fig. 1, the process under
consideration expresses a head-on collision of two nuclei
in the hydrogen molecule. Therefore, we hereafter focus
on it from the initial time till 6.45 fs.
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FIG. 2. Schematic division of reaction area into Region I
(blue), Region II (gray) and bonding region (green). Two
nuclei are indicated by •.

B. Electronic Density Dynamics

Snapshots of OED and OECD are depicted in Fig. 3
which indicates an electronic motion accompanying the
classical nuclear trajectory. A couple of small disks local-
ized at two separated nuclei in Fig. 3a.1 exhibit an ini-
tial OED. With the passage of time, these disks approach
with each other by keeping their shape [Figs. 3a.2, 3a.3],
and then fuse to form one molecule [Fig. 3a.4]. In order
to explore which parts of OED are activated and how
OECD flows when a reaction process proceeds, let us fo-
cus our attention on OECD. From Figs. 3b.1-3b.4, it is
clearly seen that a relatively large electronic current is
generated in two regions: Region I located in the vicin-
ity of each nucleus [Figs. 3b.1-3b.3], and Region II in
areas spreading to a left and right sides of the ”bonding
region” which consists of the molecular axis and its vicin-
ity [Figs. 3b.2, 3b.3]. Namely, a reaction area splits into
three characteristic regions schematically shown in Fig.
2. It is also seen that the magnitude of OECD in these
region increases with time. Main direction of OECD in
Region I is the same as that of the nuclear motion [Figs.
3c.1-3c.3], whereas that in Region II are directed parallel
to the x axis and are headed toward the molecular axis
[Figs. 3c.2, 3c.3]. Although the magnitude of OECD
shown here increases till 5.8 fs, it starts to reduce at 5.8
fs and takes zero at 6.45 fs [Figs. 3b.4, 3c.4], in accor-
dance with the nuclear relative velocity which starts to
decrease at 5.8 fs and takes null value at 6.45 fs [Fig. 1].

In the above analysis, it is not clear how the covalent
bond emerges out of the initial electronic density in Fig.
3a.1 which expresses electronic density of two isolated hy-
drogen atoms. Let us discuss ESD and ESCD of which
snapshots are shown in Fig. 4. At the initial time, there
are almost no distribution of ESD in the xz plane ex-

a.1

a.2

a.3

a.4

b.1

b.2

b.3

b.4

c.1

c.2

c.3

c.4

0.0 fs

3.5 fs

4.5 fs

6.45 fs

FIG. 3. Color coded contours. a.1-a.4 (left panel): OED
ρe(x, y, z; {R(t)}), b.1-b.4 (center panel): absolute value of

OECD |je(x, y, z; {R(t)}, {Ṙ(t)})|, and c.1-c.4 (right panel):

OECD je(x, y, z; {R(t)}, {Ṙ(t)}) on xz plane at y = 0 with
four different times t = 0.0 fs, 3.5 fs, 4.5 fs and 6.45 fs. Hor-
izontal and vertical axes are x and z, respectively. Time is
expressed in unit of fs. Color codes are indicated at the bot-
tom of each panel in unit of a.u.

cept for the bonding region where a very low elliptical
electronic density is observed in Fig. 4a.1. That is, a
delocalized electronic density distributed over two nuclei
is very sparse in the beginning. From Figs. 4a.2-4a.4, it
is recognized that the elliptical electronic density in the
bonding region becomes more dense as time is elapsed.
In order to understand how many electrons participate
to produce the covalent bond, and how many electrons
contribute to maintain two independent hydrogen atoms,
let us enumerate the following quantities defined as

ns({R(t)}) =

∫
drρse(r; {R(t)}), (32)

nIc({R(t)}) =

∫
drρcIe (r; {R(t)}); I = 1, 2, (33)

where Eqs. (14) and (16) have been used. In Eq. (33)
and hereafter, I = 1 and I = 2 mean a left and right
nuclei, respectively. In Fig. 7a.1, a time dependence of
the number of electrons ns({R(t)}) shared by two nuclei
is shown. Although ns({R(t)}) ∼= 0.07 at the initial time,
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a.1
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FIG. 4. Color coded contours. a.1-a.4 (left panel): ESD
ρse(x, y, z; {R(t)}), b.1-b.4 (center panel): absolute value of

ESCD |jse(x, y, z; {R(t)}, {Ṙ(t)})|, and c.1-c.4 (right panel):

ESCD jse(x, y, z; {R(t)}, {Ṙ(t)}). Others are the same as Fig.
3.

it takes ns({R(t)}) ∼= 0.75 when Ee({R(t)}) takes the
minimum value at an internuclear distance 1.341 Bohr
[Fig. 6]. That is, 0.75 electrons are shared by two nuclei
when the system passes through the minimum point of
the potential.

ESCD shown in Figs. 4b.1 and 4c.1 give a very sparse
distribution at the initial time in a way consistent with
ESD in Fig. 4a.1. As time passes, there appears a
very high density region (with an elliptic shell structure)
coated with a color between light blue and red in Figs.
4b.2 and 4b.3. This region is surrounded by much lower
density region. The farther from this area, the lower
the current density. These figures mean that there arises
very strong electronic flow around the bonding region,
i.e. Region II. From the snapshots of ESCD at 3.5 fs
in Fig. 4c.2 and at 4.5 fs in Fig. 4c.3, it is seen that
the flow of ESCD is directed toward a center of mass
of the hydrogen molecule so as to produce the covalent
bond. Namely, Figs. 4b.2 and 4b.3 describes a flow of
electronic current toward the bonding region. After pass-
ing through the minimum point of Ee({R(t)}), ESCD at
6.45 fs is everywhere almost zero as is observed in Figs.
4b.4 and 4c.4 like the case with OECD in Fig. 3. Due to

a.1

a.2

a.3

a.4

b.1

b.2

b.3

b.4

c.1

c.2

c.3

c.4

0.0 fs

3.5 fs

4.5 fs

6.45 fs

FIG. 5. Color coded contours. a.1-a.4 (left panel): ECD
ρce(x, y, z; {R(t)}), b.1-b.4 (center panel): absolute value of

ECCD |jce(x, y, z; {R(t)}, {Ṙ(t)})|, and c.1-c.4 (right panel):

ECCD jce(x, y, z; {R(t)}, {Ṙ(t)}). Others are the same as Fig.
3.

the same reason as in the case of OECD discussed pre-
viously, the magnitude of ESCD increases until 5.85 fs,
then starts to decrease, and finally becomes zero at 6.45
fs.

Snapshots of ECD and ECCD are depicted in Fig. 5.
At the initial time, ECD contains two disks, each of which
is centered at respective nucleus [Fig. 5a.1]. These two
disks approach with each other over time [Figs. 5a.2,
5a.3], and then fuse together [Fig. 5a.4]. These situ-
ation are the same as that of OED. In a marked con-
trast with the case of OED, however, the density of ECD
near the center of two disks decreases over time as ob-
served in Figs. 5a.1-5a.3. This decrease is more clearly
shown in Fig. 8 where ρcIe (r; {R(t)}) defined in Eq.
(16) is depicted as a function of distance from the nu-
cleus. From these figures, one may learn how ECD con-
tributing to maintain the structure of hydrogen atoms
contracts as time proceeds. This decrease is quantita-
tively represented by a number of electrons contained in
ECD given by nIc({R(t)}). As is shown in Fig. 7a.2,
nIc({R(t)}) ∼= 1.0 at the initial time, and then monoton-
ically decreases to nIc({R(t)}) ∼= 0.5 at t = 6.45 fs for
both I = 1, 2.
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Figures 5b.1-5b.3 shows ECCD which have quite differ-
ent structure from Fig. 4b. Namely, there appear strong
electronic current around two nuclei in Fig. 5b rather
than both Region I and Region II (elliptic shell struc-
ture) in the case of ESCD. The direction of ECCD in
Region I is the same as that of the nuclear motion [Figs.
5c.1-5c.3] and that in Region II is parallel to x axis, and
is headed toward the molecular axis [Figs. 5c.2, 5c.3], re-
spectively. Although the results of ECCD looks like the
same as that of OECD in Fig. 3, the width of ECCD
in Fig. 5b.3 is much smaller than that of OECD in Fig.
3b.3. From the above discussion, a strong electronic cur-
rent observed in Figs. 5b.2 and 5b.3 is understood to be
a flowing out electronic current from around two nuclei
in ECD. The magnitude of ECCD shown here increases
until 5.8 fs, and then changes to decrease, and finally be-
comes almost zero [Figs. 5b.4, 5c.4] caused by the same
reason as that of the OECD.

This subsection is summarized as follows; i) From the
initial condition and OED in Fig. 3, the system at the
initial time is regarded as two isolated hydrogen atoms in
the ground state. ii) As observed from ESD in Fig. 4 and
ECD in Fig. 5, the following two phenomena occur si-
multaneously when the two nuclei get closer; a reduction
of electronic density in the vicinity of two nuclei (Region
I), and an increase of electronic density in the bonding
region. iii) The above simultaneous change is caused by
an electronic transfer from Region I to the bonding re-
gion, which is visually analyzed through the electronic
currents ESCD and ECCD, rather than OECD.

C. Formation of Covalent Bond

In the previous subsection, it is shown that, when two
hydrogen atoms come close with each other, ESD gets
more dense, whereas ECD becomes more sparse than be-
fore. It is also discussed that there arises electronic cur-
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FIG. 7. Upper panel: number of electrons ns({R(t)}) in ESD
as a function of time. Lower panel: number of electrons
n1
c({R(t)}) for nucleus 1 (red dashed line), and n2

c({R(t)})
for nucleus 2 (green dashed line) in ECD as a function of
time. Time is in units of fs.

rent toward the center of hydrogen molecule (bonding
region) from the vicinity of each nucleus (Region I) so as
to produce the covalent bond.

In order to understand dynamical reason for produc-
ing the hydrogen molecule out of two hydrogen atoms, let
us first discuss the atomic internal energy Econt({R(t)})
given in Eq. (21). By comparing its structure with
ρce(r; {R(t)}) in Eqs. (15) and (16), it is clearly recog-
nized that Econt({R(t)}) sheds light on other aspect of
ECD. As shown in Fig. 10a.1, the atomic internal energy
at the initial time Econt({R(t = 0)}) ∼= −0.9 a.u. which
is very close to a twice of the 1s state energy (ioniza-
tion energy E0 = −0.5 a.u.) of the hydrogen atom. A
quantity defined as Eintri({R(t)}) = (Econt({R(t)}) −
Econt({R(t = 0)}))/2 is called an intrinsic excitation en-
ergy of hydrogen atoms. Eintri({R(t)}) increases with
time and takes the maximum value at 6.45 fs. Here, it
should be noticed that a number of electrons nIc({R(t)})
introduced in Eq. (33) decreases as a function of time.
Taking account of this point, one may understand that
a pair of contracted hydrogen atoms is rather highly ex-
cited.
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Let us focus on the adiabatic potential Ee({R(t)})
which decreases till 5.75 fs, and then increases [Fig.
9a.1]. Since the Coulomb force between two nuclei
is repulsive, and becomes large when they come close
with each other, it is natural to divide Ee({R(t)}) into
Ee({R(t)})− Vnn({R(t)}) and Vnn({R(t)}). From Figs.
9a.2 and 9a.3, it is seen that Ee({R(t)}) − Vnn({R(t)})
decreases, whereas Vnn({R(t)}) increases monotonically.
Thus, the stationary point of Ee({R(t)}) appears as a
result of competition between Ee({R(t)})−Vnn({R(t)})
and Vnn({R(t)}).

Our next task is to examine what term in the right-
hand side of Eq. (26) causes a decrease of Ee({R(t)})−
Vnn({R(t)}) which is responsible for making the hydro-
gen molecule more stable than two separated hydrogen
atoms. From Fig. 10a.1, it is apparent that the quan-
tity Econt({R(t)}) does not contribute to a decrease of
Ee({R(t)}) − Vnn({R(t)}). As is also clear from Fig.
10a.4, the repulsive Coulomb force between electrons〈
V̂ee
〉
({R(t)}) increases when two nuclei approach with

each other. Figure 10a.2 shows that the sharing term of
electronic kinetic energy T share ({R(t)}) in Eq. (27) in-

creases more rapidly than
〈
V̂ee
〉
({R(t)}). The sharing

term V sharen ({R(t)}) of the attractive Coulomb interac-
tion between electrons and nuclei is depicted as a function
of time in Fig 10a.3. From the above numerical results,
it is concluded that two hydrogen atoms are combined
into one molecule only by the term V sharen ({R(t)}) alone.

In order to explore which electronic density, either ESD
or ECD, plays a dominant role in producing the covalent
bond, we divide V sharen ({R(t)}) into two by using Eqs.
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FIG. 9. a.1: Adiabatic potential Ee({R(t)}), a.2:
Ee({R(t)})−Vnn({R(t)}), and a.3: Coulomb energy between
nuclei Vnn({R(t)}) as a function of time. Time is in units of
fs and the others are in units of a.u.

(14) and (16) as

V sharen ({R(t)}) =

Nn∑
I=1

vIen({R(t)}) +

Nn∑
I(6=J)=1

vIJen ({R(t)}),

(34)
where

vIen({R(t)}) =

∫
dr

−1∣∣r−RI(t)
∣∣ρse(r; {R(t)}), (35)

vIJen ({R(t)}) =

∫
dr

−1∣∣r−RI(t)
∣∣ρcJe (r; {R(t)}). (36)

From the above equation, it is clearly understood that
vIen({R(t)}) expresses the Coulomb energy between the
I-th nucleus and ESD, and plays a role in stabilizing
the covalent bond realized in ESD. On the other hand,
vIJen ({R(t)}) expresses the Coulomb energy between the
I-th nucleus and the electronic density localizing around
the J-th nucleus. That is vIJen ({R(t)}) tries to draw out
an electron from the J-th atom, and to put it into the
I-th nuclei with I 6= J . In other words, vIJen ({R(t)})
tries to generate the covalent bond between two atoms
(I and J), not to leave them as two independent hydro-
gen atoms. From our numerical calculation depicted in
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Fig. 11, it is seen that both vIen({R(t)}) and vIJen ({R(t)})
give a negative contribution to V sharen ({R(t)}), and the
former is much more dominated than the latter. From the
above discussion, it is clearly understood that the term
V sharen ({R(t)}) plays an essential role in producing the
stationary point in the adiabatic potential Ee({R(t)})
which conducts two hydrogen atoms to the hydrogen
molecule by producing the covalent bond discussed in
the previous subsection.

This subsection is summarized as follows; i) When
two hydrogen atoms come close with each other, there
emerge four effects which prevent two hydrogen atoms
from forming the hydrogen molecule; the repulsive
Coulomb interactions among electrons

〈
V̂ee
〉
({R(t)}),

those among nuclei Vnn({R(t)}), a part of electronic ki-
netic energy T share ({R(t)}) and the atomic internal en-
ergy Econt({R(t)}). ii) Paying the excitation energy
Eintri({R(t)}) to each of hydrogen atoms which try to
preserve their atomic structure, V sharen ({R(t)}) produces
the covalent bond by overcoming the repulsive effects
coming from

〈
V̂ee
〉
({R(t)}), Vnn({R(t)}), T share ({R(t)})

as well as Vnn({R(t)}). iii) When two hydrogen atoms
come much closer, Vnn({R(t)}) gets much more repulsive
energy which can’t be overcome by V sharen ({R(t)}). This
competitive process determines a stationary point of the
hydrogen molecule.
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line), and I = 2, J = 1 (green-dashed line). Coulomb energy
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V. SUMMARY

To explore a dynamical process with respect to the
bond and the bond dissociation processes taking place in
chemical reactions, it is decisive to define the electronic
current density. Since OECD defined directly through
the microscopic electronic wave function gives null value
under BOMD, it has been considered hard to extract
the relevant information from it. Getting over the above
difficulty, in this paper, we have proposed to utilize the
Maxwell’s displacement current density defined by OED
under BOMD.

Since OECD thus introduced turned out to be not suf-
ficient in studying the chemical reaction processes, we
divided it into two densities; One is composed of the
overlap distributions between atomic orbitals belonging
to different atoms (sharing density), and is denoted as
ESD, whereas the other consists of those belonging to
the same atom (contraction density), and is expressed as
ECD. ESD plays a role to generate the covalent bond,
whereas ECD tries to retain independent character of
each atom. In the same way as OED, OECD is divided
into ESCD and ECCD. By applying ESCD and ECCD
to analize the head-on collision of two hydrogen atoms,
in this paper, we have shown how ESD accumulates in
the bonding region to create the covalent bond, and how
electrons in the ECD go away from each atom by con-
tracting its size.

In order to further explore a direction of reaction pro-
cess, it is important to understand how the adiabatic po-
tential Ee({R(t)}) depends on various parts of OED. By
the use of ESD and ECD, it is found that the Coulomb
interaction between ESD and nuclei, i.e. V sharen ({R(t)})
plays a decisive role in producing the covalent bond in
the hydrogen molecule.
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Appendix A: Calculation of Eq. (11)

By substituting Eq. (7) to Eq. (11) with Eq. (13), one
gets

je(x; {R(t)}, {Ṙ(t)}) =
1

4π

Nn∑
IJ=1

AO∑
µ(I)ν(J)[

∇xφµ(I)ν(J)(x;RI(t),RJ(t))
∂

∂t
ρµ(I)ν(J)({R(t)})

+ ρµ(I)ν(J)({R(t)}) ∂
∂t
∇xφµ(I)ν(J)(x;RI(t),RJ(t))

]
,

(A1)

where

φµ(I)ν(J)(x;RI(t),RJ(t)) =

∫
dr

1

|x− r|
χµ(I)(r)χν(J)(r).

(A2)
Expanding AO as a linear combination of the Gaussian
type orbitals (GTO) gi(r−RI(t)),

χµ(I)(r) =

GTO∑
i

d
µ(I)
i gi(r−RI(t)), (A3)

one obtains

φµ(I)ν(J)(x;RI(t),RJ(t))

=

GTO∑
ij

d
µ(I)
i d

ν(J)
j φij(x;RI(t),RJ(t)), (A4)

where d
µ(I)
i denotes the contraction coefficients and

φij(x;RI(t),RJ(t))

=

∫
dr

1

|x− r|
gi(r−RI(t))gj(r−RJ(t)). (A5)

Using the STO-3G basis set, one evaluates
∇xφij(x;RI(t),RJ(t)) and ∂/∂t∇xφij(x;RI(t),RJ(t))
of the hydrogen molecule as

∇xφij(x;RI(t),RJ(t)) = −4π

(
2ζi
π

) 3
2
(

2ζj
π

) 3
2

×(x−Rp(t))e
−
ζiζj
ζp

R2
IJ (t)F2(ζpx

2
p(t)), (A6)

∂

∂t
∇xφij(x;RI(t),RJ(t)) = 4π

(
2ζi
π

) 3
2
(

2ζj
π

) 3
2

e
−
ζiζj
ζp

R2
IJ (t)

×
[{

Ṙp(t) + 2
ζiζj
ζp

(RI(t)−RJ(t))·(ṘI(t)− ṘJ(t))(x−Rp(t))

}
×F2(ζpx

2
p(t))− 2pF4(ζpx

2
p(t))Ṙp(t)·(x−Rp(t))(x−Rp(t))

]
,

(A7)

where ζi and ζj are orbital coefficients, ζp = ζi + ζj ,
RIJ(t) = |RI(t) − RJ(t)| and Rp(t) = (ζiRI(t) +
ζjRJ(t))/ζp. Fn(x) is defined as

Fn(x) =

∫ 1

0

dττne−xτ
2

. (A8)
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