
Resonant Inelastic X-Ray Scattering and Non

Resonant X-ray Emission Spectra from

Coupled-Cluster (Damped) Response Theory

Rasmus Faber∗ and Sonia Coriani∗

Department of Chemistry, Technical University of Denmark,

Kemitorvet Building 207, 2800 Kongens Lyngby, Denmark

E-mail: rfaber@kemi.dtu.dk; soco@kemi.dtu.dk

October 10, 2018

Abstract

A coupled cluster protocol rooted in damped response theory is presented for com-

puting Resonant Inelastic X-Ray Scattering spectra of molecules in gas-phase. Work-

ing equations are reported for both linear (i.e., equation-of-motion) and non-linear

parametrizations of the coupled-cluster wavefunction response. A simple scheme to

compute non-resonant X-ray emission spectra is also proposed. Illustrative results are

presented for water.

1 Introduction

Resonant Inelastic X-ray Scattering (RIXS), an X-ray analog to resonance Raman spec-

troscopy, is one of the (high resolution) spectroscopic techniques exploiting X-ray radiation

that has gained increasing popularity in recent years in parallel with the advancements in

X-ray radiation sources and facilities, in particular synchrotrons.
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RIXS combines X-ray absorption (XAS) with X-ray emission (XES); it can be viewed

as a two-photon process that starts with the excitation of a core electron into a valence

orbital, as in XAS, followed by detection of a photon emitted by the decay of an electron

from a different orbital when filling the core hole, as in XES.1,2 Thus, while XAS provides

information about the unfilled density of states, RIXS probes the electronic structure of the

filled density of states.

RIXS data are often reported as two-dimensional plots, where, for instance, the incident

energy is on the x-axis and the (incident − emitted) energy transfer is on the y-axis,3 or

where the incident light/excitation energy is on the y axis and the emission energy is on the

x axis.4 The higher dimensionality of the RIXS data gives more information than standard

XAS experiments. RIXS experiments can be performed in a variety of ways on a variety of

samples. For example, in the soft X-ray regime (0.1–2 keV), RIXS has been performed on the

C, N, and O K-edges in small molecules,2,4–7 metal oxides,8 and coordination compounds.3,9

As for other X-ray spectroscopies, the interpretation of the RIXS spectra is facilitated

by ab initio computations of the spectroscopic observables, i.e., in the specific case, calcula-

tions of the RIXS cross-sections based on the Kramers-Heisenberg-Dirac (KHD) formula.1,10

However, as pointed out for instance by Rehn and coworkers,11,12 the KHD sum-over-states

(SOS) expression10 may converge slowly and require a large number of terms in order to

span the spectral range of valence and core-excited states. One may therefore argue that

the accuracy of computational methods that only include a few selected channels is only

qualitative.

Recently, Rehn et al. 12 have proposed a resonance convergent approach to RIXS cross

sections based on the algebraic diagrammatic construction (ADC)13 of the polarization prop-

agator in its so-called intermediate state representation (ISR) variant.14,15 Inspired by the

work of Rehn et al.,12 we present here a coupled cluster methodology to compute RIXS

amplitudes and cross sections of medium-sized molecules based on (damped) response the-

ory16,17 and equation-of-motion (EOM)18–20 coupled cluster at the coupled-cluster singles
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and doubles level (CCSD). To the best of our knowledge, this is the first time that coupled

cluster methods are extended to the computation of RIXS spectra.

A simple scheme to compute non-resonant X-ray emission spectra is also proposed, that

does not require unrestricted Hartree-Fock calculations of the neutral species and the cations.

Illustrative results are reported for the water molecule in gas-phase, which allows us to

directly compare with the results obtained at the ADC level by Rehn et al. 12 and with

existing experimental data.

2 Theory

2.1 The KHD scattering amplitudes in CC and EOM-CC response

theory

According to time-dependent perturbation theory, the (right) KHD scattering amplitudes

can be written as10,12

Ff0XY (ω) =
∑
n


〈

Ψf

∣∣∣X̂∣∣∣Ψn

〉〈
Ψn

∣∣∣Ŷ ∣∣∣Ψ0

〉
ωn − (ω + iγn)

+

〈
Ψf

∣∣∣Ŷ ∣∣∣Ψn

〉〈
Ψn

∣∣∣X̂∣∣∣Ψ0

〉
ωn + (ω′ + iγn)

 , (1)

where ω is the frequency of the incident beam, ω′ that of the emitted one, and the inverse

lifetime parameters of the excited states γn have been introduced in a phenomenological

way.21–23 As commonly done in damped response theory,24–27 one can simplify the above

expression by assuming that all excited states have the same inverse lifetime γ, so that the

KHD right amplitudes reads

Ff0XY (ω) =
∑
n


〈

Ψf

∣∣∣X̂∣∣∣Ψn

〉〈
Ψn

∣∣∣Ŷ ∣∣∣Ψ0

〉
ωn − (ω + iγ)

+

〈
Ψf

∣∣∣Ŷ ∣∣∣Ψn

〉〈
Ψn

∣∣∣X̂∣∣∣Ψ0

〉
ωn + (ω′ + iγ)


=
∑
n>0


〈

Ψf

∣∣∣X̂∣∣∣Ψn

〉〈
Ψn

∣∣∣Ŷ ∣∣∣Ψ0

〉
ωn − (ω + iγ)

+

〈
Ψf

∣∣∣Ŷ ∣∣∣Ψn

〉〈
Ψn

∣∣∣X̂∣∣∣Ψ0

〉
ωn + (ω′ + iγ)


(2)
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with e.g. X̂ = X̂ −
〈

Ψ0

∣∣∣X̂∣∣∣Ψ0

〉
. If γ = 0, Eq. (2) is identical to the conventional expression

for the two-photon transition matrix element between state |Ψ0〉 and |Ψf〉, subject to the

resonant condition ω − ω′ = ωf .
28,29 The latter has been shown long ago30 to be obtainable

as residue of a quadratic response function, and several implementations within different

wavefunction/density functional frameworks have appeared over the last three decades.31

The KHD scattering amplitude given above can then be regarded as a two-photon transition

matrix element where a complex damping factor is added to the frequencies ω and ω′ as to

maintain the same resonant condition – in other words, assuming a Y field oscillating with

frequency ω+ iγ and a second field, X, oscillating with frequency (−ω′− iγ), subject to the

resonant condition (ω + iγ) + (−ω′ − iγ) = ω − ω′ = ωf .

By analogy, we derive the KHD right scattering amplitude by heuristically introducing a

damping term in the CC expression for a two-photon (right) transition moment17

CCFf0XY (ω) = −Lf
(
AXtY (ω + iγ) + AY tX(−ω′ − iγ) + BtY (ω + iγ)tX(−ω′ − iγ)

)
(3)

where Lf indicates the left excitation vector. The latter is, like its right counterpart Rf ,

obtained solving the CC eigenvalue equations

LfA = ωfLf ; ARf = ωfRf (4)

under the biorthogonality condition LjRk = δjk. The Jacobian matrix A is defined as16,17

Aµν = 〈µ| exp(−T )[Ĥ, τν ] exp(T )|HF〉 ≡ 〈µ|[ĤT , τν ]|HF〉 (5)

the B matrix is given by

Bµνρ = 〈µ| exp(−T )[[Ĥ, τν ], τρ] exp(T )|HF〉 ≡ 〈µ|[[ĤT , τν ], τρ]|HF〉 (6)
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and the property Jacobian AY (for operator Ŷ ) is defined as

AYµν = 〈µ| exp(−T )[Ŷ , τν ] exp(T )|HF〉 ≡ 〈µ|[Ŷ T , τν ]|HF〉 (7)

with Ŷ T = exp(−T )Ŷ exp(T ). We refer to Refs. 16,17 for the definition of the remaining

terms. The complex response amplitudes, tY (ω + iγ), are found solving32

[A− (ω + iγ)I] tY (ω + iγ) = −ξY (8)

with (generally complex) right-hand-side

ξYµ = 〈µ| exp(−T )Ŷ exp(T )|HF〉 ≡ 〈µ|Ŷ T |HF〉 . (9)

We will return on the solution of Eq. (8) in section 2.3.

In exact theory, the left transition moment is simply the complex conjugate of the right,

i.e.

F0f
XY (ω) =Ff0XY (ω)∗

=
∑
n


〈

Ψ0

∣∣∣Ŷ ∣∣∣Ψn

〉〈
Ψn

∣∣∣X̂∣∣∣Ψf

〉
ωn − (ω − iγ)

+

〈
Ψ0

∣∣∣X̂∣∣∣Ψn

〉〈
Ψn

∣∣∣Ŷ ∣∣∣Ψf

〉
ωn + (ω′ − iγ)

 . (10)

In CC theory, the left and right transition moments are different, but we can again take

inspiration from the above equation and compute the left transition moment generalizing

the two-photon left transition moment of CC response theory17

CCF0f
XY (ω) = −

(
t̄X(ω′ − iγ)

[
AY + BtY (−ω + iγ)

]
+ t̄Y (−ω + iγ)

[
AX + BtX(ω′ − iγ)

]
+FXtY (−ω + iγ) + FY tX(ω′ − iγ) + GtX(ω′ − iγ)tY (−ω + iγ)

)
Rf

−M̄f (ωf )
(
AXtY (−ω + iγ) + AY tX(ω′ − iγ) + BtY (−ω + iγ)tX(ω′ − iγ)

)
(11)
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The response matrix FX is, as usual,17

FX
µν = 〈Λ|[[X̂, τµ], τν ] exp(T )|HF〉 ≡ (〈HF|+ 〈t̄|)[[X̂T , τµ], τν ]|HF〉 , (12)

with 〈Λ| = 〈HF| +
∑

λ t̄λ〈λ| exp(−T ) ≡ (〈HF| + 〈t̄|) exp(−T ). The auxiliary excited-state

multipliers are obtained solving

M̄ f (A + ωfI) = −FRf , (13)

where

Fµν = 〈Λ|[Ĥ, τµ], τν ] exp(T )|HF〉 ≡ (〈HF|+ 〈t̄|)|[[ĤT , τµ], τν ]|HF〉 (14)

The complex response multipliers t̄X(ω′ − iγ) are obtained solving

t̄X(ω′ − iγ) (A + (ω′ − iγ)I) = −ηX − FtX(ω′ − iγ). (15)

with

ηXµ =
〈

Λ
∣∣∣[X̂, τµ]

∣∣∣CC
〉
≡ (〈HF|+ 〈t̄|)[X̂T , τµ]|HF〉 (16)

Equation (15) is slightly more complicated than Equation (8) as the second term on the

RHS is complex for γ 6= 0, even when X̂ is purely real or imaginary.

In the EOM-CC (time-independent) framework, which has been shown to be equivalent

to the time-dependent CC-CI parametrization,33 the first-order amplitudes tY (ω + iγ), as

well as the right Rf and left Lf excitation vectors, are the same as obtained from CC linear

response (CC-LR). The EOM-CC left response vectors, on the other hand, are different

from the CC-LR ones, because of the different right-hand-sides ηX and the lack of the F

term17,33,34

EOMt̄X(ω′ − iγ) (A + (ω′ − iγ)I) = −EOMηX (17)

6



with

EOMηXν = 〈Λ|X̂ exp(T )|ν〉 − t̄ν〈X̂〉CC = (〈HF|+
∑
µ

t̄µ〈µ|)X̂T |ν〉 − t̄ν〈X̂〉CC

≡ ηXν +
∑
µ>ν

t̄µ〈µ|τνX̂T |HF〉 − (t̄ · ξX)t̄ν

(18)

where we have highlighted that the EOM-CC ηX vector can be easily obtained from the

CC-RSP one with small modifications.

The final EOM expressions for the left and right transition moments are different from

the CC-RSP case. The EOM-CC right transition moment takes the form

EOM−CCFf0XY (ω) = −Lf
[
EOMAXtY (ω + iγ) + EOMAY tX(−ω′ − iγ)

− (t̄ · ξX)tY (ω + iγ)− (t̄ · ξY )tX(−ω′ − iγ)

− (t̄ · tY (ω + iγ))ξX − (t̄ · tX(−ω′ − iγ))ξY
] (19)

where the EOM-CC property Jacobian is

EOMAXµν = 〈µ|X̂T |ν〉 − δµν〈HF|X̂T |HF〉

= AXµν + 〈µ|τνX̂T |HF〉(1− δµν) .

(20)

The EOM-CC left transition moment takes the form

EOM−CCF0f
XY (ω) = −

[
EOMt̄X(ω′ − iγ)EOMAY + EOMt̄Y (−ω + iγ)EOMAX

− (t̄ · ξX)EOMt̄Y (−ω + iγ)− (t̄ · ξY )EOMt̄X(ω′ − iγ)
]
Rf

+ (t̄ ·Rf )
[
EOMt̄Y (−ω + iγ) · ξX + EOMt̄X(ω′ − iγ) · ξY

] (21)

Finally, we remind the reader that the usual complications arising from the non-variational

nature of CC theory apply for both CC and EOM-CC, i.e., the left and right transition mo-

ments are not well defined individually, only their products (i.e., the transition strengths)
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are,17 and the scattering amplitude must be symmetrized

F0f
XY (ω)Ff0ZU(ω) = 1

2
CCF0f

XY (ω)CCFf0ZU(ω) + 1
2

(
CCF0f

ZU(ω)CCFf0XY (ω)
)∗

(22)

For molecules in the gas-phase (or, in general, isotropic samples) the final scattering cross

section is proportional to the transition strengths σ0f averaged over all molecular orientations

and over the polarization of the emitted radiation. The latter depends on the angle θ between

the polarization vector of the incident photon, and the propagation vector of the scattered

one12

σ0f
θ =

ω′

ω

1

15

∑
XY

[(
2− 1

2
sin2 θ

)
F0f
XY (ω)Ff0XY (ω)

+

(
3

4
sin2 θ − 1

2

)(
F0f
XY (ω)Ff0Y X(ω) + F0f

XX(ω)Ff0Y Y (ω)
)] (23)

Eq. 23 will be used in the following sections when computing the RIXS spectral slices.

2.2 The non-resonant emission spectra

Non-resonant XES can be viewed as a two-step process where a core electron is initially

ejected by a beam with energy well beyond a given edge ionization potential, followed by

relaxation of a valence electron into the core hole with corresponding emission of photon

energy. One established method to compute EOM-CCSD XES35 consists in performing

an unrestricted Hartree–Fock (UHF) on the neutral molecule in order to generate a set

of molecular orbitals for a subsequent UHF calculation in which a core–hole is introduced

and invoking the maximum overlap method (MOM) procedure36 to prevent the variational

collapse of the core–hole. Once this calculation is converged, regular CCSD and EOM-

CCSD calculations are carried out, and the relevant emission energies appear as negative

eigenvalues. Intensities for the transitions are computed using a similar procedure but with

single excitation configuration interaction (CIS) calculations applied to the UHF core–hole

wavefunction.35

Here we propose an alternative scheme that does not require UHF calculations: valence
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and core ionized states are generated as restricted excitations into a very diffuse orbital.37,38

The emission energies are then computed as difference between the core-ionized state (c) and

the valence-ionized state (v) ionization potentials, (IPc − IPv). The intensities are finally

computed as oscillator strengths fvc between the core and valence ionized states, fvc =

2
3
(IPc−IPv)(S

vc
XX +SvcY Y +SvcZZ), using the regular CC expressions for the transition strengths

Svcαα between two excited states.17 In the EOM-CC framework, the transition moments TXXvc

(in the notation of Ref. 17) entering the transition strength SvcXX are simply

EOMTXXvc = (Lv
EOMAXRc)− (t̄ ·Rc)(Lv · ξX)− (LvIRc)(t̄ · ξX) (24)

and similarly for the other terms required.

2.3 The complex response amplitudes and multipliers

As anticipated in the previous sections, to compute the KHD scattering amplitudes we need

to solve right and left complex linear equations like, e.g.,

(A− (ω + iγ)I)tX(ω + iγ) = −ξX (25)

t̄X(ω′ − iγ)(A + (ω′ − iγ)I) = −ηX − FtX(ω′ − iγ) (26)

In the present study we adopt the algorithm presented in Ref. 32 and rewrite, e.g., the

right complex equation above as

 (A− ωI)tX< (ω̃) = −ξX< − γtX= (ω̃)

i(A− ωI)tX= (ω̃) = −iξX= + iγtX< (ω̃)
(27)

where t̃X = tX< + itX= and ξ̃X = ξX< + iξX= ≡ ξX< , which is then recast in (pseudo-symmetric)
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matrix form (A− ωI) γI

γI −(A− ωI)


 tX<

tX=

 =

−ξX<
ξX=

 (28)

The solution to Eq. (28) is obtained using an iterative subspace algorithm.32 After

iteration n, we have k real orthonormal trial vectors (where k ≤ 2n)

bk = {b<1, b=1, b<2, b=2, . . . , b<n, b=n} (29)

= {b1, b2, b3, b4, . . . , bk−1, bk} (30)

and k linear transformed vectors

σk = {Ab<1,Ab=1,Ab<2,Ab=2, . . . ,Ab<n,Ab=n} (31)

= {Ab1,Ab2,Ab3,Ab4, . . . ,Abk−1,Abk} (32)

A reduced response equation is set up in the subspace bk in (30), giving

Ared − ωIred γIred

γIred −(Ared − ωIred)


αX<
αX=

 =

−ξX,red<

ξX,red=

 , (33)

where

ξX,red<,i = bTi ξ
X
< , ξX,red=,i = bTi ξ

X
= (34)

Ared
ij = bTi σj = bTi Abj (35)

Index i in Eq. (34) refers to the indices of bk in Eq. (30). The dimension of reduced

space response matrix in Eq. (33) is 2k×2k, due to the fact that each block has a dimension

k × k. Indices i and j in Eq. (35) refer to the indices of bk in Eq. (30) and σk in Eq. (32),

respectively. Due to the fact that trial vectors are orthonormal, Ired is a unity matrix of
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dimension k × k.

Solving Eq. (33) leads to the optimal solution vectors (real and imaginary component)

given as

tX<,n+1 =
k∑
i=1

(αX< )ibi , tX=,n+1 =
k∑
i=1

(αX= )ibi . (36)

The residuals RX
<,n+1 and RX

=,n+1 may be calculated as

RX
<,n+1 = (A− ωI)tX<,n+1 + γItX=,n+1 + ξX< (37)

=
k∑
i=1

(αX< )iσi − ω
k∑
i=1

(αX< )ibi + γ

k∑
i=1

(αX= )ibi + ξX< , (38)

RX
=,n+1 = −(A− ωI)tX=,n+1 + γItX<,n+1 − ξX= (39)

= −
k∑
i=1

(αX= )iσi + ω
k∑
i=1

(αX= )ibi + γ
k∑
i=1

(αX< )ibi − ξX= , (40)

respectively. Residuals are used to check for convergence and may be used to obtain new

trial vectors according to a general equation of the form

b̃n+1 = PR̃n+1 (41)

where b̃n+1 is a general new trial vector, R̃n+1 is a general residual in iteration n+1 and P

is a preconditioner.

Eq. (41) may be written as

b<,n+1 + ib=,n+1 = P(R<,n+1 + iR=,n+1) (42)
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In our case, Eq. (41) may be written as

b<,n+1

b=,n+1

 =

(A0 − ωI) γI

γI −(A0 − ωI)


−1R<,n+1

R=,n+1

 , (43)

where A0 contains the diagonal elements of A. Eq. (43) is equivalent to

b<,n+1

b=,n+1

 = [(A0 − ωI)2 + γ2I]−1 ⊗

(A0 − ωI) γI

γI −(A0 − ωI)


R<,n+1

R=,n+1

 . (44)

More specifically, the elements of the new trial vectors are

(b<,n+1)j =
Ajj − ω

(Ajj − ω)2 + γ2
(R<,n+1)j +

γ

(Ajj − ω)2 + γ2
(R=,n+1)j (45)

(b=,n+1)j = − Ajj − ω
(Ajj − ω)2 + γ2

(R=,n+1)j +
γ

(Ajj − ω)2 + γ2
(R<,n+1)j (46)

The new trial vectors b<,n+1 and b=,n+1 are then added to the subspace bk in Eq. (30) as

bk+1 and bk+2 and the iteration procedure is continued until convergence is obtained.

In the right complex equations, Eq. 25, the right-hand-side vectors are generally either

purely real (for real operators) or purely imaginary (for imaginary operators). In the right-

hand-side of the left complex equation, Eq. 26, on the other hand, there are always both

imaginary and real components, due to the presence of the complex amplitudes.

3 Computational details

The same geometry as used in Ref. 12 was adopted for water. Symmetry labels throughout

are relative to the molecule placed on the yz axis, with z as C2 axis. The protocols described

in the previous section for both the RIXS amplitudes and the CPP solver were implemented

in python as a stand-alone code39 interfaced to Psi4.40 Pople’s 6-311++G** basis set in its

pure (spherical) form was adopted for the calculations, further supplemented with a set of
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s and p Rydberg-type functions placed on the oxygen atom (with quantum numbers n = 3,

3.5, 4).41

The spectral slices of the RIXS map were generated by calculating the scattering cross-

sections σ0f
45◦(ω) of each of the first twenty valence excited states at the given incident energy,

and subsequently broadening with a Lorentzian lineshape function, using the broadening

parameter γ = 0.124 eV, as also used in the ADC study of Ref. 12. The same broadening

factor was also applied to the non-resonant spectrum, where only a couple of valence ionized

states needed to be treated in order to cover the spectral region shown in the next section.

4 Results and discussion

We report in Table 1 the excitation energies and strengths for the first 12 valence excita-

tions (including the dipole forbidden ones), the first four dipole allowed core excitations,

and the emission energies from the core ionized state to the first three valence ionized states

obtained at the CCSD level in the 6-311++G**+Rydberg basis set. All core-related val-

ues were obtained without imposing any core-valence separation.42 The 1 1B1, 1 1A2, 2 1A1

and 1 1B2 states (vide infra) are the main contributors to the RIXS transitions, and their

position is quite well reproduced at the chosen level of theory compared to existing experi-

mental data.43–47 The intensity of the first excitation is also in very good agreement with the

experimentally derived one,44 whereas the intensity of the 2 1A1 excitation is overestimated.

13



Table 1: H2O. Computed spectral parameters at the CCSD/6-311++G**+Rydberg level:
excitation energies (E), transition strengths (S) and oscillator strength (f) of UV (VUV) and
X-ray (XAS) absorption; Non-resonant emission energies and intensities (XES); Resonant
Inelastic X-ray Scattering main contributors’ positions (RIXS). Symmetry labels are relative
to the molecule placed on the yz axis, with z as C2 axis.

Exc.state E/eV S/a.u f Eexpt/eV f expt

VUV 1 1B1 (x) 7.407 0.2588 0.04697 7.45a 0.046b

1 1A2 (–) 9.155 0.0 0.0 9.1c

2 1A1 (z) 9.742 0.362 0.0863 9.99a 0.05d

2 1B1 (x) 10.01 0.0204 0.00499
3 1A1 (z) 10.10 0.0537 0.01328
3 1B1 (x) 10.39 0.00132 0.00034
2 1A2 (–) 10.80 0.0 0.0
4 1B1 (x) 11.21 0.00461 0.00127
4 1A1 (z) 11.22 0.00016 0.00004
5 1B1 (x) 11.30 0.00055 0.00015
3 1A2 (–) 11.43 0.0 0.0
1 1B2 (y) 11.50 0.08191 0.02308 11.5e

XAS 1s → 4a1 535.74 0.0009 0.0124 (1.0) 534.0f (1.0)
1s → 2b2 537.53 0.0020 0.0258 (2.0) 535.9f (1.3)
1s → 2b1 538.93 0.0004 0.0058

537.1f
1s → 5a1 539.03 0.0003 0.0044
Emission line

XES
1s →∞ 1b−11 529.15 0.0043 0.0554 527.1g

3a−11 526.92 0.0035 0.0453 525.4g

1b−12 522.51 0.0031 0.0398 521.0g

RIXS

1s → 4a1
1b−11 528.3 ≈526.2g

3a−11 526.0 ≈524.2g

1s → 2b2
1b−11 ≈526.8g

3a−11 ≈524.5g

aFrom Ref. 43; bFrom Ref. 44; cFrom Ref. 45; dFrom Ref. 46; eFrom Ref. 47; f From Ref.
48; gFrom Ref. 4.

In the chosen basis set, and as previously observed,49,50 the first two core excitation

energies are systematically overestimated at the CCSD level, respectively by 1.74 eV and

1.67 eV, compared to the experimental peak maxima. This results in a slightly smaller
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separation between the two computed XAS peaks (1.79 eV) than the separation between

the experimental peaks (1.9 eV). The relative intensities of the first two excitations are also

slightly overestimated compared to the experimentally derived (relative) strengths. The

intensity ratio determined is equivalent to the one reported at the ADC(2)-x and ADC(3/2)

level in Ref. 12.

Turning to the non-resonant XES, the position of our 1b−11 emission line is ≈2 eV higher

than in the experimental case, whereas the other two lines are ≈1.5 eV higher. We will

return to the discussion of the emission intensities later on.

On Table 2, we have summarized the cross-section values obtained for the states that

contribute most to the RIXS spectral slices. We report both CCSD and EOM-CCSD re-

sults obtained using two different basis sets, namely the standard 6-311++G** set and

the 6-311++G** set supplemented with Rydberg functions. They are compared with the

corresponding ADC results from Ref. 12.

Table 2: H2O. RIXS transition strengths σ0f
45◦ calculated at the resonance frequency of the

two lowest core-excited states.c

Resonance (1s → 4a1) Resonance (1s → 2b1)
Method 11B1 21A1 11A2 11B2

CCSD/a 0.021 (1.56) 0.014 0.043 (1.28) 0.033
CCSD/b 0.021 (1.81) 0.012 0.041 (1.30) 0.032
EOM-CCSD/a 0.021 (1.55) 0.013 0.042 (1.28) 0.033
EOM-CCSD/b 0.021 (1.82) 0.011 0.040 (1.30) 0.031
ADC(2)/a 0.012 (1.47) 0.008 0.019 (1.23) 0.016
ADC(2)-x/a 0.016 (1.51) 0.011 0.031 (1.26) 0.025
ADC(3/2)/a 0.027 (1.57) 0.017 0.053 (1.34) 0.040
Expt. (1.7±0.2) (1.0) (1.2±0.2) (1.0)

a 6-311++G** ;
b 6-311++G** + Rydberg(n = 3, 3.5, 4)
c Transition strengths normalized to the σ value of the second final state are given in parenthesis.
Experimental data are from Ref. 4; ADC results are from Ref. 12.

Inspection of the results in Table 2 shows that quadratic response (QR) CCSD and EOM-

CCSD yield almost identical results for the RIXS cross sections. Addition of the Rydberg

functions slightly reduces the intensity of the 2 1A1 state at the first resonance, increasing
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hereby the relative intensity of the emission line at higher energy (11B1), in agreement with

experiment. It should be noticed, nonetheless, that both basis sets yield relative cross-section

intensity values that accommodate within the experimental error bars. At both resonances,

the QR-CCSD/EOM-CCSD cross-sections are in-between the ADC(2)-x and the ADC(3/2)

ones, which were obtained in Ref. 12 in the 6-311++G** basis set without Rydberg type

functions. The authors of Ref. 12 do not report the numerical value of the peak maxima in

the RIXS spectrum, but indicative values can be inferred from an inspection of Fig. 1 in Ref.

12. For ADC(3/2), the 11B1 maximum is at around 531.1 eV and the 21A1 one at around

528.7 eV (4a1 resonance); the 11A2 maximum is at around 530.9 eV and the 21B2 one at

around 528.5 eV (2b2 resonance). The deviations from the experimental peak maxima are

thus of the order of 5 eV. Our CCSD maxima, on the other hand, see Table 2, are off the

experimental ones by roughly 2 eV.

RIXS spectral slices are shown on the top panel of Fig. 1, together with the non-resonant

XES spectrum for the QR-CCSD case in the larger basis set. Only the first two bands are

included in both cases. The EOM slices are shown on the left panel at the bottom and

are basically identical to the QR-CCSD ones. A so-called RIXS map is shown on the right.

Comparing the RIXS slices with the experimental ones shown in Fig. 3 of Ref. 4, we observe

the same general trends as in experiment: the emission peaks shift to higher energy when

changing the resonance excitation energy, including the non-resonant case. Notice that the

third emission peak was not included in our calculated RIXS and non-resonant XES spectra

in Fig. 1. Fig. 1 also shows that even if the decay into the four above mentioned valence

excited states yield most of the emission intensities, other states are also contributing. The

arrows in the spectra in the top panel indicate that different states are probed at different

incident frequencies. For the spectrum at 538.98 eV, the incident light was chosen in near

resonance with two very close lying core excited states, and one can clearly see that two

valence states are the main contributors to the intense bands at this incident frequency.
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Figure 1: Top: Slices of the core emission spectrum, when the incident beam is at resonance
with each of the first few core excited states (RIXS) and when a beam frequency beyond
the ionization threshold is used (XES, labeled “Non-resonant”). QR-CCSD/6-311++G∗∗ +
(3s,3p)–Rydberg(n=3, 3.5, 4) results. The arrows highlight how different states are probed at
different resonant frequencies. Bottom left: EOM-CCSD slices of the core emission spectrum.
Right: RIXS map, QR-CCSD/6-311++G∗∗ + (3s,3p)–Rydberg(n=3, 3.5, 4).
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5 Conclusions

A computational expression for the Kramers−Heisenberg−Dirac scattering amplitude of res-

onant inelastic X-ray scattering (RIXS) has been derived in the framework of damped coupled

cluster and equation-of-motion coupled cluster quadratic response theory, and implemented

at the coupled cluster singles and doubles level. A practical recipe to obtain non-resonant

x-ray emission spectra (XES) at the same levels of theory that does not require unrestricted

Hartree-Fock calculations has also been proposed. This further extend the applicability of

the highly successful and rather accurate coupled cluster response methodologies within of

realm of x-ray spectroscopy.

As illustrative case study, we have considered the water molecule in gas phase, for which

accurate experimental RIXS data,4 as well as very recent ADC results obtained with a

similar strategy,12 are available. Very good agreement with the experimental data was

obtained. Moreover, no significant difference was observed between the results obtained

from “standard” quadratic response and those obtained from the computationally simpler

equation-of-motion expressions.

6 Appendix: alternative derivation of the EOM-CC

KHD amplitudes

As noted in an earlier section, the EOM-CC approach can and has traditionally be de-

rived by treating the biorthogonal eigenvectors of an effective Hamiltonian constructed by

projecting the similarity transformed Hamiltonian, exp(−T )Ĥ exp(T ), into a complete set

determinants.18 Due to fact that the amplitudes have solved to satisfy the CC equations,

this effective Hamiltonian takes the simple form

(H̄ − ECC) =

0 η

0 A

 . (47)
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The ground-state left and right eigenvectors are found as L̃0 = (1, t̄) and R̃0 = (1, 0),

with an eigenvalue of 0, in correspondence with normal CC theory. Similarly, eigenvectors

corresponding to excited states are L̃n = (0, Ln) and R̃n = (−t̄ · Rn, Rn), where Ln, Rn and

the eigenvalues ωn are identical to the results of CC response theory. In EOM-CC, these

vectors are then interpreted as states, such that

|ΨEOM
0 〉 = exp(T )|HF〉 (48)

|ΨEOM
n 〉 = (t̄ ·Rn +

∑
µ

Rµ,nτµ) exp(T )|HF〉 (49)

〈ΨEOM
0 | = 〈Λ| (50)

〈ΨEOM
n | =

∑
µ

Lµ,n〈µ| exp(−T ) (51)

The relevant moments then become:

〈ΨEOM
n |X̂|ΨEOM

0 〉 = Ln · ξX (52)

〈ΨEOM
0 |X̂|ΨEOM

n 〉 = EOMηX ·Rn (53)

〈ΨEOM
n |X̄|ΨEOM

m 〉 = Ln
EOMAXRm − (t̄ · ξX)(Ln ·Rm)− (Ln · ξX)(t̄ ·Rm) (54)

We can then write the right KHD amplitude as

EOM−CCFf0XY (ω) =
∑
n>0

[
Lf

EOMAXRn − (t̄ · ξX)(Lf ·Rn)− (Lf · ξX)(t̄ ·Rn)
]
Ln · ξY

ωn − (ω + iγ)

+
∑
n>0

[
Lf

EOMAYRn − (t̄ · ξY )(Lf ·Rn)− (Lf · ξY )(t̄ ·Rn)
]
Ln · ξX

ωn + (ω′ + iγ)

(55)

Using the full set of eigenvectors, is possible to rewrite Eq. (8) as

tY (ω + iγ) = −
∑
n>0

Rn(Ln · ξY )

ωn − (ω + iγ)
(56)
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using which, Eq. (55) can easily be seen to be identical to Eq. (19). Similarly, the left

amplitude can be written

EOM−CCF0f
XY (ω) =

∑
n>0

(EOMηY ·Rn)
[
Ln

EOMAXRf − (t̄ · ξX)(Ln ·Rf )− (Ln · ξX)(t̄ ·Rf )
]

ωf − (ω − iγ)

+
∑
n>0

(EOMηX ·Rn)
[
Ln

EOMAYRf − (t̄ · ξY )(Ln ·Rf )− (Ln · ξY )(t̄ ·Rf )
]

ωn + (ω′ − iγ)

(57)

which again can be rewritten as Eq. (21) by using the spectral form of Eq. (17).
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